Analysis of the Triple Combo Threat of the Kimsuky Group

View in Korean

» Deployed a covert infiltration strategy using a three-stage communication channel: Facebook, email, and Telegram

« Lured targets with seemingly credible content related to North Korean defector volunteer activities to initiate conversations and deliver
malicious files

« Confirmed linkage to the state-sponsored hacking group 'Kimsuky,' which targets defense and North Korea-related activists

« Utilized Korea-specific compressed file formats and encoded malicious scripts, specifically designed to evade security detection patterns

+ EDR-based threat hunting and triage can provide visibility

@) genians.co.kr/en/blog/threat_intelligence/triple-combo

4@ Executive Summary

1. Overview

o The Genians Security Center (GSC) detected an APT (Advanced Persistent Threat) campaign targeting users of Facebook, email, and
Telegram in Korea between March and April 2025.

o The threat actor explored reconnaissance and selected attack targets through two Facebook accounts.

o According to a joint investigation conducted by Genians threat analysts, the campaign was attributed to the Kimsuky group, a well-known
North Korea-affiliated state-sponsored hacking organization. The incident was identified as part of the 'AppleSeed' campaign.

o Notably, 'AppleSeed' was first introduced during two VB Conferences in October 2019 and 2021 by lead researcher Jae-Ki Kim and
colleagues in the sessions titled “Kimsuky group: tracking_the king_of the spear-phishing” and “Operation Newton: Hi Kimsuky? Did an
Apple(seed) really fall on Newton's head?”

o According to the disclosed presentation materials, this string was found in the PDB (Program Database) path of malicious files developed by
the Kimsuky group.

o Additionally, in November 2021, AhnLab ASEC provided an in-depth analysis of AppleSeed in its report titled “Operation Light Shell,” which
documented another Kimsuky attack case.

2. Background

o Threat activity by the Kimsuky group remains high in Korea. The group is known to use three major tools in their attacks, often under
different aliases depending on the variant:

* AppleSeed
« BabyShark (RandomQuery)

* FlowerPower (GoldDragon)

o Historical examples of AppleSeed often involved executable file extensions (e.g., EXE, PIF). Script-based files (particularly JSE, WSF, and
JS) were frequently used, often invoking malicious DLL libraries with Base64-encoded contents.

o Spear phishing attachments frequently used the EGG ALZIP format. Threat actors sometimes recommended using specific decompression
tools via email. This serves the dual purpose of evading detection by signature-based security products and encouraging execution on a PC
environment rather than a smartphone.

o Examples of PDB paths containing the 'AppleSeed' string:

No Bit PDB Path

1 32 F:\PC_Manager\Utopia_v0.1\bin\AppleSeed.pdb

64 F:\PC_Manager\Utopia_v0.1\bin\AppleSeed64.pdb

2 32 E:\works\utopia\Utopia_v0.2\bin\AppleSeed.pdb

64 E:\works\utopia\Utopia_v0.2\bin\AppleSeed64.pdb

1/43

https://www.genians.co.kr/en/blog/threat_intelligence/triple-combo
https://www.genians.co.kr/hs/cta/wi/redirect?encryptedPayload=AVxigLKViGEUkfaDm3gLRGMcySYnXn5WYemWPpg1FmcShhHTjEXoz5rHLyXQsPNiLaQ7Nrcq6iCa0%2FCy9XNjwqeZpe9PXfp19ioRbgcEZvWD%2BRVKrcKI%2BVIWilei8arKRwXjHTK%2FpMilXPP%2B1DtvlL8EGsVOYh93T1D2X9TUiXBDfKRoCv3s14bvWP3cQYfSlW6Ks5vYQUsVVVHrMmId0FvWsjImgQ%3D%3D&webInteractiveContentId=190648287062&portalId=22120960&hsLang=en
https://www.virusbulletin.com/conference/vb2019/abstracts/kimsuky-group-tracking-king-spear-phishing
https://vblocalhost.com/presentations/operation-newton-hi-kimsuky-did-an-appleseed-really-fall-on-newtons-head/
https://image.ahnlab.com/atip/content/atcp/2021/11/KIMSUKY-%EC%A1%B0%EC%A7%81%EC%9D%98-OP.Light-Shell.pdf

[Table 1] PDB Path Information of AppleSeed Malware Files

o The AppleSeed case under the 'Utopia_v0.1' path was created in May 2019 based on the DLL build date. The 'Utopia_v0.2' version was built

between August 2019 and January 2020.

|~-PDB Path of AppleSeed

[Figure 2-1] PDB Path of AppleSeed

o The past activities of this threat actor indicate that targets have primarily included the defense industry and military sectors. During the
COVID-19 pandemic, they also launched attacks against vaccine manufacturers. In addition, there have been continuous attempts to steal
information from cryptocurrency exchanges and activists involved in North Korea-related issues.

o Genians threat analysts discovered a recent AppleSeed attack attempt that persisted for more than two months starting in March 2025 and
conducted an in-depth investigation.

o This report analyzes the most recent AppleSeed attack case, in which the following three access channels were used. The goal is to provide
insights and preventative measures against similar security threats through detailed analysis.

o Facebook
o E-Mail
o Telegram

3. Triple Combo Threat Analysis

3-1. Facebook-Based Attack Case

o The first case involves an attack launched via Facebook. The threat actor used an account named 'Transitional Justice Mission' to send
friend requests and direct messages to multiple individuals involved in North Korea-related activities.

2/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/PDB%20Path%20of%20AppleSeed%20.png

l#JInitial contact attempt via Facebook Messenger

[Figure 3-1] Initial contact attempt via Facebook Messenger

o The actor introduced themselves as either a missionary or a church-affiliated researcher, skillfully approaching the target through Facebook
Messenger.

o Then, by posing as if they were sharing a specific document, they caught the target’s interest and delivered a malicious file.

o The malicious file was delivered as a password-protected EGG archive.

|~2Malicious File Delivered via Facebook Messenger

[Figure 3-2] Malicious File Delivered via Facebook Messenger

3/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Initial%20contact%20attempt%20via%20Facebook%20Messenger.png
https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Malicious%20File%20Delivered%20via%20Facebook%20Messenger.png

o The attacker also hijacked another Facebook account for their operation. According to the profile data, the account owner claimed to be a
graduate of the Korea Air Force Academy.

o At the time of the malicious activity, the Facebook profile displayed a photo of a Korean man, which was removed after some time.

l+_Message Posing as Inquiry into Defector Volunteer Activities

[Figure 3-3] Message Posing as Inquiry into Defector Volunteer Activities

o In this case, the threat actor approached the victim by pretending to inquire about volunteering for North Korean defectors. The file was sent
either directly via Messenger or through follow-up conversations using alternate delivery methods.

3-2. Email-Based Attack

o The threat actor also attempted further contact by using the email address obtained through Facebook Messenger conversations.

o They asked for the target’s email address directly via direct messages, then used it to lure the target into opening a malicious file.

4/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Message%20Posing%20as%20Inquiry%20into%20Defector%20Volunteer%20Activities.png

l#’Email Access Attempt via Facebook Messenger

[Figure 3-4] Email Access Attempt via Facebook Messenger

o Both Facebook accounts mentioned earlier approached the targets in similar ways. Although different accounts were used, the tactics and
activity patterns strongly suggest they were operated by the same individual.

o The malicious files used in the attacks were also structurally identical, and the shared theme of 'volunteer support for North Korean
defectors' was consistently used to deceive the recipients.

o The Korean text in the messages includes informal abbreviations and occasional spelling errors, suggesting that the contents was not
generated by Al or translation tools.

o Based on linguistic analysis, the threat actor is likely a native or highly fluent Korean speaker.

5/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Email%20Access%20Attempt%20via%20Facebook%20Messenger.png

l#~:Malicious File Delivered via Email

[Figure 3-5] Malicious File Delivered via Email

o The spear-phishing email contained large attachments or embedded URLs intended to lure the recipient into downloading a file.

o The files were compressed in the EGG format, and the recipient was instructed to use a specific decompression tool, typically available on
PC.

o This tactic appears intended to prevent access from mobile devices, as the malware is designed to run in a Windows environment.

3-3. Telegram-Based Approach

o The malicious files used in this attack were also structurally identical, consistently using the theme of 'volunteer support for North Korean
defectors' to deceive the targets.

6/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Malicious%20File%20Delivered%20via%20Email.png

l'ZMuIti-Stage Approach Comparison

[Figure 3-6] Multi-Stage Approach Comparison

o Analysis of the targeted attack revealed that the threat actor initially made contact via Facebook and email.

o If the attacker obtained the target’'s mobile number, they proceeded to contact them through Telegram. Other messaging apps may also have
been used. This demonstrates the actor’s active and persistent tactics, highlighting the growing variety in defector-themed attacks.

7/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Multi-Stage%20Approach%20Comparison.png

L+ Attack Flow Diagram

[Figure 3-7] Attack Flow Diagram

o Based on the observed attack flow, it appears that a specific individual’s device was initially compromised. The attacker then monitored the
victim and extracted their credentials for SNS and email accounts.

o With hijacked Facebook access, the attacker impersonated the legitimate owner. Because the Facebook account may have existed for a
long time, it draws little suspicion from the victim’s contacts. Threats that exploit online friend relationships are difficult to detect from outside.
Due to the discreet nature of 1:1 chats over messenger, such threats are difficult to detect and require extra caution.

o Users should always be wary of unexpected URLSs or files, as these may contain threats. Maintaining a habit of vigilance is key to
cybersecurity.

o This case shows how attackers leverage multiple platforms—Facebook, email, and Telegram—to carry out coordinated multi-channel
attacks.

4. Malware Analysis

4-1. Analysis of 'EIMS0IX| 2 SAIES.jse’ File (Defector Volunteer Support.jse)

o The JSE file has a .jse extension and is an obfuscated JScript file that runs under Microsoft’'s Windows Script Host (WSH).

o The file named 'Et£ DI X| & 2 ALEHS jse' creates two files upon execution: one is a legitimate-looking PDF document used as a decoy to trick
the user, and the other is a malicious DLL file that carries out the actual malicious behavior.

8/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Attack%20Flow%20Diagram.png

l#’Execution Flow of 'EH2 0| X| 2/ 2 A& S jse' (Defector Volunteer Support.jse)

[Figure 4-1] Execution Flow of 'EM= DI X| 2 £ A}

gk

=.jse

(Defector Volunteer Support.jse)

o Inside the script, the variable xF6hKgM2MIR contains the Base64-encoded data for the PDF file, while the variable guC1USOkKiW holds the
name of the file to be created: '&H= 0 X| & £ A} &S .pdf' (Defector Volunteer Support).

s

o Using the Microsoft. XMLDOM object (xmIDom), the value of xF6hKgM2MIR is decoded and saved as a file at 'C:\ProgramData\EfS 0| X| &

=
AHEHS pdf (Defector Volunteer Support), which is then automatically opened using WScript.Shell.

o This decoy document makes the user believe they are viewing a legitimate file, effectively concealing the malicious behavior.

9/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Execution%20Flow%20of%20%ED%83%88%EB%B6%81%EB%AF%BC%EC%A7%80%EC%9B%90%EB%B4%89%EC%82%AC%ED%99%9C%EB%8F%99.jse%20(Defector%20Volunteer%20Support.jse)-1.png

L'fiDecoy File Execution Process

[Figure 4-2] Decoy File Execution Process

o When the script is executed, a PDF file is created and opened as shown below.

10/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Decoy%20File%20Execution%20Process-1.png

|#~2PDF File Creation and Execution

[Figure 4-3] PDF File Creation and Execution

o The DLL file's data is Base64 encoded twice. The first decoding is performed using the Microsoft. XMLDOM object (xmIDom), followed by the
execution of certutil through PowerShell, completing the two-step decoding process.

o Once the decoding is complete, the malicious DLL file is saved with the name C:\ProgramData\vmZMXSx.eNwm.

o The DLL file is executed in silent mode using the command regsvr32.exe /s /n /i:tgvyh!@#12 vmZMXSx.eNwm. This process loads the
malicious DLL into the system, where it begins performing its malicious actions.

11/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/PDF%20File%20Creation%20and%20Execution-2.png

l#-Creation and Execution of Malicious DLL

[Figure 4-4] Creation and Execution of Malicious DLL

4-2. Analysis of the vmZMXSx.eNwm File

o The 'vmZMXSx.eNwm' is a VMProtect-packed DLL. VMProtect is a tool that virtualizes parts of the code, making it difficult to analyze the
internal logic with standard debugging and analysis tools. It is commonly used to prevent reverse engineering. The key malicious functionality
of the DLL is hidden within the virtualized sections, which limits static analysis.

o When executed with the command 'regsvr32.exe /s /n /i:tgvyh!@#12 vmZMXSx.eNwm', the DllInstall function of the 'vmZMXSx.eNwm' file is
called, and the parameter 'tgvyh!@#12' is passed.

o Once the 'vmZMXSx.eNwm' file is loaded into the 'regsvr32.exe' process, the passed parameter is checked against the string 'tgvyh!@#12'.
If the values differ, a batch file is created to perform self-deletion.

12/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Creation%20and%20Execution%20of%20Malicious%20DLL-1.png

l+-Parameter Verification

[Figure

4-5] Parameter Verification

o After the parameter verification, the decoding process is performed based on the value located at offset OxAO in the ‘.data’ section. This
decoding is carried out using an XOR method with a key value of 0x5E. Once decoding is complete, the original DLL binary data, which is not
protected by VMProtect, is stored at the same offset in the .data section.

13/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Parameter%20Verification-1.png

l#’DLL Decoding Process

[Figure 4-6] DLL Decoding Process

o The decoded DLL data is dynamically allocated in virtual memory and relocated. The sections of the DLL are manually organized in memory,
and then the 'Dllinstall' function of the DLL is called.

14/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/DLL%20Decoding%20Process-1.png

l#2DLL Relocation and Dllinstall Function Call

[Figure 4-7] DLL Relocation and Dllinstall Function Call

o After the 'Dllinstall' function is executed, the same parameter verification process is performed as before. Then, the 'CreateProcessW'
function is used to execute additional commands.

15/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/DLL%20Relocation%20and%20DllInstall%20Function%20Call-1.png

l+-Persistence Execution

[Figure 4-8] Persistence Execution

o The command passed as an argument to 'CreateProcessW' registers the 'TripServiceUpdate' entry in the user execution registry
(HKCU\...\Run) and configures the system to automatically execute the malicious DLL through 'regsvr32.exe' every time the system reboots.

reg add HKCU\Software\Microsoft\Windows\CurrentVersion\Run /t REG_SZ /v "TripServiceUpdate" /d "regsvr32.exe /s /n /i:tgvyh!@#12
C:\Users\[AI2 Xt]\AppData\Roaming\trip\service\tripservice.dll" /f

[Table 4-1] Persistence Execution Command

o Subsequently, a directory is created at ‘C:\Users\[Username]\AppData\Roaming\trip\service\" to store the malicious DLL (tripservice.dll). This
path is referenced by the previously registered auto-execution registry entry (HKCU\...\Run).

16/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Persistence%20Execution-1.png

l#2Persistence DLL Directory Creation

[Figure 4-9] Persistence DLL Directory Creation

o A temporary file is created at C:\Users\[Username]\AppData\Roaming\temp\{random}.tmp, and the data from the .data section of the
malicious code is directly stored in this file.

17/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Persistence%20DLL%20Directory%20Creation-1.png

l~2Random tmp File Creation

[Figure 4-10] Random tmp File Creation

o The stored file is structured as follows: the first 17 bytes are a string designed to disguise the file as a legitimate PDF, followed by 4 bytes of
dummy values that are not used in decoding. The next 16 bytes are used as a decoding key, and the remaining area stores the encoded body
data using the XOR method.

18/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Random%20tmp%20File%20Creation-1.png

l~-Random tmp File Structure

[Figure 4-11] Random tmp File Structure

o The malware retrieves the key value from the created '{random}.tmp' file and repeatedly performs XOR operations with 0x47E04B65.

19/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Random%20tmp%20File%20Structure-1.png

L'fiDecoding Key Generation

[Figure 4-12] Decoding Key Generation

o The encoded data in the '{random}.tmp'’ file is read in 4KB chunks, and XOR operations are performed using the previously set key to
decode it.

o The decoded result is ZIP file data.

20/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Decoding%20Key%20Generation-1.png

l#.Data Decoding Process

[Figure 4-13] Data Decoding Process

o Once the decoding process is complete, the decoded data is saved as 'C:\Users\[Username]\AppData\Roaming\temp{random}.tmp.zip'.

21/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Data%20Decoding%20Process-1.png

|#-ZIP File Creation

[Figure 4-14] ZIP File Creation

o After the ZIP file is saved, the '{random}.tmp' file containing the encoded data is deleted.

o Then, the stored '{random}.tmp.zip' file is extracted to create the file 'C:\Users[Username]\AppData\Roaming\trip\service\tripservice.dll'.

22/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/ZIP%20File%20Creation-1.png

l#-Persistence DLL File Creation

[Figure 4-15] Persistence DLL File Creation

o Once the 'tripservice.dll' file is created, the command 'regsvr32.exe /s /n /i:tgvyh!@#12 C:\Users\
[Username]\AppData\Roaming\trip\service\tripservice.dll' is executed through the 'CreateProcessW' function.

23/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Persistence%20DLL%20File%20Creation-1.png

L'fiExecuting the 'tripservice.dll' File

[Figure 4-16] Executing the 'tripservice.dll' File

o Finally, a batch file is created to delete both the 'vmZMXSx.eNwm' file and the batch file itself.

rrepeat

del "C:\ProgramData\vmZMXSx.eNwm"

if exist "C:\ProgramData\vmZMXSx.eNwm" goto repeat
del "%~f0"

[Table 4-2] Batch File Content

4-3. Analysis of the tripservice.dll File

o Once the 'tripservice.dll' file is loaded by the 'regsvr32.exe' process, the encrypted data stored in the ‘.data’ section is decoded and
dynamically allocated in memory. This process is similar to the one used by the 'vmZMXSx.eNwm' file. The code in this memory section then
executes the 'Dllinstall' function.

o When the 'Dllinstall' function is executed, a mutex named 'DropperRegsvr32' is created to prevent duplicate instances.

24/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Executing%20the%20tripservice.dll%20File-1.png

45:8BCC
85c0
4C:0F450D 20300400
:88C3
:837B 18
2 03
: 8803
01000000

000000018001855C 33C9 Xor e CX .
a1:FFDl ro Mutex name:
T DropperRegsvr32-20250402085747

[Figure 4-17] Mutex Creation

o The code first calls the 'CreatePipe' function to create a pipe and then executes 'CreateProcessW' to launch the command prompt (cmd.exe)
and run commands that collect various system information.

o The results of these commands are passed through the pipe handle created by 'CreatePipe' and delivered to a memory buffer. These results
are then either saved as files or sent to an external server.

|~2Command Execution

[Figure 4-18] Command Execution

o After executing the information-gathering commands, the code accesses the registry path
'SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System' to check the values of 'ConsentPromptBehaviorAdmin' and
'PromptOnSecureDesktop'. This checks whether UAC (User Account Control) is enabled.

o Then, using the OpenProcessToken and GetTokenInformation APIs, the code checks if the currently running process has administrator
privileges.

25/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Mutex%20Creation-1.png
https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Command%20Execution.png

l#2UAC and Administrator Privilege Check

[Figure 4-19] UAC and Administrator Privilege Check

o The results of the system information collection commands executed via the ‘CreateProcessW’ function are transmitted through the pipe and
saved as a file at the following path:
C:\Users\[Username]\AppData\Roaming\temp\{random}.tmp

26/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/UAC%20and%20Administrator%20Privilege%20Check.png

l#Saving Collected Data

[Figure 4-20] Saving Collected Data

o The 'CryptGenRandom' function generates 117 bytes of random data. The 'CALG_RC4' algorithm is then specified, and the 'CryptDeriveKey'
function is used to generate an RC4 session key. After that, the 'CryptimportKey' function loads a 1024-bit RSA public key, which is used to
encrypt the RC4 session key.

27/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Saving%20Collected%20Data.png

l#Encryption Key Configuration

[Figure 4-21] Encryption Key Configuration

l#.RSA Encryption of RC4 Key

28/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Encryption%20Key%20Configuration.png
https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/RSA%20Encryption%20of%20RC4%20Key.png

[Figure 4-22] RSA Encryption of RC4 Key

o The {random}.tmp' file collected in the previous step is compressed into a ZIP archive named {random}.tmp.zip".
o The ZIP file is then encrypted, producing a new file named '{random}.tmp.zip.enc'. This file consists of the following three components:

the size of the ZIP file, the RC4 session key encrypted with RSA, and the ZIP data encrypted using RC4.

L+ Structure of the '{random}.tmp.zip.enc' File

[Figure 4-23] Structure of the {random}.tmp.zip.enc' File

o The following steps are performed to encode the {random}.tmp.zip.enc' file.

o The value obtained from the 'GetTickCount' function is used as the seed for the 'srand' function. Based on this, the 'rand' function is called 16
times to generate a total of 16 bytes of random data.

o This random value is used as a key to perform XOR encryption on the data within the .enc file. The generated key is applied in a cyclic
manner throughout the encryption process.

29/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Structure%20of%20the%20%7Brandom%7D.tmp.zip.enc%20File.png

l#’Encoding of the '{random}.tmp.zip.enc' File

[Figure 4-24] Encoding of the '{random}.tmp.zip.enc' File

o A file named '{random}.pdf' is created, consisting of the PDF header, 4 bytes of dummy data, a 16-byte XOR key, and the encoded contents
of the .enc file. The overall structure matches that of ‘[Figure 4-11] Random tmp File Structure’.

o A unique identifier string is generated based on the infected system's drive volume serial number and the username. The username is
converted to hexadecimal, one character at a time, and the final string is formatted as 'VolumeSerial-Username(in hex)'.

o The generated string is included as the value of the 'p1' parameter in an HTTP request which is sent to the C2 server. The 'm' parameter with
a value of 'b' indicates a data transmission.

30/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Encoding%20of%20the%20%7Brandom%7D.tmp.zip.enc%20File.png

l+2p1" and 'm' Parameter Configuration

[Figure 4-25] 'p1' and 'm' Parameter Configuration

o An HTTP request is sent to the 'woana.n-e[.]kr' domain, including the previously defined parameters and the data from the '{random}.pdf' file,
which is formatted as 'multipart/form-data’.

31/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/p1%20and%20m%20Parameter%20Configuration.png

l+-Transmission of Collected Data

[Figure 4-26] Transmission of Collected Data

o Once the transmission is complete, a new thread is created to send another HTTP request to the 'woana.n-e[.]kr' domain. The 'p1' parameter
remains the same, while the 'm' parameter is set to 'c".

o Setting the 'm' parameter to 'c' indicates data reception. The 'woana.n-e[.]Jkr' domain responds by returning data that contains commands.

o Upon receiving the commands, the malware saves them to a file at the following path using the 'InternetReadFile' function:
C:\Users\[Username]\AppData\Roaming\temp\{random}.tmp

o The command is then executed in the same way as before, and the result is sent back via a request with the parameter set to 'm=b".

32/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Transmission%20of%20Collected%20Data.png

l'ZReceiving Command Data

[Figure 4-27] Receiving Command Data

o The malware maintains a loop structure that continuously communicates with the 'woana.n-e[.]Jkr' domain at regular intervals to send and
receive commands. Upon initial execution, it sends collected system information to the 'woana.n-e[.]kr' domain, using the 'p1' parameter to
include the unique identifier string and setting the 'm' parameter to 'b'.

o It then creates a new thread and performs a request with the same 'm' parameter set to 'c'. This indicates command reception, and the
response received from the ‘woana.n-e[.]kr' domain is saved as a file.

o The saved file contains executable commands or scripts. The process of executing these commands and the method of transmission are the
same as described in ‘[Figure 4-18] Command Execution’ through ‘[Figure 4-26] Transmission of Collected Data’.

o This malware is a remote access trojan (RAT) that is executed through a DLL loaded via 'regsvr32' and collects system information using
RC4 and RSA encryption along with a PDF disguise technique, receives and executes commands from the C2 server, and sends the results
back.

5. Similar Variant Cases

5-1. Spear Phishing Similarity Comparison

o A review of the threat actor’s past activities shows that, in addition to Facebook, there have also been cases of initial access via LinkedIn.

33/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Receiving%20Command%20Data.png

L'fiExampIe of an attack conducted via LinkedIn

[Figure 5-1] Example of an attack conducted via LinkedIn

o In an actual case from 2024, the attacker disguised themselves as a military researcher to approach a graduate of the Korea Naval
Academy.

o LinkedIn, a leading social media platform for professional networking and recruitment, is used to select targets.

o On LinkedIn, individuals’ affiliations, work experience, technical skills, and achievements by field are often publicly available. The platform
also allows attackers to search for individuals in specific fields and reach out via direct messages.

o A comparison of spear phishing incidents carried out last year and this year shows that both campaigns attempted to lure targets into using
the Korean file compression tool Bandizip. This appears to serve two main purposes:

« To ensure that the archive is extracted on a Windows PC rather than a smartphone

» To evade security detection by using encrypted archives in the EGG format

34/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Example%20of%20an%20attack%20conducted%20via%20LinkedIn.png

l+:Comparison of file compression instructions

[Figure 5-2] Comparison of file compression instructions

o Notably, similar phrase has been observed not only in emails but also in messenger conversations.

35/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Comparison%20of%20file%20compression%20instructions.png

l#.Comparison of Facebook message wording

[Figure 5-3] Comparison of Facebook message wording

5-2. JSE Script Similarity Comparison

o A comparison of the cases from May and December 2024 and April 2025 shows that malicious scripts were used in an almost identical
pattern, indicating that the threat actor is likely relying on an automated tool for script generation.

36/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Comparison%20of%20Facebook%20message%20wording.png

l+-Structural comparison of malicious scripts

[Figure 5-4] Structural comparison of malicious scripts

5-3. DLL Malware Similarity Comparison

o This figure shows a comparison of functions from malware samples used in attacks in April and May 2025. Although the threat actor modifies
the code depending on the variant, samples from similar timeframes share structural similarities.

37/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Structural%20comparison%20of%20malicious%20scripts.png

l#-Function-level comparison of DLL-based malware

[Figure 5-5] Function-level comparison of DLL-based malware

6. Conclusion

o Nation-state APT attacks are typically carried out in a highly covert manner, with only a small number of cases publicly disclosed.

o Email-based spear phishing attacks remain highly active. With nothing more than the target's email address, attackers can launch swift and
stealthy tailored attacks. In addition, various methods now include the use of social networking platforms and personal messaging apps.

o The cases described in this report represent only a portion of the broader threat landscape. Sophisticated threat actors continue to diversify
their script patterns to evade detection by traditional security products. As such, it is becoming increasingly difficult to accurately detect new,
modified threats using signature-based methods alone.

o The Genian EDR solution not only comes equipped with built-in behavior-based detection rules (XBA) capable of identifying previously
unknown threats, but also leverages machine learning—based threat modeling for rapid response and defense.

38/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Function-level%20comparison%20of%20DLL-based%20malware.png
https://www.genians.co.kr/products/genian-edr/?hsLang=en

l#.Machine learning—based detection by Genian EDR

[Figure 6-1] Machine learning—based detection by Genian EDR

o In fact, the ‘AppleSeed’ variant used by the Kimsuky group was detected immediately at the initial execution stage through Genian EDR’s
machine learning technology.

o Malicious files in JSE format are typically executed via the WScript.exe process, which is followed by a series of threat activities triggered
through PowerShell.exe commands.

39/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Machine%20learning%E2%80%93based%20detection%20by%20Genian%20EDR.png

l#.Execution events of the JSE script

[Figure 6-2] Execution events of the JSE script

o Genian EDR provides enhanced visibility into attack storylines by clearly mapping parent-child process relationships on the endpoint where
the threat was introduced.

o In addition, it enables immediate identification of Base64-encoded data embedded within the script being decoded via the CertUtil.exe
process.

o Beyond visualizing the threat execution flow, it also supports proactive threat hunting through per-endpoint ‘event investigation’ and ‘LIVE
search’.

40/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Execution%20events%20of%20the%20JSE%20script.png

|+ Threat visibility enabled by Genian EDR

[Figure 6-3] Threat visibility enabled by Genian EDR

o With insights from EDR detections, security administrators can efficiently monitor and manage abnormal activity on affected endpoints.

o Genian EDR makes it easy for administrators to view the exact command-line arguments used during the execution of 'AppleSeed' through
its detailed information panel. In addition, built-in MITRE ATT&CK mappings provide a more structured and informed approach to threat
management.

o By adopting EDR, security teams can actively respond to a wide range of threats targeting internal endpoints. Key event data is retained for
each device, making it easy to review past activity over specific timeframes. This helps streamline evidence collection and identify the root
cause of incidents more effectively.

7. Indicator of Compromise

MD5
2f6fe22be1ed2abbad2689747c9e18a0
5a223c70b65c4d74fea98ba39bf5d127
7a0c0a4c550a95809e93ab7e6bdcc290
46fd22acea614407bf11d92eb6736dc7
568f7628e6b7bb7106a1a82aebfd348d

779f2f4839b9be4f0b8c96f117181334

41/43

https://22120960.fs1.hubspotusercontent-na1.net/hubfs/22120960/Threat%20visibility%20enabled%20by%20Genian%20EDR.png
https://attack.mitre.org/

07015af18cf8561866bc5b07e6f70d9a
7756b4230adfa16e18142d1dbe6934af
8346d90508b5d41d151b7098c72a3e868
30741e7e4cdd8ba9d3d074c42deac9b1
537806c02659a12c5b21efa51b2322¢c1
afadab22f770956712e9c47460911dad
b9c2111c753b09e4cc9d497{8fd314fc
b128c5db5d973be60f39862ba8bfb152
bfb02dee62¢38c3385df92b308499b31
ca3926dc6c4b2a71832a03fba366chbed
ec9dcef04c5c89d6107d23b0668cc1c
f4d59b1246e861a2a626cb56¢55651f0
14f332d4273de04ba77e38fd3dcffo0
f960ce07c519d1e64a46¢c7f573eac39b
fb3c652e795f08cc2529ed33ec1dc114
fe8626e7c3f47a048c9f6c13c88a9463
1ae2e46aac55e7f92c72b56b387bc945
2a388f3428a6d44a66f5cb0b210379a0
C2
afcafe.kro[.]kr
dirwear.000webhostapp[.Jcom
download.uberlingen[.Jcom
hyper.cadorg.p-e[.]kr
jieun.dothome.co[.]kr
nauji.n-e[.]Jkr
nocamoto.o-r[.]Jkr
nomera.n-e[.]kr
onsungtong.n-e[.]Jkr
peras1.n-e[.]kr
update.screawear|.]ga
vamboo.n-e[.]kr

woana.n-e[.]kr

42/43

DHE 22 20t HEIXE Genian EDRE
SLH=_ILICH G 021 22AICHH?

F2UlE Ps6h| HE=2 7121

43/43

https://www.genians.co.kr/hs/cta/wi/redirect?encryptedPayload=AVxigLJjHaPsMxm09Y8C0p9nY3L9EbcoYNtsYK0AXzegfEDsrW15YtXw2xoSJEOYvW5KqajZR9oGZe78UWMABuJsu2T55Ef5OVpdCtp9xdYqbae6UllNWX6A5vLhZOaSkW5E4SujlJn0P4IDN8v4ljqZgPJUmjYWQVRVd2i87ZAHUCtKtJGScFb9QFJAcnnM8Ah8glyRZ839qgaU7w%3D%3D&webInteractiveContentId=126863697765&portalId=22120960&hsLang=en

