
1/12

June 2, 2025

BPFDoor - Part 2 - The Present
haxrob.net/bpfdoor-past-and-present-part-2/

Despite the venerable BPFDoor malware has once again found itself in the media spotlight.
Recent variants avoid existing detections, so we will take a look at samples found in
significant telecommunications provider breach in April 2025.

💡

Recommended for prior reading: Trend Micro (2025), Sandfly Security (2022), Elastic (2022).

Detection evasion improvements

We will be using two following samples as references

cf2d3d9e0246a3220d7c3cc94257447085911b32e1de0aee9d4af7dd6427597d

3f6f108db37d18519f47c5e4182e5e33cc795564f286ae770aa03372133d15c4

What's changed

File descriptors for the more recent BPFDoor compared to the prior reported

No moreSOCK_RAW appearing. You will only find socket of typeSOCK_UDP in BPFDoor
open file descriptors. Despite this, the implant still accepts ICMP, UDP and TCP wakeup
packets
The random selection of custom process names used for masquerading has been
replaced with a fixed process name.

Mutex locks file paths are adjusted accordingly

https://haxrob.net/bpfdoor-past-and-present-part-2/
https://malpedia.caad.fkie.fraunhofer.de/details/elf.bpfdoor?ref=haxrob.net
https://techcrunch.com/2025/05/08/a-timeline-of-south-korean-telco-giant-skts-data-breach/?ref=haxrob.net
https://boho.or.kr/kr/bbs/view.do?bbsId=B0000133&menuNo=205020&nttId=71735&ref=haxrob.net
https://www.trendmicro.com/en_us/research/25/d/bpfdoor-hidden-controller.html?ref=haxrob.net
https://sandflysecurity.com/blog/bpfdoor-an-evasive-linux-backdoor-technical-analysis/?ref=haxrob.net
https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor?ref=haxrob.net

2/12

Removal of "fileless" feature, no longer writing to /dev/shm and deleting itself from disk
Global variables / function names stripped - no more looking for binaries with godpid
SSL for transport encryption with embedded certificate
Updated BPF filter, now coming at a whopping 229 bytes long

Goodbye SOCK_RAW

A common and useful detection opportunity is to look for unexpected processes with open
raw sockets. Doing a lsof | grep SOCK_RAW won't surface BPFDoor anymore. This is how it
looks now:

lsof -p 4073

..
/usr/sbin 4073 root 0u CHR 136,3 0t0 6 /dev/pts/3

/usr/sbin 4073 root 1u CHR 136,3 0t0 6 /dev/pts/3

/usr/sbin 4073 root 2u CHR 136,3 0t0 6 /dev/pts/3

/usr/sbin 4073 root 3u pack 37048 0t0 IP type=SOCK_DGRAM

Prior, variants would open a raw socket (followed by setsockopt to install its BPF filter):

socket(PF_PACKET, SOCK_RAW, htons(ETH_P_IP))

..
setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &filter, sizeof(filter))

Now we see that SOCK_RAW has been replaced with SOCK_DGRAM|SOCK_CLOEXEC

In other words we now have:

socket(AF_PACKET, SOCK_DGRAM|SOCK_CLOEXEC, htons(ETH_P_IP))

One would assume on a surface glance that AF_PACKET with SOCK_DGRAM would only receive
UDP packets (SOCK_DGRAM), but this is not actually the case.

3/12

packet(7) states:

"When protocol is set to htons(ETH_P_IP), then all IPv4 packets are received. All
incoming packets of that protocol type will be passed to the packet socket before they
are passed to the protocols implemented in the kernel."

Hence, as per the description, ETH_P_IP will take precedence, making the socket 'applicable'
for IP packets of any protocol (TCP, UDP, ICMP). What is not apparent is that kernel will reports
the socket as SOCK_DGRAM which is misleading unless the nuance is understood.

The data received is slightly different as well: With SOCK_RAW the kernel will pass the whole
packet, including the link layer, while AF_PACKET strips this out and will everything from the IP
header onwards. Hence we see in the original source with SOCK_RAW discards the 14 byte
ethernet header:

While the newer version using SOCK_DGRAM assumes the first byte to be the start of the IP
header:

This very minor modification is a particularly improvement to it's stealth

Socket detection opportunities

ss -0pb will still surface the BPF filter.

ss -0pb

..
users:(("/usr/sbin/smart",pid=4535,fd=3))

 bpf filter (229): 0x30 0 0 0, 0x54 0 0 240 ..

Removing the b flag (and trimming out systemd related false positives), the socket is listed as
p_dgr:

https://man7.org/linux/man-pages/man7/packet.7.html?ref=haxrob.net
https://github.com/haxrob/BPFDoor/blob/main/bpfdoor.c?ref=haxrob.net#L524C16-L524C50

4/12

ss -0p

p_dgr users:(("/usr/sbin/smart",pid=4812,fd=3))

If monitoring system calls, there are some opportunities. For example, auditd rules for
socket with AF_PACKET. Expect false positives.

auditctl -a exit,always -F arch=b64 -S socket -F a0=17

and setsockopt with SO_ATTACH_FILTER:

auditctl -a exit,always -F arch=b64 -S setsockopt -F a2=26

No more deleted in /dev/shm

As an evasion technique, BPFDoor would copy itself into /dev/shm, execute itself then delete
itself from disk as an anti-forensic technique.

The kernel marking a processes' executable inode as (deleted) within a temporary file
system such as /dev/shm proclaims loudly "this deserves a closer look".

Now BPFDoor no longer touches /dev/shm nor does it deletes itself. It behaves more like a
normal process with the exception of its process name masquerading with the prctl system
call and overwriting the envp on the stack.

Process Names and Mutex Lock

Prior, the malware would randomly select a process name from a fixed list of common
process names and a somewhat constant file path for its mutex lock. Both of these have
changed - The masqueraded process name and mutex lock path may vary to better match
the target environment. For reference, the original would randomly select from the following
list of process names/arguments on initialization:

https://attack.mitre.org/techniques/T1480/002/?ref=haxrob.net
https://github.com/haxrob/BPFDoor/blob/main/bpfdoor.c?ref=haxrob.net#L838

5/12

A single process name is now hard coded. For example, the following example disguises
itself as smartd, a disk monitoring daemon:

Other new "single process" masqueraded process names include:

lldpad -d, /var/run/lldpad.lock
dbus-daemon --system, /var/run/system.pid
/usr/libexec/hald-addon-volume, /var/run/hald-addon.pid
/usr/sbin/console-kit, /var/run/console-kit.pid

Notably, when a magic packet is received, the forked process name remains
/usr/libexec/postfix/master and the familiar qmgr.

💡

As with all BPFDoor samples, running 'strings' or similar will miss many strings. For example,
in the disassembly, the md5password hashes above are littered with mov instructions. This is
due to the use of the strings being defined as an array, or as a "stack string".

bpfdoor-dump.py can be used to extract obfuscated hashes and other strings from samples.
Alternatively, check out this from elastic.co.

SSL Encryption

VanillaRC4 has been deprecated in the getshell function, replaced SSL using RC4-MD5 for
both bind mode (listening server) or the reverse connection mode (client).

https://linux.die.net/man/8/smartd?ref=haxrob.net
https://github.com/haxrob/bpfdoor-dump?ref=haxrob.net
https://www.elastic.co/security-labs/bpfdoor-configuration-extractor?ref=haxrob.net

6/12

function names, vars have been renamed during decomp.

The hardcoded certificate and private key (used in bind / server mode, with SSL_accept is
extractable with strings. In all samples analyzed, 3 unique self-signed certificates were
identified.

-----BEGIN CERTIFICATE-----

MIIB+zCCAWQCCQCtA0agZ+qO5jANBgkqhkiG9w0BAQsFADBCMQswCQYDVQQGEwJY

WDEVMBMGA1UEBwwMRGVmYXVsdCBDaXR5MRwwGgYDVQQKDBNEZWZhdWx0IENvbXBh

bnkgTHRkMB4XDTIxMTEyMzAyMTc0NloXDTMxMTEyMTAyMTc0NlowQjELMAkGA1UE

BhMCWFgxFTATBgNVBAcMDERlZmF1bHQgQ2l0eTEcMBoGA1UECgwTRGVmYXVsdCBD

b21wYW55IEx0ZDCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAx1JvO+nqr24g

wc8at6x1NtZt7DoDi1/Ge/F70zz4gbxX/OxhOxXKexYrphsHXBzYVEWOyof9Vnok

ST7GKdRiRg6OS90WfdWFoVN2EdxwBN+BdozmwRBG1DAdqAhbeUcUFeZO0Fbuo7fr

FvTfsC31khj6ioKJl0d4kfo2zLk6WhcCAwEAATANBgkqhkiG9w0BAQsFAAOBgQA1

iC/5g+eN3Hq/627tMbLhipNUtC0OEdtpq20mbUIMXTRYh4kZPAah1LZqx2h72BV1

i8pYJo34kZ/3HyV6UJtBf/jJv1fprEWvo2Lj8YrCpagXh82i7353GUeiKFVr0gx+

4ruTus1m0bX1NZN6XRAbgzar7bfki0HHjWxJB8NRLQ==

-----END CERTIFICATE-----

openssl x509 --in cert.pem -noout -dates -fingerprint

notBefore=Nov 23 02:17:46 2021 GMT

notAfter=Nov 21 02:17:46 2031 GMT

SHA1 Fingerprint=85:CA:7E:BB:F1:1F:53:45:4E:DA:BB:27:DD:DC:59:DB:52:C2:0E:08

7/12

This change may explain one reason the newer samples are statically compiled, resulting in
a much larger file executable file size - with the benefit of avoiding any linking issues with the
SSL library.

Password hashes

Embedded passwords in older samples have been replaced with salted hashes. Where
hashing was used, the same constant salt is present: I5*AYbs@LdaWbsO

The first character of the password is used as an instruction on which mode to invoke.
Passwords must start with either a m, s or j. This means the the search space for cracking
the password hashes is reduced by one character which can make a huge difference in the
time to brute force the key space, reducing the maximum length from 14 to 13 characters.

8/12

6227cb77cb4ab1d066eebf14e825dbc0a0a7f1e9

We can crack these hashes with hashcat, using mode 20 - md5($salt.$pass)

For example:

hashcat -a 3 -m 20 hash:I5*AYbs@LdaWbsO j?1?1?1?1?1?1?1?1?1 -1 ?l?u -i

Here are some hashes taken from samples with their corresponding plain-text password.
Cracked hashes that include acronyms which can identify the victim organisation have been
omitted.

aa73d4574fd91b9648d73b01ea1920f3:I5*AYbs@LdaWbsO:joinfare

5609e5e3d3e7efd85e219901ab06bb61:I5*AYbs@LdaWbsO:jberemote

215c5b9279d3e462eceb9af3b5028c05:I5*AYbs@LdaWbsO:justgetso

629849fe5277500a777087d78ddc5dde:I5*AYbs@LdaWbsO:jusrbackso

5fb2ce4f90c53071b12e65d52445d33d:I5*AYbs@LdaWbsO:javatelnet

73b9989bb8dd522b8e172f2e985810eb:I5*AYbs@LdaWbsO:justgetdata

05b37b412e1d1bfdc6b8643d3c869b01:I5*AYbs@LdaWbsO:justgetcheck

8528eba01dca94e6b0d7c4c8cc39889f:I5*AYbs@LdaWbsO:justgotowork

4cf71dacf1750e2a9f122fba74b86a5d:I5*AYbs@LdaWbsO:senttome

3de78247e0e1c9ca3c291bc060d9b622:I5*AYbs@LdaWbsO:setdefault

d46bf5d43cffd7793665d40fc767ed86:I5*AYbs@LdaWbsO:sentandconn

3d45acc78e9d6de380b3cbdccf38af0a:I5*AYbs@LdaWbsO:setopenview

bpfdoor-dump.py can be used to extract the hashes and generate the respective hashcat
commands.

YARA Rules

https://hashcat.net/hashcat/?ref=haxrob.net
https://github.com/haxrob/bpfdoor-dump?ref=haxrob.net

9/12

Testing against both Elastic.co's set of BPFDoor yara rules from 2022 does identify the newer
statically compiled, stripped samples due to the ruleLinux_Trojan_BPFDoor_5 including:

{ D0 48 89 45 F8 48 8B 45 F8 0F B6 40 0C C0 E8 04 0F B6 C0 C1 }

This corresponds to the instructions in the packet_loop function which calculates the offset
of the TCP header for extracting the magic bytes in the TCP wakeup packets. But the ruleset
does miss quite a few samples. For maximum coverage, use with Florian Roth's ruleset.

https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor?ref=haxrob.net
https://github.com/haxrob/BPFDoor/blob/main/bpfdoor.c?ref=haxrob.net#L532

10/12

signature-base/yara/mal_lnx_implant_may22.yar at
391a990859091dbc4c21d15db335b371090f606e · Neo23x0/signature-base

YARA signature and IOC database for my scanners and tools - Neo23x0/signature-base

GitHubNeo23x0

https://github.com/Neo23x0/signature-base/blob/391a990859091dbc4c21d15db335b371090f606e/yara/mal_lnx_implant_may22.yar?ref=haxrob.net

11/12

For additional coverage on the latest variants, including the early NotBPDDoor , the following
YARA rules can be used:

https://github.com/Neo23x0/signature-base/blob/391a990859091dbc4c21d15db335b371090f606e/yara/mal_lnx_implant_may22.yar?ref=haxrob.net

12/12

rule bpfdoor_cert_variant

{

 meta:

 description = "Detects BPFDoor SSL versions"

 reference = ""

 date = "2025-04-31"

 hash1 = "3f6f108db37d18519f47c5e4182e5e33cc795564f286ae770aa03372133d15c4"
 hash2 = "724bd9163641666e035cef81701856fc9ff2dada2509d55dec14588fd1b5e801"
 hash3 = "7804f1dfb5d80a80830829c06ae65b410073748038f965f688dbd84d02eb0008"
 hash4 = "28bfb3f2067c77b83898ef4e41c9fc573e6aaa8581da9b59bddb782205a0b091"
 hash5 = "29564c19a15b06dd5be2a73d7543288f5b4e9e6668bbd5e48d3093fb6ddf1fdb"
 author = "@haxrob"

 strings:

 $s1 = "ttcompat" fullword ascii

 $s2 = "Private key does not match the public certificate" fullword ascii

 $s3 = "HISTFILE=/dev/null" fullword ascii

 condition:

 uint16(0) == 0x457f and (all of them)

}

rule notbpfdoor

{

 meta:

 description = "Detects early (2015/2016) variant"

 reference = ""

 date = "2025-04-31"

 hash1 = "ebffd115918f6d181da6d8f5592dffb3e4f08cd4e93dcf7b7f1a2397af0580d9"
 hash2 = "b2d3c212e71ddbaf015d8793d30317e764131c9beda7971901620d90e6887b30"
 author = "@haxrob"

 strings:

 $s1 = "ttcompat" fullword ascii

 $s2 = "auto install failed, plz manual install it!" fullword ascii

 $s3 = "unset LC_TIME" fullword ascii

 condition:

 uint16(0) == 0x457f and (all of them)

}

haxrob © 2025

https://haxrob.net/

