
1/11

Chasing Eddies: New Rust- based InfoStealer used in CAPTCHA campaigns
elastic.co/security-labs/eddiestealer

https://www.elastic.co/security-labs/eddiestealer
https://www.elastic.co/security-labs
https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/eddiestealer

2/11

Subscribe Start free trial Contact sales

https://www.elastic.co/security-labs/rss/feed.xml
https://cloud.elastic.co/registration?cta=cloud-registration&tech=trial&plcmt=navigation&pg=security-labs
https://www.elastic.co/contact
https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/eddiestealer

3/11

Preamble

Elastic Security Labs has uncovered a novel Rust-based infostealer distributed via Fake CAPTCHA campaigns. This malware is hosted on
multiple adversary-controlled web properties. This campaign leverages deceptive CAPTCHA verification pages that trick users into executing a
malicious PowerShell script, which ultimately deploys the infostealer, harvesting sensitive data such as credentials, browser information, and
cryptocurrency wallet details. We are calling this malware EDDIESTEALER.

This adoption of Rust in malware development reflects a growing trend among threat actors seeking to leverage modern language features for
enhanced stealth, stability, and resilience against traditional analysis workflows and threat detection engines. A seemingly simple infostealer
written in Rust often requires more dedicated analysis efforts compared to its C/C++ counterpart, owing to factors such as zero-cost

https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/eddiestealer

4/11

abstractions, Rust’s type system, compiler optimizations, and inherent difficulties in analyzing memory-safe binaries.

Key takeaways

Fake CAPTCHA campaign loads EDDIESTEALER
EDDIESTEALER is a newly discovered Rust infostealer targeting Windows hosts
EDDIESTEALER receives a task list from the C2 server identifying data to target

Intial access

Overview

Fake CAPTCHAs are malicious constructs that replicate the appearance and functionality of legitimate CAPTCHA systems, which are used to
distinguish between human users and automated bots. Unlike their legitimate counterparts, fake CAPTCHAs serve as gateways for malware,
leveraging social engineering to deceive users. They often appear as prompts like "Verify you are a human" or "I'm not a robot," blending
seamlessly into compromised websites or phishing campaigns. We have also encountered a similar campaign distributing GHOSTPULSE in
late 2024.

From our telemetry analysis leading up to the delivery of EDDIESTEALER, the initial vector was a compromised website deploying an
obfuscated React-based JavaScript payload that displays a fake “I'm not a robot” verification screen.

Mimicking Google's reCAPTCHA verification interface, the malware uses the document.execCommand("copy") method to copy a PowerShell
command into the user’s clipboard, next, it instructs the user to press Windows + R (to open the Windows run dialog box), then Ctrl + V to
paste the clipboard contents, and finally Enter to execute the malicious PowerShell command.

This command silently downloads a second-stage payload (gverify.js) from the attacker-controlled domain hxxps://llll.fit/version/
and saves it to the user’s Downloads folder.

Finally, the malware executes gverify.js using cscript in a hidden window.

gverify.js is another obfuscated JavaScript payload that can be deobfuscated using open-source tools. Its functionality is fairly simple:
fetching an executable (EDDIESTEALER) from hxxps://llll.fit/io and saving the file under the user’s Downloads folder with a
pseudorandom 12-character file name.

EDDIESTEALER

Overview

EDDIESTEALER is a novel Rust-based commodity infostealer. The majority of strings that give away its malicious intent are encrypted. The
malware lacks robust anti-sandbox/VM protections against behavioral fingerprinting. However, newer variants suggest that the anti-
sandbox/VM checks might be occurring on the server side. With relatively straightforward capabilities, it receives a task list from the C2 server
as part of its configuration to target specific data and can self-delete after execution if specified.

Stripped Symbols

EDDIESTEALER samples featured stripped function symbols, likely using Rust’s default compilation option, requiring symbol restoration
before static analysis. We used rustbinsign, which generates signatures for Rust standard libraries and crates based on specific
Rust/compiler/dependency versions. While rustbinsign only detected hashbrown and rustc-demangle, suggesting few external crates being
used, it failed to identify crates such as tinyjson and tungstenite in newer variants. This occurred due to the lack of clear string artifacts. It is
still possible to manually identify crates by finding unique strings and searching for the repository on GitHub, then download, compile and build
signatures for them using the download_sign mode. It is slightly cumbersome if we don’t know the exact version of the crate being used.
However, restoring the standard library and runtime symbols is sufficient to advance the static analysis process.

String Obfuscation

EDDIESTEALER encrypts most strings via a simple XOR cipher. Decryption involves two stages: first, the XOR key is derived by calling one of
several key derivation functions; then, the decryption is performed inline within the function that uses the string.

The following example illustrates this, where sub_140020fd0 is the key derivation function, and data_14005ada8 is the address of the
encrypted blob.

Each decryption routine utilizes its own distinct key derivation function. These functions consistently accept two arguments: an address within
the binary and a 4-byte constant value. Some basic operations are then performed on these arguments to calculate the address where the
XOR key resides.

https://www.elastic.co/security-labs/tricks-and-treats
https://github.com/ben-sb/javascript-deobfuscator
https://github.com/N0fix/rustbinsign
https://docs.rs/hashbrown/latest/hashbrown/
https://docs.rs/rustc-demangle/latest/rustc_demangle/
https://docs.rs/tinyjson/latest/tinyjson/
https://docs.rs/tokio-tungstenite/latest/tokio_tungstenite/

5/11

Binary Ninja has a handy feature called User-Informed Data Flow (UIDF), which we can use to set the variables to known values to trigger a
constant propagation analysis and simplify the expressions. Otherwise, a CPU emulator like Unicorn paired with a scriptable binary analysis
tool can also be useful for batch analysis.

There is a general pattern for thread-safe, lazy initialization of shared resources, such as encrypted strings for module names, C2 domain and
port, the sample’s unique identifier - that are decrypted only once but referenced many times during runtime. Each specific getter function
checks a status flag for its resource; if uninitialized, it calls a shared, low-level synchronization function. This synchronization routine uses
atomic operations and OS wait primitives (WaitOnAddress/WakeByAddressAll) to ensure only one thread executes the actual initialization logic,
which is invoked indirectly via a function pointer in the vtable of a dyn Trait object.

API Obfuscation

EDDIESTEALER utilizes a custom WinAPI lookup mechanism for most API calls. It begins by decrypting the names of the target module and
function. Before attempting resolution, it checks a locally maintained hashtable to see if the function name and address have already been
resolved. If not found, it dynamically loads the required module using a custom LoadLibrary wrapper, into the process’s address space, and
invokes a well-known implementation of GetProcAddress to retrieve the address of the exported function. The API name and address are then
inserted into the hashtable, optimizing future lookups.

Mutex Creation

EDDIESTEALER begins by creating a mutex to ensure that only one instance of the malware runs at any given time. The mutex name is a
decrypted UUID string 431e2e0e-c87b-45ac-9fdb-26b7e24f0d39 (unique per sample), which is later referenced once more during its initial
contact with the C2 server.

Sandbox Detection

EDDIESTEALER performs a quick check to assess whether the total amount of physical memory is above ~4.0 GB as a weak sandbox
detection mechanism. If the check fails, it deletes itself from disk.

Self-Deletion

Based on a similar self-deletion technique observed in LATRODECTUS, EDDIESTEALER is capable of deleting itself through NTFS Alternate
Data Streams renaming, to bypass file locks.

The malware uses GetModuleFileName to obtain the full path of its executable and CreateFileW (wrapped in jy::ds::OpenHandle) to open a
handle to its executable file with the appropriate access rights. Then, a FILE_RENAME_INFO structure with a new stream name is passed into
SetFileInformationByHandle to rename the default stream $DATA to :metadata. The file handle is closed and reopened, this time using
SetFileInformationByHandle on the handle with the FILE_DISPOSITION_INFO.DeleteFile flag set to TRUE to enable a "delete on close
handle" flag.

Additional Configuration Request

The initial configuration data is stored as encrypted strings within the binary. Once decrypted, this data is used to construct a request following
the URI pattern: <C2_ip_or_domain>/<resource_path>/<UUID>. The resource_path is specified as api/handler. The UUID, utilized earlier to
create a mutex, is used as a unique identifier for build tracking.

EDDIESTEALER then communicates with its C2 server by sending an HTTP GET request with the constructed URI to retrieve a second-stage
configuration containing a list of tasks for the malware to execute.

The second-stage configuration data is AES CBC encrypted and Base64 encoded. The Base64-encoded IV is prepended in the message
before the colon (:).

Base64(IV):Base64(AESEncrypt(data))

The AES key for decrypting the server-to-client message is stored unencrypted in UTF-8 encoding, in the .rdata section. It is retrieved
through a getter function.

The decrypted configuration for this sample contains the following in JSON format:

Session ID
List of tasks (data to target)
AES key for client-to-server message encryption
Self-delete flag

https://docs.binary.ninja/dev/uidf.html
https://www.unicorn-engine.org/
https://github.com/cocomelonc/2023-04-16-malware-av-evasion-16/blob/ba05e209e079c2e339c67797b5a563a2e4dc0106/hack.cpp#L75
https://github.com/LloydLabs/delete-self-poc/tree/main
https://www.elastic.co/security-labs/spring-cleaning-with-latrodectus

6/11

{

 "session": "<unique_session_id>",

 "tasks": [

 {

 "id": "<unique_task_id>",

 "prepare": [],

 "pattern": {

 "path": "<file_system_path>",

 "recursive": <true/false>,

 "filters": [

 {

 "path_filter": <null/string>,

 "name": "<file_or_directory_name_pattern>",

 "entry_type": "<FILE/DIR>"

 },

 ...

]

 },

 "additional": [

 {

 "command": "<optional_command>",

 "payload": {

 "<command_specific_config>": <value>

 }

 },

 ...

]

 },

 ...

],

 "network": {

 "encryption_key": "<AES_encryption_key>"

 },

 "self_delete": <true/false>

}

For this particular sample and based on the tasks received from the server during our analysis, here are the list of filesystem-based exfiltration
targets:

Crypto wallets
Browsers
Password managers
FTP clients
Messaging applications

Crypto Wallet Target Path Filter

Armory %appdata%\\Armory*.wallet

Bitcoin %appdata%\\Bitcoin\\wallets*

WalletWasabi %appdata%\\WalletWasabi\\Client\\Wallets*

Daedalus Mainnet %appdata%\\Daedalus Mainnet\\wallets*

Coinomi %localappdata%\\Coinomi\\Coinomi\\wallets*

Electrum %appdata%\\Electrum\\wallets*

Exodus %appdata%\\Exodus\\exodus.wallet*

DashCore %appdata%\\DashCore\\wallets*

ElectronCash %appdata%\\ElectronCash\\wallets*

Electrum-DASH %appdata%\\Electrum-DASH\\wallets*

Guarda %appdata%\\Guarda\\IndexedDB

Atomic %appdata%\\atomic\\Local Storage

Browser Target Path Filter

Microsoft Edge %localappdata%\\Microsoft\\Edge\\User Data\\

[Web Data,History,Bookmarks,Local Extension Settings\\...]

7/11

Browser Target Path Filter

Brave %localappdata%\\BraveSoftware\\Brave-Browser\\User Data\\

[Web Data,History,Bookmarks,Local Extension Settings\\...]

Google Chrome %localappdata%\\Google\\Chrome\\User Data\\

[Web Data,History,Bookmarks,Local Extension Settings\\...]

Mozilla Firefox %appdata%\\Mozilla\\Firefox\\Profiles\\

[key4.db,places.sqlite,logins.json,cookies.sqlite,formhistory.sqlite,webappsstore.sqlite,*+++*]

Password Manager Target Path Filter

Bitwarden %appdata%\\Bitwarden\\data.json

1Password %localappdata%\\1Password\\

[1password.sqlite,1password_resources.sqlite]

KeePass %userprofile%\\Documents*.kdbx

FTP Client Target Path Filter

FileZilla %appdata%\\FileZilla\\recentservers.xml

FTP Manager Lite %localappdata%\\DeskShare Data\\FTP Manager Lite\\2.0\\FTPManagerLiteSettings.db

FTPbox %appdata%\\FTPbox\\profiles.conf

FTP Commander Deluxe %ProgramFiles(x86)%\\FTP Commander Deluxe\\FTPLIST.TXT

Auto FTP Manager %localappdata%\\DeskShare Data\\Auto FTP Manager\\AutoFTPManagerSettings.db

3D-FTP %programdata%\\SiteDesigner\\3D-FTP\\sites.ini

FTPGetter %appdata%\\FTPGetter\\servers.xml

Total Commander %appdata%\\GHISLER\\wcx_ftp.ini

Messaging App Target Path Filter

Telegram Desktop %appdata%\\Telegram Desktop\\tdata*

A list of targeted browser extensions can be found here.

These targets are subject to change as they are configurable by the C2 operator.

EDDIESTEALER then reads the targeted files using standard kernel32.dll functions like CreateFileW, GetFileSizeEx, ReadFile, and
CloseHandle.

Subsequent C2 Traffic

After successfully retrieving the tasks, EDDIESTEALER performs system profiling to gather some information about the infected system:

Location of the executable (GetModuleFileNameW)
Locale ID (GetUserDefaultLangID)
Username (GetUserNameW)
Total amount of physical memory (GlobalMemoryStatusEx)
OS version (RtlGetVersion)

Following the same data format (Base64(IV):Base64(AESEncrypt(data))) for client-to-server messages, initial host information is AES-
encrypted using the key retrieved from the additional configuration and sent via an HTTP POST request to
<C2_ip_or_domain>/<resource_path>/info/<session_id>. Subsequently, for each completed task, the collected data is also encrypted and
transmitted in separate POST requests to <C2_ip_or_domain>/<resource_path><session_id>/<task_id>, right after each task is completed.
This methodology generates a distinct C2 traffic pattern characterized by multiple, task-specific POST requests. This pattern is particularly
easy to identify because this malware family primarily relies on HTTP instead of HTTPS for its C2 communication.

Our analysis uncovered encrypted strings that decrypt to panic metadata strings, disclosing internal Rust source file paths such as:

apps\bin\src\services\chromium_hound.rs

apps\bin\src\services\system.rs

apps\bin\src\structs\search_pattern.rs

apps\bin\src\structs\search_entry.rs

https://gist.github.com/jiayuchann/ba3cd9f4f430a9351fdff75869959853

8/11

We discovered that error messages sent to the C2 server contain these strings, including the exact source file, line number, and column
number where the error originated, allowing the malware developer to have built-in debugging feedback.

Chromium-specific Capabilities

Since the introduction of Application-bound encryption, malware developers have adapted to alternative methods to bypass this protection and
gain access to unencrypted sensitive data, such as cookies. ChromeKatz is one of the more well-received open source solutions that we have
seen malware implement. EDDIESTEALER is no exception—the malware developers reimplemented it in Rust.

Below is a snippet of the browser version checking logic similar to COOKIEKATZ, after retrieving version information from %localappdata%\
<browser_specific_path>\\User Data\\Last Version.

COOKIEKATZ signature pattern for detecting COOKIEMONSTER instances:

CredentialKatz signature pattern for detecting CookieMonster instances:

Here is an example of the exact copy-pasted logic of COOKIEKATZ’s FindPattern, where PatchBaseAddress is inlined.

The developers introduced a modification to handle cases where the targeted Chromium browser is not running. If inactive, EDDIESTEALER
spawns a new browser instance using the command-line arguments --window-position=-3000,-3000 https://google.com. This effectively
positions the new window far off-screen, rendering it invisible to the user. The objective is to ensure the malware can still read the memory
(ReadProcessMemory) of the necessary child process - the network service process identified by the --utility-sub-
type=network.mojom.NetworkService flag. For a more detailed explanation of this browser process interaction, refer to our previous research
on MaaS infostealers.

Differences with variants

After analysis, more recent samples were identified with additional capabilities.

Information gathered on victim machines now include:

Running processes
GPU information
Number of CPU cores
CPU name
CPU vendor

The C2 communication pattern has been altered slightly. The malware now preemptively sends host system information to the server before
requesting its decrypted configuration. In a few instances where the victim machine was able to reach out to the C2 server but received an
empty task list, the adjustment suggests an evasion tactic: developers have likely introduced server-side checks to profile the client
environment and withhold the main configuration if a sandbox or analysis system is detected.

The encryption key for client-to-server communication is no longer received dynamically from the C2 server; instead, it is now hardcoded in the
binary. The key used by the client to decrypt server-to-client messages also remains hardcoded.

Newer compiled samples exhibit extensive use of function inline expansion, where many functions - both user-defined and from standard
libraries and crates - have been inlined directly into their callers more often, resulting in larger functions and making it difficult to isolate user
code. This behavior is likely the result of using LLVM’s inliner. While some functions remain un-inlined, the widespread inlining further
complicates analysis.

In order to get all entries of Chrome’s Password Manager, EDDIESTEALER begins its credential theft routine by spawning a new Chrome
process with the --remote-debugging-port=<port_num> flag, enabling Chrome’s DevTools Protocol over a local WebSocket interface. This
allows the malware to interact with the browser in a headless fashion, without requiring any visible user interaction.

After launching Chrome, the malware queries http://localhost:<port>/json/version to retrieve the webSocketDebuggerUrl, which
provides the endpoint for interacting with the browser instance over WebSocket.

Using this connection, it issues a Target.createTarget command with the parameter chrome://password-manager/passwords, instructing
Chrome to open its internal password manager in a new tab. Although this internal page does not expose its contents to the DOM or to
DevTools directly, opening it causes Chrome to decrypt and load stored credentials into memory. This behavior is exploited by
EDDIESTEALER in subsequent steps through CredentialKatz lookalike code, where it scans the Chrome process memory to extract plaintext
credentials after they have been loaded by the browser.

Based on decrypted strings os_crypt, encrypted_key, CryptUnprotectData, local_state_pattern, and login_data_pattern,
EDDIESTEALER variants appear to be backward compatible, supporting Chrome versions that still utilize DPAPI encryption.

We have identified 15 additional samples of EDDIESTEALER through code and infrastructure similarities on VirusTotal. The observations table
will include the discovered samples, associated C2 IP addresses/domains, and a list of infrastructure hosting EDDIESTEALER.

https://security.googleblog.com/2024/07/improving-security-of-chrome-cookies-on.html
https://github.com/Meckazin/ChromeKatz
https://github.com/Meckazin/ChromeKatz/blob/15cc8180663fe2cd6b0828f147b84f3449db7ba6/COOKIEKATZ/Main.cpp#L210
https://github.com/Meckazin/ChromeKatz/blob/15cc8180663fe2cd6b0828f147b84f3449db7ba6/CredentialKatz/Main.cpp#L188
https://www.elastic.co/security-labs/katz-and-mouse-game

9/11

A Few Analysis Tips

Tracing

To better understand the control flow and pinpoint the exact destinations of indirect jumps or calls in large code blocks, we can leverage binary
tracing techniques. Tools like TinyTracer can capture an API trace and generate a .tag file, which maps any selected API calls to be recorded
to the executing line in assembly. Rust's standard library functions call into WinAPIs under the hood, and this also captures any code that calls
WinAPI functions directly, bypassing the standard library's abstraction. The tag file can then be imported into decompiler tools to automatically
mark up the code blocks using plugins like IFL.

Panic Metadata for Code Segmentation

Panic metadata - the embedded source file paths (.rs files), line numbers, and column numbers associated with panic locations - offers
valuable clues for segmenting and understanding different parts of the binary. This, however, is only the case if such metadata has not been
stripped from the binary. Paths like apps\bin\src\services\chromium.rs, apps\bin\src\structs\additional_task.rs or any path that
looks like part of a custom project typically points to the application’s unique logic. Paths beginning with library<core/alloc/std>\src\
indicates code from the Rust standard library. Paths containing crate name and version such as hashbrown-0.15.2\src\raw\mod.rs point to
external libraries.

If the malware project has a somewhat organized codebase, the file paths in panic strings can directly map to logical modules. For instance,
the decrypted string apps\bin\src\utils\json.rs:48:39 is referenced in sub_140011b4c.

By examining the call tree for incoming calls to the function, many of them trace back to sub_14002699d. This function (sub_14002699d) is
called within a known C2 communication routine (jy::C2::RetrieveAndDecryptConfig), right after decrypting additional configuration data
known to be JSON formatted.

Based on the json.rs path and its calling context, an educated guess would be that sub_14002699d is responsible for parsing JSON data. We
can verify it by stepping over the function call. Sure enough, by inspecting the stack struct that is passed as reference to the function call, it
now points to a heap address populated with parsed configuration fields.

For standard library and open-source third-party crates, the file path, line number, and (if available) the rustc commit hash or crate version
allow you to look up the exact source code online.

Stack Slot Reuse

One of the optimization features involves reusing stack slots for variables/stack structs that don’t have overlapping timelines. Variables that
aren’t “live” at the same time can share the same stack memory location, reducing the overall stack frame size. Essentially, a variable is live
from the moment it is assigned a value until the last point where that value could be accessed. This makes the decompiled output confusing as
the same memory offset may hold different types or values at different points.

To handle this, we can define unions encompassing all possible types sharing the same memory offset within the function.

Rust Error Handling and Enums

Rust enums are tagged unions that define types with multiple variants, each optionally holding data, ideal for modeling states like success or
failure. Variants are identified by a discriminant (tag).

Error-handling code can be seen throughout the binary, making up a significant portion of the decompiled code. Rust's primary mechanism for
error handling is the Result<T, E> generic enum. It has two variants: Ok(T), indicating success and containing a value of type T, and Err(E),
indicating failure and containing an error value of type E.

In the example snippet below, a discriminant value of 0x8000000000000000 is used to differentiate outcomes of resolving the CreateFileW API.
If CreateFileW is successfully resolved, the reuse variable type contains the API function pointer, and the else branch executes. Otherwise,
the if branch executes, assigning an error information string from reuse to arg1.

For more information on how other common Rust types might look in memory, check out this cheatsheet and this amazing talk by Cindy Xiao!

Malware and MITRE ATT&CK

Elastic uses the MITRE ATT&CK framework to document common tactics, techniques, and procedures that threats use against enterprise
networks.

Tactics

Techniques

Techniques represent how an adversary achieves a tactical goal by performing an action.

https://github.com/hasherezade/tiny_tracer
https://github.com/leandrofroes/bn_ifl
https://cxiao.net/posts/2023-12-08-rust-reversing-panic-metadata/
https://cheats.rs/#memory-layout
https://www.youtube.com/watch?v=SGLX7g2a-gw&t=749s
https://attack.mitre.org/

10/11

Detections

YARA

Elastic Security has created the following YARA rules related to this research:

Windows.Infostealer.EddieStealer

Behavioral prevention rules

Observations

The following observables were discussed in this research.

Observable Type Name

47409e09afa05fcc9c9eff2c08baca3084d923c8d82159005dbae2029e1959d0 SHA-
256

MvUlUwagHeZd.exe

162a8521f6156070b9a97b488ee902ac0c395714aba970a688d54305cb3e163f SHA-
256

:metadata (copy)

f8b4e2ca107c4a91e180a17a845e1d7daac388bd1bb4708c222cda0eff793e7a SHA-
256

AegZs85U6COc.exe

53f803179304e4fa957146507c9f936b38da21c2a3af4f9ea002a7f35f5bc23d SHA-
256

:metadata (copy)

20eeae4222ff11e306fded294bebea7d3e5c5c2d8c5724792abf56997f30aaf9 SHA-
256

PETt3Wz4DXEL.exe

1bdc2455f32d740502e001fce51dbf2494c00f4dcadd772ea551ed231c35b9a2 SHA-
256

Tk7n1al5m9Qc.exe

d905ceb30816788de5ad6fa4fe108a202182dd579075c6c95b0fb26ed5520daa SHA-
256

YykbZ173Ysnd.exe

b8b379ba5aff7e4ef2838517930bf20d83a1cfec5f7b284f9ee783518cb989a7 SHA-
256

2025-04-
03_20745dc4d048f67e0b62aca33be80283_akira_cobalt
strike_satacom

f6536045ab63849c57859bbff9e6615180055c268b89c613dfed2db1f1a370f2 SHA-
256

2025-03-
23_6cc654225172ef70a189788746cbb445_akira_cobalt
strike

d318a70d7f4158e3fe5f38f23a241787359c55d352cb4b26a4bd007fd44d5b80 SHA-
256

2025-03-
22_c8c3e658881593d798da07a1b80f250c_akira_cobalt
strike

73b9259fecc2a4d0eeb0afef4f542642c26af46aa8f0ce2552241ee5507ec37f SHA-
256

2025-03-
22_4776ff459c881a5b876da396f7324c64_akira_cobalt
strike

2bef71355b37c4d9cd976e0c6450bfed5f62d8ab2cf096a4f3b77f6c0cb77a3b SHA-
256

TWO[1].file

218ec38e8d749ae7a6d53e0d4d58e3acf459687c7a34f5697908aec6a2d7274d SHA-
256

5330cf6a8f4f297b9726f37f47cffac38070560cbac37a8e561e00c19e995f42 SHA-
256

verifcheck.exe

acae8a4d92d24b7e7cb20c0c13fd07c8ab6ed8c5f9969504a905287df1af179b SHA-
256

3zeG4jGjFkOy.exe

0f5717b98e2b44964c4a5dfec4126fc35f5504f7f8dec386c0e0b0229e3482e7 SHA-
256

verification.exe

e8942805238f1ead8304cfdcf3d6076fa0cdf57533a5fae36380074a90d642e4 SHA-
256

g_verify.js

7930d6469461af84d3c47c8e40b3d6d33f169283df42d2f58206f43d42d4c9f4 SHA-
256

verif.js

45.144.53[.]145 ipv4-
addr

https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Infostealer_EddieStealer.yar

11/11

Observable Type Name

84.200.154[.]47 ipv4-
addr

shiglimugli[.]xyz domain-
name

xxxivi[.]com domain-
name

llll[.]fit domain-
name

plasetplastik[.]com domain-
name

militrex[.]wiki domain-
name

References

The following were referenced throughout the above research:

