
1/30

PumaBot: Novel Botnet Targeting IoT Surveillance
Devices

darktrace.com/blog/pumabot-novel-botnet-targeting-iot-surveillance-devices

28

May 2025

Introduction: PumaBot attacking IoT devices

Darktrace researchers have identified a custom Go-based Linux botnet named “PumaBot”
targeting embedded Linux Internet of Things (IoT) devices. Rather than scanning the
Internet, the malware retrieves a list of targets from a command-and-control (C2) server and
attempts to brute-force SSH credentials. Upon gaining access, it receives remote commands
and establishes persistence using system service files. This blog post provides a breakdown
of its key functionalities, and explores binaries related to the campaign.

Technical Analysis

Filename: jierui

md5: cab6f908f4dedcdaedcdd07fdc0a8e38

https://www.darktrace.com/blog/pumabot-novel-botnet-targeting-iot-surveillance-devices

2/30

The Go-based botnet gains initial access through brute-forcing SSH credentials across a list
of harvested IP addresses. Once it identifies a valid credential pair, it logs in, deploys itself,
and begins its replication process.

3/30

4/30

Figure 1: Overview of Jierui functions.

The domain associated with the C2 server did not resolve to an IP address at the time of
analysis. The following details are a result of static analysis of the malware.

The malware begins by retrieving a list of IP addresses of likely devices with open SSH ports
from the C2 server (ssh.ddos-cc[.]org) via the getIPs() function. It then performs brute-force
login attempts on port 22 using credential pairs also obtained from the C2 through the
readLinesFromURL(), brute(), and trySSHLogin() functions.

Within trySSHLogin(), the malware performs several environment fingerprinting checks.
These are used to avoid honeypots and unsuitable execution environments, such as
restricted shells. Notably, the malware checks for the presence of the string “Pumatronix”, a
manufacturer of surveillance and traffic camera systems, suggesting potential IoT targeting
or an effort to evade specific devices [1].

Figure 2: Fingerprinting of “Pumatronix”.

If the environment passes these checks, the malware executes uname -a to collect basic
system information, including the OS name, kernel version, and architecture. This data,
along with the victim's IP address, port, username, and password, is then reported back to
the C2 in a JSON payload.

Of note, the bot uses X-API-KEY: jieruidashabi, within a custom header when it
communicates with the C2 server over HTTP.

The malware writes itself to /lib/redis, attempting to disguise itself as a legitimate Redis
system file. It then creates a persistent systemd service in /etc/systemd/system, named
either redis.service or mysqI.service (note the spelling of mysql with a capital I)
depending on what has been hardcoded into the malware. This allows the malware to persist
across reboots while appearing benign.

5/30

[Unit]

Description=redis Server Service

[Service]

Type=simple

Restart=always

RestartSec=1

User=root

ExecStart=/lib/redis e

[Install]

WantedBy=multi-user.target

In addition to gaining persistence with a systemd service, the malware also adds its own
SSH keys into the users’ authorized_keys file. This ensures that access can be maintained,
even if the service is removed.

A function named cleankill() contains an infinite loop that repeatedly attempts to execute the
commands “xmrig” and “networkxm”. These are launched without full paths, relying on the
system's PATH variable suggesting that the binaries may be downloaded or unpacked
elsewhere on the system. The use of “time.Sleep” between attempts indicates this loop is
designed to ensure persistence and possibly restart mining components if they are killed or
missing.

During analysis of the botnet, Darktrace discovered related binaries that appear to be part of
a wider campaign targeting Linux systems.

Filename: ddaemon

Md5: 48ee40c40fa320d5d5f8fc0359aa96f3

Ddaemon is a Go-based backdoor. The malware begins by parsing command line arguments
and if conditions are met, enters a loop where it periodically verifies the MD5 hash of the
binary. If the check fails or an update is available, it downloads a new version from a C2
server (db.17kp[.]xyz/getDdaemonMd5), verifies it and replaces the existing binary with a
file of the same name and similar functionality (8b37d3a479d1921580981f325f13780c).

The malware uses main_downloadNetwork() to retrieve the binary “networkxm” into
/usr/src/bao/networkxm. Additionally, the bash script “installx.sh” is also retrieved from
the C2 and executed. The binary ensures persistence by writing a custom systemd service
unit that auto starts on boot and executes ddaemon.

Filename: networkxm

Md5: be83729e943d8d0a35665f55358bdf88

6/30

The networkxm binary functions as an SSH brute-force tool, similar to the botnet. First it
checks its own integrity using MD5 hashes and contacts the C2 server (db.17kp[.]xyz) to
compare its hash with the latest version. If an update is found, it downloads and replaces
itself.

Figure 3: Part of networkxm checking MD5 hash.

Figure 4: MD5 hash

After verifying its validity, it enters an infinite loop where it fetches a password list from the C2
(/getPassword), then attempts SSH connections across a list of target IPs from the /getIP
endpoint. As with the other observed binaries, a systemd service is created if it doesn’t
already exist for persistence in /etc/systemd/system/networkxm.service.

7/30

Figure 5: Bash script installx.sh.

Installx.sh is a simple bash script used to retrieve the script “jc.sh” from 1.lusyn[.]xyz, set
permissions, execute and clear bash history.

Figure 6: Snippet of bash script jc.sh.

The script jc.sh starts by detecting the operating system type Debian-based or Red Hat-
based and determines the location of the pam_unix.so file. Linux Pluggable Authentication
Modules (PAM) is a framework that allows for flexible and centralized user authentication on
Linux systems. PAM allows system administrators to configure how users are authenticated
for services like login, SSH, or sudo by plugging in various authentication modules.

8/30

Jc.sh then attempts to fetch the current version of PAM installed on the system and formats
that version to construct a URL. Using either curl or wget, the script downloads a
replacement pam_unix.so file from a remote server and replaces the existing one, after
disabling file immutability and backing up the original.

The script also downloads and executes an additional binary named “1” from the same
remote server. Security settings are modified including enabling PAM in the SSH
configuration and disabling SELinux enforcement, before restarting the SSH service. Finally,
the script removes itself from the system.

Filename: Pam_unix.so_v131

md5: 1bd6bcd480463b6137179bc703f49545

Based on the PAM version that is retrieved from the bash query, the new malicious PAM
replaces the existing PAM file. In this instance, pam_unix.so_v131 was retrieved from the
server based on version 1.3.1. The purpose of this binary is to act as a rootkit that steals
credentials by intercepting successful logins. Login data can include all accounts
authenticated by PAM, local and remote (SSH). The malware retrieves the logged in user,
the password and verifies that the password is valid. The details are stored in a file “con.txt”
in /usr/bin/.

Figure 7: Function storing logins to con.txt

Filename: 1

md5: cb4011921894195bcffcdf4edce97135

9/30

In addition to the malicious PAM file, a binary named “1” is also retrieved from the server
http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/jc/1. The binary “1” is used as a
watcher for the malicious PAM file using inotify to monitor for “con.txt” being written or moved
to /usr/bin/.

Following the daemonize() function, the binary is run daemonized ensuring it runs silently in
the background. The function read_and_send_files() is called which reads the contents of
“/usr/bin/con.txt”, queries the system IP with ifconfig.me, queries SSH ports and
sends the data to the remote C2
(http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/api/).

Figure 8: Command querying SSH ports.

For persistence, a systemd service (my_daemon.service) is created to autostart the binary
and ensure it restarts if the service has been terminated. Finally, con.txt is deleted,
presumably to remove traces of the malware.

Conclusion

The botnet represents a persistent Go-based SSH threat that leverages automation,
credential brute-forcing, and native Linux tools to gain and maintain control over
compromised systems. By mimicking legitimate binaries (e.g., Redis), abusing systemd for
persistence, and embedding fingerprinting logic to avoid detection in honeypots or restricted
environments, it demonstrates an intent to evade defenses.

While it does not appear to propagate automatically like a traditional worm, it does maintain
worm-like behavior by brute-forcing targets, suggesting a semi-automated botnet campaign
focused on device compromise and long-term access.

[related-resource]

Recommendations

1. Monitor for anomalous SSH login activity, especially failed login attempts across a wide
IP range, which may indicate brute-force attempts.

2. Audit systemd services regularly. Look for suspicious entries in /etc/systemd/system/
(e.g., misspelled or duplicate services like mysqI.service) and binaries placed in non-
standard locations such as /lib/redis.

3. Inspect authorized_keys files across user accounts for unknown SSH keys that may
enable unauthorized access.

4. Filter or alert on outbound HTTP requests with non-standard headers, such as X-API-
KEY: jieruidashabi, which may indicate botnet C2 communication.

10/30

5. Apply strict firewall rules to limit SSH exposure rather than exposing port 22 to the
internet.

Appendices

References

1. https://pumatronix.com/

Indicators of Compromise (IoCs)

Hashes

cab6f908f4dedcdaedcdd07fdc0a8e38 - jierui

a9412371dc9247aa50ab3a9425b3e8ba - bao

0e455e06315b9184d2e64dd220491f7e - networkxm

cb4011921894195bcffcdf4edce97135 - 1

48ee40c40fa320d5d5f8fc0359aa96f3 - ddaemon

1bd6bcd480463b6137179bc703f49545 - pam_unix.so_v131

RSA Key

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQC0tH30Li6Gduh0Jq5A5dO5rkWTsQlFttoWzPFnGnuGmuF+fw

IfYvQN1z+WymKQmX0ogZdy/CEkki3swrkq29K/xsyQQclNm8+xgI8BJdEgTVDHqcvDyJv5D97cU7Bg
1OL5ZsGLBwPjTo9huPE8TAkxCwOGBvWIKUE3SLZW3ap4ciR9m4ueQc7EmijPHy5qds/Fls+XN8uZWu

z1e7mzTs0Pv1x2CtjWMR/NF7lQhdi4ek4ZAzj9t/2aRvLuNFlH+BQx+1kw+xzf2q74oBlGEoWVZP55

bBicQ8tbBKSN03CZ/QF+JU81Ifb9hy2irBxZOkyLN20oSmWaMJIpBIsh4Pe9 @root

Network

http://ssh[.]ddos-cc.org:55554

http://ssh[.]ddos-cc.org:55554/log_success

http://ssh[.]ddos-cc.org:55554/get_cmd

http://ssh[.]ddos-cc.org:55554/pwd.txt

https://dow[.]17kp.xyz/

https://input[.]17kp.xyz/

https://db[.]17kp[.]xyz/

11/30

http://1[.]lusyn[.]xyz

http://1[.]lusyn[.]xyz/jc/1

http://1[.]lusyn[.]xyz/jc/jc.sh

http://1[.]lusyn[.]xyz/jc/aa

http://1[.]lusyn[.]xyz/jc/cs

http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/api

http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/jc

Detection Rule

rule Linux_PumaBot

{

 meta:

 description = "Rule to match on PumaBot samples"

 author = "tgould@cadosecurity.com"

 strings:

 $xapikey = "X-API-KEY" ascii

 $get_ips = "?count=5000" ascii

‍

 $exec_start = "ExecStart=/lib/redis" ascii

 $svc_name1 = "redis.service" ascii

 $svc_name2 = "mysqI.service" ascii

 $uname = "uname -a" ascii

 $pumatronix = "Pumatronix" ascii

 condition:

 uint32(0) == 0x464c457f and

 all of (

 $xapikey,

12/30

 $uname,

 $get_ips,

 $exec_start

) and any of (

 $svc_name1,

 $svc_name2

) and $pumatronix

}

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what
defenders need to know in 2025

Download now

https://www.darktrace.com/resources/annual-threat-report-2024

13/30

Written by

Tara Gould

Threat Researcher

https://www.darktrace.com/people/tara-gould

14/30

Inside the SOC

Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and
incident response, and provide 24/7 SOC support to thousands of Darktrace customers
around the globe. Inside the SOC is exclusively authored by these experts, providing
analysis of cyber incidents and threat trends, based on real-world experience in the field.

Written by

Tara Gould

Threat Researcher

15/30

Share this post

16/30

Latest blogs

17/30

Untangling the web: Darktrace’s investigation of Scattered Spider’s evolving
tactics

Network

•

July 24, 2025

https://www.darktrace.com/blog/untangling-the-web-darktraces-investigation-of-scattered-spiders-evolving-tactics

18/30

Emma Foulger

Global Threat Research Operations Lead

https://www.darktrace.com/blog/untangling-the-web-darktraces-investigation-of-scattered-spiders-evolving-tactics

19/30

Closing the Cloud Forensics and Incident Response Skills Gap

Cloud

•

July 23, 2025

https://www.darktrace.com/blog/closing-the-cloud-forensics-and-incident-response-skills-gap

20/30

Calum Hall

Technical Content Researcher

Watch the NIS2 Webinar

https://www.darktrace.com/blog/closing-the-cloud-forensics-and-incident-response-skills-gap
https://darktrace.com/resources/nis2-directive-implications-on-cyber-security-and-ai

21/30

22/30

Continue reading

23/30

Network
•

July 24, 2025

Untangling the web: Darktrace’s investigation of Scattered Spider’s evolving
tactics

https://www.darktrace.com/primary-topics/network

24/30

Emma Foulger

Global Threat Research Operations Lead

Read more

https://www.darktrace.com/blog/untangling-the-web-darktraces-investigation-of-scattered-spiders-evolving-tactics

25/30

Network
•

June 25, 2025

Patch and Persist: Darktrace’s Detection of Blind Eagle (APT-C-36)

https://www.darktrace.com/primary-topics/network

26/30

Charlotte Thompson

Cyber Analyst

Read more

https://www.darktrace.com/blog/patch-and-persist-darktraces-detection-of-blind-eagle-apt-c-36

27/30

Network
•

June 17, 2025

Customer Case Study: Leading Petrochemical Manufacturer

https://www.darktrace.com/primary-topics/network

28/30

The Darktrace Community

Read more

https://www.darktrace.com/blog/customer-case-study-leading-petrochemical-manufacturer

29/30

Your data. Our AI.

Elevate your network security with Darktrace AI

Get a demo

https://www.darktrace.com/demo

30/30

https://www.darktrace.com/demo

