
1/16

May 30, 2025

Bombardino Crocodilo in Poland — analysis of IKO
Lokaty mobile malware campaign

medium.com/@mvaks/bombardino-crocodilo-in-poland-analysis-of-iko-lokaty-mobile-malware-campaign-502bd74947f3

--

Following the recent campaign involving the NGate malware (my analysis is available here
→ link), cybercriminals have once again exploited the branding of well-known banks to
distribute malicious software targeting Android devices. This time, the attack vector shifted to
malicious advertisements on social media platforms. These ads falsely promoted a new
banking program allegedly offering attractive deposit options.

Facebook ads impersonating a Polish banking application

The malware belongs to the Crocodilus family, which was first analyzed by ThreatFabric
researchers in late March this year. At that time, it was primarily deployed in campaigns
targeting financial institutions in Spain and Turkey. Crocodilus is equipped with capabilities
for device takeover, remote access, and overlay attacks, making it a potent threat in
mobile cybercrime operations.

https://medium.com/@mvaks/bombardino-crocodilo-in-poland-analysis-of-iko-lokaty-mobile-malware-campaign-502bd74947f3
https://medium.com/@mvaks?source=post_page---byline--502bd74947f3---------------------------------------
https://medium.com/@mvaks/analysis-of-malicious-mobile-applications-impersonating-popular-polish-apps-olx-allegro-iko-7dab879a320d
https://www.threatfabric.com/blogs/exposing-crocodilus-new-device-takeover-malware-targeting-android-devices


2/16

Let’s move on to the high-level behavioral analysis:



3/16

The legitimate banking app and the fake app used in the campaign.

Upon launch, the fake banking app prompts the user to allow the installation of
additional applications, disguising the process as a required Play Store update. In reality,
the update installs a secondary malicious application named “IKO Lokata”, delivered as a
hidden .apk file.



4/16



5/16

Once permissions are granted and the IKO Lokata app is installed, it immediately requests
access to Accessibility Services — a critical step that enables the malware to gain full
control over the device. Additionally, it asks for permissions to access contacts and send
notifications, expanding its ability to harvest data and interact with the user environment.

To further deceive the user, the malware mimics yet another system update — this time
posing as an update for Google Chrome — as a way to legitimize its escalating permission
requests and avoid suspicion.



6/16

After the initial setup, the malicious app prompts the user to enter their PIN to supposedly
log into the application. Upon entering the PIN for the first time, the app displays a generic
error message, claiming the PIN is incorrect.

However, during analysis, it was observed that on the second attempt, the app presents a
message stating that the “IKO Lokata” service has been successfully activated. It further
informs the user that the bank requires up to 48 hours to verify the provided information
and complete the app configuration.



7/16

This delay tactic is a classic social engineering method, aimed at:

Creating a false sense of legitimacy,
Preventing the victim from becoming suspicious immediately,
Buying time for the attacker to use the stolen credentials or access the compromised
device remotely.

This behavior suggests the malware is designed not only to harvest credentials, but also to
maintain persistence while minimizing the chances of early detection.

Let’s dive deeper

The following section focuses on the technical analysis of the app.

A closer look at the app’s AndroidManifest.xml file reveals the presence of the
android.permission.REQUEST_INSTALL_PACKAGES permission. This permission allows
the app to install additional APKs programmatically, and is a strong indicator that the
application is functioning as a dropper — a component designed to deploy further stages of
malware on the device.

Further analysis of the code reveals references to an external .dex file, suggesting the use
of dynamic code loading, a common obfuscation and evasion technique.



8/16

Additionally, several class declarations found in the manifest do not exist in the static
contents of the original APK package. This discrepancy implies that some components of the
app are either:

Loaded dynamically at runtime,
Fetched from a remote source after installation,
Or unpacked from encrypted assets bundled with the app.

These behaviors strongly indicate that the app is deliberately structured to hide malicious
logic until execution, which is a hallmark of more advanced Android malware strains.

After installing and launching the app in an emulator, we observed that within the
code_cache directory associated with the application, a file named ablemocker.vdex
appears.



9/16

The presence of a .vdex file suggests that the application makes use of pre-verified and
possibly optimized bytecode, typically generated by the Android Runtime during the
installation process. VDEX files are often used to speed up app loading times by storing
verified DEX instructions, but in the context of malware, they can also serve to obfuscate
code and hinder static analysis.

Unlike regular .dex files, .vdex files may contain compressed or optimized code, and tools for
their direct analysis are limited or require additional unpacking and conversion steps. This
significantly increases the complexity of reverse engineering, and is likely an intentional
measure by the attackers to delay detection and hinder malware research.

Upon launching the application, one can observe outgoing network traffic to a Telegram
channel, suggesting that the malware uses Telegram as part of its command-and-control
(C2) infrastructure.

hxxps://api.telegram.org/bot8055029511:AAH3AF978hUKj7X2J7C-Z4tuOhMD9EIFa-
o/sendMessage?chat_id=7547984349&text=

Further analysis shows that the code responsible for establishing the connection is present in
the decrypted .dex file. After decoding and examining the DEX content, hardcoded
references to the Telegram Bot API, channel identifiers can be found.

Static analysis of the DEX file also reveals an interesting method used to deliver the login
screen. Instead of a native interface, the login screen is actually an HTML page presented to
the user, which the authors have hidden in the code by encoding it in base64.



10/16

References to the dropped application, specifically iSZMv.apk, can also be observed within
the code.



11/16

Here, for the first time, we encounter code snippets written in Turkish. This observation
supports the findings of ThreatFabric researchers, who concluded that the malware is most
likely developed in Turkey. Within the application, we can also find phrases or code
segments such as:



12/16

Second stage analysis

In the case of the second application, the same operational model is employed. Within the
dropped .apk file, we can find a .dex file named jasminenacho.dex, which, as shown in the
screenshot below, again appears in the form of a .vdex file.

Within the .dex file, we can see the origin of the malware’s name — Crocodile. The name is
derived from a code snippet containing the phrase CROCODILE BOT 2025. Additionally,
there are greetings to the well-known malware researcher Lukáš Štefanko embedded within
the code.



13/16

It can also be observed that the application was designed to support multiple language
versions.

The application offers a wide range of functionalities, one of which is the ability to detect
whether it is running in an emulated environment.

The malware includes automatic call initiation, potentially allowing attackers to place phone
calls without user interaction.



14/16

The malware communicates with a command-and-control (C2) server, the address of which
is embedded within the .dex file.

Example of communication with the C2 server:

To understand and subsequently decrypt the communication, it is necessary to examine the
encryption function.



15/16

The function takes arguments from two variables, carFileDoesnt and miniature, both of which
are visible in the network communication screenshot. It then performs a series of
transformations:

Decodes base64,
Reverses the byte order,
Performs another round of base64 decoding,
Followed by a final base64 decode, which is then used as the key or input for AES
decryption.

A Python script was written to replicate these steps, resulting in the decrypted output. Some
fields within the output have been intentionally or redacted by me :-).

{"action":"hidden:)","deviceID":"
{hidden:)}","C01039058573":"hidden:)","localeCode":"us","phoneTag":"ik-
X","phoneBuild":"13","phoneModel":"Genymobile Google 
Pixel","phoneCarrier":"Android","OK2OXS1901Z9C":100,"screenModes":1,"TRCR1939OCFX92":"



16/16

Summary

Described mobile malware campaign leverages fake banking applications distributed via
malicious social media ads, continuing the abuse of legitimate bank brands. The malware,
identified as part of the Crocodilus family, includes advanced capabilities such as device
takeover, overlay attacks, and emulator detection. It uses obfuscation techniques like
base64-encoded HTML for login overlays and .vdex-wrapped .dex files to hinder analysis.
The malware communicates with a traditional command-and-control (C2) server, with the
address embedded directly in the DEX file and traffic encrypted using layered base64 and
AES. Static artifacts, such as Turkish language strings and embedded developer messages,
suggest the malware originates from Turkey, aligning with previous findings by ThreatFabric.

IOCs:

IKO Lokata purge.tremble 689579531a417b84ddbceb17c75d3c39IKO Lokata 
unrelated.hamburger e7551da0d6e05cce11d4bf3ae016bb15

C2:

hxxps://api.telegram.org/bot8055029511:AAH3AF978hUKj7X2J7C-Z4tuOhMD9EIFa-
o/sendMessage?chat_id=7547984349hxxp://rentvillcr.homes


