
1/11

May 27, 2025

SafePay: The new kid on the block
medium.com/@DCSO_CyTec/safepay-the-new-kid-on-the-block-4141188a626d

--

Earlier this year, DCSO was made aware of a security incident at one of our clients that was
part of a ransomware campaign by the actor SafePay. While there is limited reporting on
the group available, DCSO uncovered additional new information on the ransomware
variant in the incident response case.

Executive summary:

SafePay focusing on Germany and US, utilizing the double-extortion scheme (data
theft and encryption)
The ransomware does not shy away from contacting victims directly (e.g. via phone
calls) to increase pressure
SafePay ransomware shares similarities with other ransomware strains, however, we
believe that this is due to inspiration not because of same origin
We provide tooling for configuration extraction, aiding the analysis of the ransomware
characteristics

SafePay Leak Site

Blog post authored by , Bennet Conrads, Moaath Oudeh and

Background

https://medium.com/@DCSO_CyTec/safepay-the-new-kid-on-the-block-4141188a626d
https://medium.com/@DCSO_CyTec?source=post_page---byline--4141188a626d---------------------------------------


2/11

The SafePay ransomware group is a relatively new group, first appearing on our radar in
November 2024. During that period, the group was first reported on by researchers at
Huntress. The group follows a double-extortion scheme, both exfiltrating data and encrypting
it on victim machines using their own SafePay ransomware.

Recent focus of SafePay group on Germany and the US — Source: ecrime.ch

At the time of writing, SafePay lists 169 victims on their leak site, with the targets
predominantly based in Central Europe and North America, and a low number of targets
located in Asia. The main focus of the group appears to be Germany and the United States,
with Germany having seen multiple batches of victims listed recently and currently
making up almost 18% of the victims, taking up the spot of most targeted in recent
additions. The leak site has been updated in early May 2025 with the latest data for
download having been posted on April 24th, showing fairly recent activity of the group.

Victim country distribution of SafePay group — Source: ecrime.ch

Their leak site features a headline stating that “SafePay Ransomware has never and does
not provide the RaaS”. RaaS (ransomware as a service) systems usually delegate some
tasks or compromises to partners of affiliates either for a monthly subscription or one-time
fee to use the ransomware. Other variants of the RaaS revenue model include affiliate
programs in which affiliates who compromise networks share profits from the extortion with
the developers of the ransomware.

https://www.huntress.com/blog/its-not-safe-to-pay-safepay


3/11

SafePay ransomware

To encrypt victim data, SafePay employs a custom ransomware strain of the same name.
Encrypted files exhibit the characteristic “.safepay” extension while the ransom note is
named “readme_safepay.txt” correspondingly.

Compared to earlier reporting, the SafePay ransomware introduced a victim ID which is
provided in their updated ransom note and used to log in to their portal to initiate contact.

Updated ransom note with victim ID in blue

The ransom note appears to be original and not taken or copied from other ransomware
incidents as it features unique wording. An interesting statement in the note is the group
stating that they “[…] are not a politically motivated group and want nothing more than
money”. Groups, e.g. LockBit, have insisted on being apolitical, while other ransomware
groups have explicitly announced political objectives or official support of government goals
as was the case with the Conti ransomware group announcing their “full support” for the
Russian government in 2022.

A detailed analysis of the SafePay ransomware follows below.

Field Observations

https://www.reuters.com/technology/russia-based-ransomware-group-conti-issues-warning-kremlin-foes-2022-02-25/


4/11

During the IR engagement earlier this year, DCSO’s Incident Response Team (D.I.R.T.)
observed several notable findings, related to SafePay ransomware TTPs:

The SafePay ransomware group tried to increase pressure on the affected client by
making direct phone calls after encrypting the environment, aiming to coerce a faster
response or payment.
There was a 25-day gap between the initial access — achieved through password
spraying against the VPN gateway — and the first discovery activities, which may
suggest that the ransomware group was either preoccupied with other operations,
operating with limited resources or relying on initial access brokers.
The remote workstation “WIN-3IUUOFVTQAR” used by the attackers to access the
environment matches the one identified in the intrusion investigated by , which
indicates bad operational security (opsec) practices by the attackers.
The collection activities were conducted in a targeted manner, focusing on critical
business data; the attackers used SharpShares to identify accessible file shares,
employed WinRAR to compress the collected data, and successfully exfiltrated 450 GB
of data by unknown means.
The attackers actively searched for backup solutions in the affected environment and
encrypted them, in addition to deleting Volume Shadow Copies (VSC), all in an effort to
inhibit recovery activities and maximize the impact of the attack.
All encryption activities happened within virtual machines (VMs), although the attackers
were in the possession of the necessary privileges to perform encryption of the VMs on
the hypervisor level. This could indicate that the SafePay ransomware group at the
time of writing was not in the possession of a ransomware variant compatible with
hypervisors such as VMware ESXi.
It took the SafePay ransomware group 26 days from initial access to obtain Domain
Admin privileges, with minimal observable activity during the first 25 days post-
compromise; once Domain Admin was achieved, they completed data collection,
exfiltration, and encryption within just two days.

All in all, D.I.R.T. rates the overall level of sophistication of the SafePay ransomware group
as intermediate, given the extended periods of inactivity post-compromise, reliance on
publicly available tools, lack of advanced evasion techniques, bad opsec practices, and the
apparent unavailability of a VMware ESXi ransomware variant to encrypt VMs directly from
the hypervisor.

In-Depth Analysis of SafePay Ransomware

The SafePay ransomware is written in C and built around Overlapped I/O, which is the
Windows solution for asynchronous I/O. Files are enumerated and encrypted using multiple
separate threads, the specific number depending on the processor count.

https://learn.microsoft.com/en-us/windows/win32/sync/synchronization-and-overlapped-input-and-output


5/11

Successful execution of the ransomware requires passing the victim ID as key phrase via
command line argument -pass. It is used to decrypt the internal configuration data, such as
what processes to kill or directories to skip. We have written a config extraction tool which is
described below in more detail.

File encryption uses a symmetric cipher to encrypt an alternating stream of 1MB chunks,
while Elliptic Curves are used to encrypt the key material. The exact number of chunks
encrypted/skipped is controlled by specifying an encryption level via the -enc <1-10>
command line switch, providing a way to perform so-called partial encryption of files for the
purpose of speed.

SafePay choosing the symmetric cipher at runtime

The choice of symmetric cipher depends on the availability of AES-NI — if the CPU supports
AES instructions, SafePay will pick AES-CBC, otherwise ChaCha20 is used to encrypt files.
This appears to be an upgrade compared to previous reporting by Huntress. In addition, we
noticed SafePay no longer has a Cyrillic language killswitch as documented by Huntress.

SafePay encrypts every file using a separate key which is generated using
RtlGenRandom(aka SystemFunction036 ). An 80 byte meta data blob is attached to each
encrypted file with the following format:

[8 byte file size][32 byte ECC master public key][32 byte file ECC public key][1 byte 
encryption level][1 byte is ChaCha used?][6 byte unused]

For research purposes and testing we have reimplemented the decryption algorithm for a
modified ECC master key. You can find the Python script on our GitHub.

Comparison to other ransomware

https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://de.wikipedia.org/wiki/AES-NI
https://www.huntress.com/blog/its-not-safe-to-pay-safepay
https://github.com/DCSO/Blog_CyTec/tree/main/2025_05__safepay


6/11

The SafePay ransomware has similarities to a multitude of other ransomware families.
Notable is the architectural similarity to LockBit3 (LockBit Black), with both ransomware
strains using Overlapped I/O, a very similar state machine to encrypt files, and similar import
resolution structure and data structures used to manage files to encrypt.

However, based on our research, we believe SafePay to be independently developed,
but likely influenced by existing ransomware.

During our analysis, we have extracted SafePay’s cryptographic primitives and used the
most excellent ransomware tooling repository by rivitna to compare it to other ransomware:

SafePay uses SHA512 as its key derivation function. This is a rare occurrence and only
shared with Hive, DarkBit and Inc. ransomware
SafePay uses a specific CRC32 polynomial 0x4c11db7 for import resolution — the
same specific polynomial is used in Proxima and Babuk, though both use a differing
starting value (SafePay: 0xFF, Proxima/Babuk: 0xFFFFFFFF)
SafePay uses , also used by
For ECC, SafePay uses Curve25519 which is not uncommon, same as the usage of
ChaCha20 and AES-CBC
LockBit3 (LockBit Black) uses ChaCha20 as well, but employs RSA instead of ECC

Based on this we believe SafePay might have been developed independently from any
source or builder leak but likely may have taken inspiration from other ransomware strains.

Reversing Obfuscated Stack Strings with Ghidra

While analyzing the binary, we encountered a common obfuscation technique known as
stack strings. These are strings constructed on the stack at runtime to evade static detection.
We decided to try out Ghidra’s recently improved Python scripting add-on (PyGhidra) to
automate the decoding.

What are stack strings?

Stack strings are strings constructed at runtime by placing individual bytes directly onto the
stack, rather than defining them as static string literals. This technique is often used by
malware authors to evade detection and hinder static analysis.

https://github.com/rivitna/Malware/tree/main


7/11

Figure 1 — Example stack string deobfuscation

Figure 1 illustrates an example of this type of string obfuscation. In this case, the string is
initialized using raw byte values, which are later resolved through a while loop. The loop
performs the following steps for each byte:

XORs the byte with its index in the array.
Then XORs the result with the first character of the kernel32.dll header (which is “M”,
since Windows PE files begin with “MZ”).
Finally, XORs the result with a constant byte specific to the string (in this case, 0x37).

After deobfuscation, the resulting string is revealed to be “advapi32.dll”, which is then stored
in the obf_str variable.

How to find the stack strings via pattern matching

Since the binary uses XOR operations to obfuscate strings, one effective method of
detection is to look for recognizable instruction patterns.

Figure 2 —

In Ghidra, you can search for specific byte patterns in the disassembly. Wildcard bytes can
be represented using ??, allowing for more flexible matching. For example, the pattern 32 ??
32 ?? 34 ?? proved useful in identifying the XOR-based obfuscation sequences across the
binary.



8/11

Figure 3 —

By reviewing the results, we noticed a recurring instruction pattern surrounding the
obfuscated strings. Typically, these sequences began with:

MOV EDX, dword ptr [0x10015ff8]

And ended with a conditional jump instruction, such as:

JC <VALUE>

Upon further analysis, we discovered two additional variants of the starting instruction:

MOV EAX, [0x10015ff8]MOV ECX, dword ptr [0x10015ff8]

Automating the task

While analyzing the binary, it quickly became evident that there were over a hundred
obfuscated stack strings. Manually resolving each one would be extremely time-consuming
and inefficient, so we decided to automate it.

Since our analysis was being conducted in Ghidra, we leveraged a relatively new feature
called PyGhidra. Unlike earlier versions that only supported Java or Jython, PyGhidra allows
you to write and run Ghidra scripts using standard Python — making scripting more
accessible and flexible.

On a high level, the script works like this:

Traverse the binary and identify all stack strings based on known instruction patterns.
Simulate each snippet and resolve the obfuscated strings
Save the decoded results for further analysis

To locate stack strings using above identified patterns, we used Ghidra’s built-in APIs. For
emulating and executing the snippets, we used , a lightweight, multi-platform CPU emulator
based on QEMU. It allowed us to simulate execution of individual instructions in isolation



9/11

without running the actual binary.

Finally, the script was executed using Ghidra’s headless mode via PyGhidra.

Figure 4 — Example output

Results

The script successfully identified 117 unique stack strings and resolved 116 of them. One
string failed during emulation due to a more complex instruction sequence that Unicorn
couldn’t handle out-of-the-box.

Handling emulation constraints

Since Unicorn doesn’t have access to Ghidra’s memory layout, it couldn’t resolve the
address 0x10015FF8 (which points to the kernel32.dll during runtime) during emulation. To
work around this, we patched the instruction to load the expected value — ‘M’ (the first
character of the “MZ” header) — directly into the register. This allowed the emulation to
continue and the string to be resolved correctly.

You can find the full script on our GitHub repository, including instructions on how to run it in
headless PyGhidra and configure Unicorn.

Extracting the config:

The SafePay binary contains a built-in configuration that guides its behavior — such as
which files or directories to encrypt, which system locations to avoid as well as the ransom
note.

However, this configuration isn’t stored in plaintext. Instead, it’s encrypted within the binary,
making it invisible during inspection.

https://github.com/DCSO/Blog_CyTec/tree/main/2025_05__safepay


10/11

After analyzing the binary’s decryption logic, we were able to reverse-engineer how the
config is retrieved at runtime. Using this understanding, we developed a script that extracts
and decrypts the config directly from the binary, without needing to execute it.

The script relies on two inputs:

1. This key can be found in the ransom note and is used by the victim to login into the
portal. It is also specified as the -pass parameter, which is provided to the malware at
runtime by the attacker.

2. This needs to be the binary that generated the ransom note.

The script locates the encrypted blob, applies the correct decryption algorithm, and outputs
the configuration components in a readable format.

Layout of the config data:

The encrypted configuration is stored in its own dedicated section within the binary. In our
sample, this section was named .debug

The layout of the section is as follows:

A checksum. This hash is used to verify if the data was decrypted successfully.
A indicating the size of the encrypted config payload. This length usually matches the
number of remaining bytes in the section.
The itself.

: Likely due to the name .debug, IDA doesn’t load the section into memory by default which
can lead to confusion analyzing the binary as the entire section will be missing and memory
references point to non-existing data. This can be fixed by checking “manual load” when first
loading the binary, followed by confirming loading of the .debug section:

Manual load popup for the .debug section

Decrypting the config

The malware uses a combination of cryptographic and hashing algorithms to decrypt the
data. These include:



11/11

— to derive the encryption key and nonce
— the stream cipher used to encrypt/decrypt the data
— to validate the integrity of the decrypted config

To decrypt the config, the malware follows a specific sequence:

using SHA-512.
of the SHA-512 hash:
The are used as the .
The serve as the .
with the key and nonce.
using the cipher.
by comparing its (seed: 0xFFFFFFFF, result must be unsigned) to the hash stored at
the beginning of the config section.

What’s inside the config?

Once decrypted, the configuration reveals various parameters used by the ransomware to
control its behavior:

You can find the config decryptor on our GitHub repository, including instructions on how to
run it.

Conclusion

SafePay is a relatively new ransomware actor that appeared around October 2024. They use
a custom ransomware that we believe is independently developed but possibly influenced by
other existing ransomware families. Recently, they seem to focus their attacks on Germany
and the United States.

We analyzed the ransomware in detail, extracted the cryptographic primitives in use and
wrote tooling that aid in understanding the ransomware, which we want to share with the
community.

https://github.com/DCSO/Blog_CyTec/tree/main/2025_05__safepay

