
1/8

De- obfuscating ALCATRAZ
elastic.co/security-labs/deobfuscating-alcatraz

https://www.elastic.co/security-labs/deobfuscating-alcatraz
https://www.elastic.co/security-labs
https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/deobfuscating-alcatraz

2/8

Subscribe Start free trial Contact sales

https://www.elastic.co/security-labs/rss/feed.xml
https://cloud.elastic.co/registration?cta=cloud-registration&tech=trial&plcmt=navigation&pg=security-labs
https://www.elastic.co/contact
https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/deobfuscating-alcatraz

3/8

Introduction

Elastic Security Labs analyzes diverse malware that comes through our threat hunting pipelines and telemetry queues. We
recently ran into a new malware family called DOUBLELOADER, seen alongside the RHADAMANTHYS infostealer. One
interesting attribute of DOUBLELOADER is that it is protected with an open-source obfuscator, ALCATRAZ first released in
2023. While this project had its roots in the game hacking community, it’s also been observed in the e-crime space, and
has been used in targeted intrusions.

https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/deobfuscating-alcatraz
https://github.com/weak1337/Alcatraz
https://news.sophos.com/en-us/2024/09/10/crimson-palace-new-tools-tactics-targets/

4/8

The objective of this post is to walk through various obfuscation techniques employed by ALCATRAZ, while highlighting
methods to combat these techniques as malware analysts. These techniques include control flow flattening, instruction
mutation, constant unfolding, LEA constant hiding, anti-disassembly tricks and entrypoint obfuscation.

Key takeaways

The open-source obfuscator ALCATRAZ has been seen within new malware deployed alongside RHADAMANTHYS
infections
Obfuscation techniques such as control flow flattening continue to serve as road blocks for analysts
By understanding obfuscation techniques and how to counter them, organizations can improve their ability to
effectively triage and analyze protected binaries.
Elastic Security Labs releases tooling to deobfuscate ALCATRAZ protected binaries are released with this post

DOUBLELOADER

Starting last December, our team observed a generic backdoor malware coupled with RHADAMANTHYS stealer infections.
Based on the PDB path, this malware is self-described as DOUBLELOADER.

This malware leverages syscalls such as NtOpenProcess, NtWriteVirtualMemory, NtCreateThreadEx launching unbacked
code within the Windows desktop/file manager (explorer.exe). The malware collects host information, requests an
updated version of itself and starts beaconing to a hardcoded IP (185.147.125.81) stored within the binary.

DOUBLELOADER samples include a non-standard section (.0Dev) with executable permissions, this is a toolmark left
based on the author's handle for the binary obfuscation tool, ALCATRAZ.

Obfuscators such as ALCATRAZ end up increasing the complexity when triaging malware. Its main goal is to hinder binary
analysis tools and increase the time of the reverse engineering process through different techniques; such as hiding the
control flow or making decompilation hard to follow. Below is an example of obfuscated control flow of one function inside
DOUBLELOADER.

The remainder of the post will focus on the various obfuscation techniques used by ALCATRAZ. We will use the first-stage
of DOUBLELOADER along with basic code examples to highlight ALCATRAZ's features.

ALCATRAZ

ALCATRAZ Overview

Alcatraz is an open-source obfuscator initially released in January 2023. While the project is recognized within the game
hacking community as a foundational tool for learning obfuscation techniques, it’s also been observed being abused by e-
crime and APT groups.

Alcatraz’s code base contains 5 main features centered around standard code obfuscation techniques along with
enhancement to obfuscate the entrypoint. Its workflow follows a standard bin2bin format, this means the user provides a
compiled binary then after the transformations, they will receive a new compiled binary. This approach is particularly
appealing to game hackers/malware developers due to its ease of use, requiring minimal effort and no modifications at the
source code level.

The developer can choose to obfuscate all or specific functions as well as choose which obfuscation techniques to apply to
each function. After compilation, the file is generated with the string (obf) appended to the end of the filename.

Obfuscation techniques in ALCATRAZ

The following sections will go through the various obfuscation techniques implemented by ALCATRAZ.

Entrypoint obfuscation

https://tigress.wtf/flatten.html
https://github.com/mike1k/perses?tab=readme-ov-file#introduction
https://1malware1.medium.com/anti-disassembly-techniques-e012338f2ae0
https://malpedia.caad.fkie.fraunhofer.de/details/win.rhadamanthys
https://github.com/weak1337/Alcatraz
https://news.sophos.com/en-us/2024/09/10/crimson-palace-new-tools-tactics-targets/

5/8

Dealing with an obfuscated entrypoint is like getting a flat tire at the start of a family roadtrip. The idea is centered on
confusing analysts and binary tooling where it’s not directly clear where the program starts, causing confusion at the very
beginning of the analysis process.

The following is the view of a clean entrypoint (0x140001368) from a non-obfuscated program within IDA Pro.

By enabling entrypoint obfuscation, ALCATRAZ moves the entrypoint then includes additional code with an algorithm to
calculate the new entrypoint of the program. Below is a snippet of the decompiled view of the obfuscated entry-point.

As ALCATRAZ is an open-source obfuscator, we can find the custom entrypoint code to see how the calculation is
performed or reverse our own obfuscated example. In our decompilation, we can see the algorithm uses a few fields from
the PE header such as the Size of the Stack Commit, Time Date Stamp along with the first four bytes from the .0dev
section. These fields are parsed then used with bitwise operations such as rotate right (ROR) and exclusive-or (XOR) to
calculate the entrypoint.

Below is an example output of IDA Python script (Appendix A) that parses the PE and finds the true entrypoint, confirming
the original starting point (0x140001368) with the non-obfuscated sample.

Anti-disassembly

Malware developers and obfuscators use anti-disassembly tricks to confuse or break disassemblers in order to make static
analysis harder. These techniques abuse weaknesses during linear sweeps and recursive disassembly, preventing clean
code reconstruction where the analyst is then forced to manually or automatically fix the underlying instructions.

ALCATRAZ implements one form of this technique by modifying any instructions starting with the 0xFF byte by adding a
short jump instruction (0xEB) in front. The 0xFF byte can represent the start of multiple valid instructions dealing with calls,
indirect jumps, pushes on the stack. By adding the short jump 0xEB in front, this effectively jumps to the next byte 0xFF.
While it’s not complex, the damage is done breaking disassembly and requiring some kind of intervention.

In order to fix this specific technique, the file can be patched by replacing each occurrence of the 0xEB byte with NOPs.
After patching, the code is restored to a cleaner state, allowing the following call instruction to be correctly disassembled.

Instruction Mutation

One common technique used by obfuscators is instruction mutation, where instructions are transformed in a way that
preserves their original behavior, but makes the code harder to understand. Frameworks such as Tigress or Perses are
great examples of obfuscation research around instruction mutation.

Below is an example of this technique implemented by ALCATRAZ, where any addition between two registers is altered,
but its semantic equivalence is kept intact. The simple add instruction gets transformed to 5 different instructions (push,
not, sub, pop, sub).

In order to correct this, we can use pattern matching to find these 5 instructions together, disassemble the bytes to find
which registers are involved, then use an assembler such as Keystone to generate the correct corresponding bytes.

Constant Unfolding

This obfuscation technique is prevalent throughout the DOUBLELOADER sample and is a widely used method in various
forms of malware. The concept here is focused on inversing the compilation process; where instead of optimizing
calculations that are known at compile time, the obfuscator “unfolds” these constants making the disassembly and
decompilation complex and confusing. Below is a simple example of this technique where the known constant (46) is
broken up into two mathematical operations.

In DOUBLELOADER, we run into this technique being used anytime when immediate values are moved into a register.
These immediate values are replaced with multiple bitwise operations masking these constant values, thus disrupting any
context and the analyst’s flow. For example, in the disassembly below on the left-hand side, there is a comparison

https://github.com/weak1337/Alcatraz/blob/739e65ebadaeb3f8206fb2199700725331465abb/Alcatraz/obfuscator/misc/custom_entry.cpp#L20
https://tigress.wtf/index.html
https://github.com/mike1k/perses

6/8

instruction of EAX value at address (0x18016CD93). By reviewing the previous instructions, it’s not obvious or clear what the
EAX value should be due to multiple obscure bitwise calculations. If we debug the program, we can see the EAX value is
set to 0.

In order to clean this obfuscation technique, we can confirm its behavior with our own example where we can use the
following source code and see how the transformation is applied.

#include <iostream>

int add(int a, int b)

{

return a + b;

}

int main()

{

int c;

c = add(1, 2);

printf("Meow %d",c);

return 0;

}

After compiling, we can view the disassembly of the main function in the clean version on the left and see these two
constants (2,1) moved into the EDX and ECX register. On the right side, is the transformed version, the two constants are
hidden among the newly added instructions.

By using pattern matching techniques, we can look for these sequences of instructions, emulate the instructions to perform
the various calculations to get the original values back, and then patch the remaining bytes with NOP’s to make sure the
program will still run.

LEA Obfuscation

Similar to the previously discussed technique, LEA (Load Effective Address) obfuscation is focused on obscuring the
immediate values associated with LEA instructions. An arithmetic calculation with subtraction will follow directly behind the
LEA instruction to compute the original intended value. While this may seem like a minor change, it can have a significant
impact breaking cross-references to strings and data — which are essential for effective binary analysis.

Below is an example of this technique within DOUBLELOADER where the RAX register value is disguised through a
pattern of loading an initial value (0x1F4DFCF4F), then subtracting (0x74D983C7) to give us a new computed value
(0x180064B88).

If we go to that address inside our sample, we are taken to the read-only data section, where we can find the referenced
string bad array new length.

In order to correct this technique, we can use pattern matching to find these specific instructions, perform the calculation,
then re-construct a new LEA instruction. Within 64-bit mode, LEA uses RIP-relative addressing so the address is calculated
based on the current instruction pointer (RIP). Ultimately, we end up with a new instruction that looks like this: lea rax,
[rip - 0xFF827].

Below are the steps to produce this final instruction:

With this information, we can use IDA Python to patch all these patterns out, below is an example of a fixed LEA
instruction.

Control Flow Obfuscation

Control flow flattening is a powerful obfuscation technique that disrupts the traditional structure of a program’s control
flow by eliminating conventional constructs like conditional branches and loops. Instead, it restructures execution using a
centralized dispatcher, which determines the next basic block to execute based on a state variable, making analysis and
decompilation significantly more difficult. Below is a simple diagram that represents the differences between an unflattened
and flattened control flow.

7/8

Our team has observed this technique in various malware such as DOORME and it should come as no surprise in this
case, that flattened control flow is one of the main features within the ALCATRAZ obfuscator. In order to approach un-
flattening, we focused on established tooling by using IDA plugin D810 written by security researcher Boris Batteux.

We will start with our previous example program using the common _security_init_cookie function used to detect buffer
overflows. Below is the control flow diagram of the cookie initialization function in non-obfuscated form. Based on the
graph, we can see there are six basic blocks, two conditional branches, and we can easily follow the execution flow.

If we take the same function and apply ALCATRAZ's control flow flattening feature, the program’s control flow looks vastly
different with 22 basic blocks, 8 conditional branches, and a new dispatcher. In the figure below, the color-filled blocks
represent the previous basic blocks from the non-obfuscated version, the remaining blocks in white represent added
obfuscator code used for dispatching and controlling the execution.

If we take a look at the decompilation, we can see the function is now broken into different parts within a while loop where
a new state variable is used to guide the program along with remnants from the obfuscation including popf/pushf
instructions.

For cleaning this function, D810 applies two different rules (UnflattenerFakeJump,
FixPredecessorOfConditionalJumpBlock) that apply microcode transformations to improve decompilation.

2025-04-03 15:44:50,182 - D810 - INFO - Starting decompilation of function at 0x140025098

2025-04-03 15:44:50,334 - D810 - INFO - glbopt finished for function at 0x140025098

2025-04-03 15:44:50,334 - D810 - INFO - BlkRule 'UnflattenerFakeJump' has been used 1 times for a total of 3
patches

2025-04-03 15:44:50,334 - D810 - INFO - BlkRule 'FixPredecessorOfConditionalJumpBlock' has been used 1 times for
a total of 2 patches

When we refresh the decompiler, the control-flow flattening is removed, and the pseudocode is cleaned up.

While this is a good example, fixing control-flow obfuscation can often be a manual and timely process that is function-
dependent. In the next section, we will gather up some of the techniques we learned and apply it to DOUBLELOADER.

Cleaning a DOUBLELOADER function

One of the challenges when dealing with obfuscation in malware is not so much the individual obfuscation techniques, but
when the techniques are layered. Additionally, in the case of DOUBLELOADER, large portions of code are placed in
function chunks with ambiguous boundaries, making it challenging to analyze. In this section, we will go through a practical
example showing the cleaning process for a DOUBLELOADER function protected by ALCATRAZ.

Upon launch at the Start export, one of the first calls goes to loc_18016C6D9. This appears to be an entry to a larger
function, however IDA is not properly able to create a function due to undefined instructions at 0x18016C8C1.

If we scroll to this address, we can see the first disruption is due to the short jump anti-disassembly technique which we
saw earlier in the blog post (EB FF).

After fixing 6 nearby occurrences of this same technique, we can go back to the start address (0x18016C6D9) and use the
MakeFunction feature. While the function will decompile, it is still heavily obfuscated which is not ideal for any analysis.

Going back to the disassembly, we can see the LEA obfuscation technique used in this function below where the string
constant ”Error” is now recovered using the earlier solution.

Another example below shows the transformation of an obfuscated parameter for a LoadIcon call where the lpIconName
parameter gets cleaned to 0x7f00 (IDI_APPLICATION).

Now that the decompilation has improved, we can finalize the cleanup by removing control flow obfuscation with the D810
plugin. Below is a demonstration showing the before and after effects.

This section has covered a real-world scenario of working towards cleaning a malicious obfuscated function protected by
ALCATRAZ. While malware analysis reports often show the final outcomes, a good portion of time is often spent up-front
working towards removing obfuscation and fixing up the binary so it can then be properly analyzed.

https://www.elastic.co/security-labs/update-to-the-REF2924-intrusion-set-and-related-campaigns
https://github.com/weak1337/Alcatraz/tree/master?tab=readme-ov-file#control-flow-flattening
https://eshard.com/posts/d810-deobfuscation-ida-pro

8/8

IDA Python Scripts

Our team is releasing a series of proof-of-concept IDA Python scripts used to handle the default obfuscation techniques
imposed by the ALCATRAZ obfuscator. These are meant to serve as basic examples when dealing with these techniques,
and should be used for research purposes. Unfortunately, there is no silver bullet when dealing with obfuscation, but having
some examples and general strategies can be valuable for tackling similar challenges in the future.

YARA

Elastic Security has created YARA rules to identify this activity.

Windows.Trojan.DoubleLoader

Observations

The following observables were discussed in this research.

Observable Type Name Reference

3050c464360ba7004d60f3ea7ebdf85d9a778d931fbf1041fa5867b930e1f7fd SHA256 DoubleLo.dll DOUBLELOADER

References

The following were referenced throughout the above research:

https://github.com/elastic/labs-releases/tree/main/tools/alcatraz
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_DoubleLoader.yar

