
1/57

May 19, 2025

Another Confluence Bites the Dust: Falling to ELPACO-
team Ransomware

thedfirreport.com/2025/05/19/another-confluence-bites-the-dust-falling-to-elpaco-team-ransomware/

Key Takeaways

The threat actor first gained entry by exploiting a known vulnerability (CVE-2023-
22527) on an internet-facing Confluence server, allowing for remote code execution.
Using this access, the threat actor executed a consistent sequence of commands
(installing AnyDesk, adding admin users, and enabling RDP) multiple times, suggesting
the use of automation scripts or a playbook.
Tools like Mimikatz, ProcessHacker, and Impacket Secretsdump were used to harvest
credentials.
The intrusion culminated in the deployment of ELPACO-team ransomware, a Mimic
variant, approximately 62 hours after the initial Confluence exploitation.
While ransomware was deployed and some event logs were deleted, no significant
exfiltration of data was observed during the intrusion.

This case was featured in our December 2024 DFIR Labs CTF and is available as a lab
today here. It was originally published as a Threat Brief to customers in October 2024.

The DFIR Report Services

Private Threat Briefs: 20+ private DFIR reports annually.
Threat Feed: Focuses on tracking Command and Control frameworks like Cobalt
Strike, Metasploit, Sliver, etc.
All Intel: Includes everything from Private Threat Briefs and Threat Feed, plus private
events, Threat Actor Insights reports, long-term tracking, data clustering, and other
curated intel.
Private Sigma Ruleset: Features 170+ Sigma rules derived from 50+ cases, mapped to
ATT&CK with test examples.
DFIR Labs: Offers cloud-based, hands-on learning experiences, using real data, from
real intrusions. Interactive labs are available with different difficulty levels and can be
accessed on-demand, accommodating various learning speeds.

Contact us today for pricing or a demo!

Table of Contents:

Case Summary

https://thedfirreport.com/2025/05/19/another-confluence-bites-the-dust-falling-to-elpaco-team-ransomware/
https://thedfirreport.com/?p=43853&preview=true#key
https://thedfirreport.com/services/dfir-labs/ctf/
https://store.thedfirreport.com/products/alpaca-ransomware-private-case-30043
https://thedfirreport.com/services/threat-intelligence/#threat-brief
https://thedfirreport.com/services/
https://thedfirreport.com/services/threat-intelligence/#threat-brief
https://thedfirreport.com/services/threat-intelligence/#threat-feed
https://thedfirreport.com/services/threat-intelligence/#all-intel
https://thedfirreport.com/services/detection-rules/
https://thedfirreport.com/services/dfir-labs/
https://thedfirreport.com/contact/
https://thedfirreport.com/?p=43853&preview=true#case-summary

2/57

In late June 2024, an unpatched Confluence server was compromised via CVE-2023-22527,
a template injection vulnerability, first from IP address 45.227.254[.]124, which just ran
whoami and exited. Shortly thereafter, a different IP address used the same exploit, running
curl to deploy a Metasploit payload (Meterpreter) and establish a C2 channel to
91.191.209[.]46. The same IP address that delivered the initial Confluence exploit (used to
run whoami) was later used to establish a direct AnyDesk connection.

On the second day of the intrusion, the threat actor initiated multiple AnyDesk sessions, each
lasting only a few seconds to just under two minutes. No commands were executed, and no
meaningful activity occurred during these brief connections. It remains unclear whether these
short sessions were the result of technical issues with their AnyDesk server or a deliberate
tactic.

On the fourth day, the threat actor started by focusing on privilege escalation. The threat
actor first performed several unsuccessful attempts using various named pipe impersonation
and token duplication techniques, they then successfully escalated to SYSTEM using the
RPCSS variant of named pipe impersonation. This allowed the creation of a local
administrator account (“noname”) and the re-installation of AnyDesk as a service (delivered
via the Metasploit C2) for persistent remote access.

Having established an alternative means of access running as system, which then became
their primary vector for the remainder of the intrusion, the threat actor pivoted to widespread
discovery. This involved scanning the network and enumerating SMB shares using
SoftPerfect’s NetScan to identify potential targets for lateral movement. After identifying the
domain controllers the threat actor executed an unsuccessful series of attempts to exploit
Zerologon (CVE-2020-1472) against them.

The threat actor then dropped tools focused on credential access, including Mimikatz,
ProcessHacker, and Impacket’s Secretsdump. Minutes after utilizing these tools, the threat
actor managed to compromise a domain administrator account, granting them widespread
access and control within the target environment. That domain admin account was likely
compromised through LSASS dumping, as evidenced by later use of NTLM hashes during
lateral movement. The threat actor was also observed attempting to exploit PrintNightmare
(CVE-2021-34527) using rpcdump.exe; this failed due to not meeting requirements, which
we detail in this report.

Leveraging the compromised domain administrator credentials, the threat actor initiated
lateral movement within the network, utilizing Impacket wmiexec and RDP to access
additional systems. The threat actor also created a new SMB share on the initially
compromised Confluence server to facilitate the next steps of the intrusion. This share
contained a number of tools used for lateral movement and subsequent ransomware
deployment.

3/57

The final stage of the intrusion involved the deployment of ransomware. Approximately 62
hours after the initial compromise of the Confluence server, the threat actor deployed
ELPACO-team.exe, identified as a variant of Mimic ransomware, onto multiple servers,
including backup and file servers by RDPing into them and executing the exe locally after
copying it over SMB. While some data transfer was observed via the AnyDesk traffic, there
was no evidence of collection or widespread data exfiltration prior to ransomware
deployment.

If you would like to get an email when we publish a new report, please subscribe here.

Analysts

Analysis and reporting completed by pcsc0ut, IrishDeath, and Tornado

Initial Access

The intrusion began in June 2024 when a threat actor exploited CVE-2023-22527 against an
unpatched Atlassian Confluence server that accepted incoming connection requests from the
internet. The network traffic triggered a Suricata alert from the Emerging Threats open
ruleset which was released in January 2024:

ET EXPLOIT Atlassian Confluence RCE Attempt Observed (CVE-2023-22527) M2 (sid
2050543)

Logs from the server indicated that many other attempts to exploit this vulnerability against
this server had been made over months from many other IP addresses. The most common
command that was run was “whoami”. One such exploitation to run “whoami” occurred 20
minutes before this intrusion started, and came from IP address 45.227.254[.]124, evidenced
in the network traffic capture below, and the Sysmon event logs from the Confluence server
at the same time showing whoami.exe starting from parent process tomcat9.exe.

https://thedfirreport.com/subscribe/
https://thedfirreport.com/?p=43853&preview=true#analysts
https://bsky.app/profile/did:plc:gmu6ekgtpjtvt2g6go6yxrau
https://bsky.app/profile/irishdeath.bsky.social
https://twitter.com/0xtornado
https://thedfirreport.com/?p=43853&preview=true#initial-access

4/57

Figure: PCAP of network traffic showing Confluence exploitation of CVE-2023-22527

Figure: Sysmon logs of whoami.exe process starting with a parent process of tomcat9.exe

Approximately 20 minutes after the initial successful whoami command execution from
45.227.254[.]124, the intrusion commenced from a new IP address, 91.191.209[.]46, utilizing
a slightly modified version of the exploit. It’s plausible that the exploitation script used in the
second instance, which downloaded and executed the Metasploit payload, could have been
derived from or inspired by publicly available proof-of-concept as seen from this GitHub
Repository. The intruder exploited the vulnerability a second time to run the command:

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_001-scaled.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_002.png?ssl=1
https://github.com/rapid7/metasploit-framework/blob/9379a2af4f7dfd0e1f194a35fbc5d95483a89180/modules/exploits/multi/http/atlassian_confluence_rce_cve_2023_22527.rb
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_003.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_004-scaled.png?ssl=1

5/57

Figure: PCAP showing exploit to run curl and start the downloaded payload

The close timing of these events, coupled with the subsequent use of the original IP
(45.227.254[.]124) as the intruder’s self-hosted AnyDesk server, strongly suggests these
were not coincidental.

Figure: Sysmon log showing child process of tomcat9.exe that started the intrusion

The download of the executable HAHLGiDDb.exe triggered several Suricata alerts, providing
initial possible identification of the payload as either a Cobalt Strike Stager or Metasploit

ETPRO MALWARE Cobalt Strike Stager Payload

ET HUNTING PE EXE Download over raw TCP

ETPRO HUNTING Suspicious Offset PE EXE or DLL Download on Non-Standard Ports

ET MALWARE Possible Metasploit Payload Common Construct Bind_API (from server)

The file HAHLGiDDb.exe was saved to a path which is a suspicious location for executable
files to be saved to or executed from:

C:\Windows\ServiceProfiles\NetworkService\AppData\Local\Temp\

Figure: Malicious exe file saved to NetworkService temp folder

The portable executable file HAHLGiDDb.exe was unusual in that it only imported two
Windows API functions: VirtualAlloc and ExitProcess, and contained only the main entry
point function and one other function.

Reverse engineering the binary using a debugger confirmed that it resolves the Windows
library functions it requires dynamically at runtime, using hashes for obfuscation, and it
closely matches the behavior and code patterns of a Metasploit shellcode loader as

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_005-scaled.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_006-scaled.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_007.png?ssl=1

6/57

described in this blog by Nviso. This sample is different from that in the Nviso blog in that this
sample is 64-bit code that downloads and attempts to inject a Meterpreter DLL into other
processes, and the Nviso blog describes a 32-bit version that spawns a remote cmd shell.

Figure: Disassembled instructions from HAHLGiDDb.exe show patterns of Metasploit loader

Execution

The Metasploit loader, HAHLGiDDb.exe, connected to the same IP address that exploited
the Confluence vulnerability to deliver the payload, 91.191.209[.]46 on TCP port 12385 to
download the next stage payload. The payload, a Portable Executable (PE) file, was not
encrypted and was easy to identify in network traffic.

https://blog.nviso.eu/2021/09/02/anatomy-and-disruption-of-metasploit-shellcode/
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_008.png?ssl=1
https://thedfirreport.com/?p=43853&preview=true#execution
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_009-scaled.png?ssl=1

7/57

Figure: Downloading 2nd stage PE file (starting bytes 4d5a) from 91.191.209.46 port 12385

The PE file that was downloaded over port 12385 was a 64-bit Windows DLL format that had
zero exported functions other than DllMain, which is the function that runs whenever a
process loads the DLL. It is somewhat unusual for a legitimate DLL to have no exported
functions, because the main point of a software library is to provide functions that the
programs calling them can use.

The Metasploit loader saved the next stage payload as a DLL named nbjlop.dll in the same
folder that the Metasploit loader ran from.

Figure: Sysmon File Create log showing nbjlop.dll created by Metasploit loader

The Metasploit loader created a named pipe with the same name as the DLL file without the
extension, \\nbjlop

Figure: Sysmon Event ID 17: pipe creation event

Throughout the intrusion, several new Metasploit loaders were delivered via the Confluence
exploit and executed at different times. In every instance, the same pattern was observed: a
randomly-named DLL file was dropped to disk followed by a pipe event at close to the same
time using a pipe name that was the same as the DLL filename, without the .dll extension.
The events are shown in the table below.

DLL File Path (Sysmon Event ID 11) Pipe Name (Event
ID 17)

C:\Windows\SERVIC~1\NETWOR~1\AppData\Local\Temp\nbjlop.dll \\nbjlop

C:\Windows\SERVIC~1\NETWOR~1\AppData\Local\Temp\npixmw.dll \\npixmw

C:\Windows\SERVIC~1\NETWOR~1\AppData\Local\Temp\cjlodi.dll \\cjlodi

C:\Windows\SERVIC~1\NETWOR~1\AppData\Local\Temp\wucnic.dll \\wucnic

Using Sigma, it is not possible to express a detection query that matches parts of strings
between two types of events. However, many threat detection query languages include a
JOIN query type and string manipulation functions. Consider crafting a threat hunting query
to match DLL file creation events with pipe creation events after removing the extension from

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_010-scaled.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_011.png?ssl=1

8/57

the DLL filename and removing the backslashes from the pipe name. In the investigation of
this case, such a query yielded clean results including only the Metasploit activity, even
though there were many DLL file creation events and many pipe creation events.

Approximately three minutes after the Metasploit loader process started, it downloaded
AnyDesk.exe and saved it to the Atlassian Confluence program directory.

Figure: Sysmon Event ID 11: AnyDesk.exe file created by Metasploit loader

Just over four minutes after the initial Metasploit payload was delivered, the threat actor
again exploited Confluence to deliver another Metasploit loader and Meterpreter, following
the same pattern as above, with the Metasploit EXE and DLL filenames randomized. The
loader name this time was RfHBBgXXYF.exe, and it was downloaded to the same user
profile temp folder as before.

Figure: curl command executed via Confluence exploit to deliver and execute Metasploit
loader

One difference between the first Metasploit process and the second is that on the second
attempt, the Metasploit loader created a cmd.exe process with no command line arguments,
then proceeded to access that process and was granted access 0x1fffff, which means
PROCESS_ALL_ACCESS. The Metasploit loader then created the batch file u1.bat in the
Atlassian\Confluence folder in Program Files. The purpose of u1.bat is described in the
Persistence section below.

Figure: Metasploit loader starting cmd.exe and creating u1.bat

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_012-scaled.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_013-scaled.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_014-scaled.png?ssl=1

9/57

Figure: PROCESS_ALL_ACCESS granted when Metasploit loader accessed cmd.exe

Less than eight minutes after the second Metasploit loader process was created, Confluence
was exploited a third time and another Metasploit loader was delivered from the same IP
address as the first two, this time with the randomized filename ZqYeqEZtohD.exe.

Figure: Three commands from Confluence exploits delivering three Metasploit loaders

Persistence

New User Accounts Created

Less than one second after the Metasploit loader accessed the lsass process, a batch file
named u1.bat was created in the Confluence folder C:\Program
Files\Atlassian\Confluence\u1.bat. This file creation time was retrieved from a live memory
snapshot of the infected system. The purpose of the u1.bat file was to create a new user
account named “noname” with the password “Slepoy_123”, then use WMIC to find an
administrators group, use net.exe (which calls net1.exe) to add the user to the admin group,
then use WMIC to set the user’s password to never expire.

Figure: Contents of the u1.bat file used to create a new user account and make it a local
admin

Sysmon recorded the execution of the commands in this batch file. The local group name
that matched SID ‘S-1-5-32-544’ was the default local “Administrators” group.

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_015-scaled.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_016-scaled.png?ssl=1
https://thedfirreport.com/?p=43853&preview=true#persistence
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_017-scaled.png?ssl=1

10/57

The Security event log recorded the user creation, enabling, modification, and password set
events for user “noname” in event ID 4720, 4722, 4738, and 4724. Although it wasn’t
observed during this intrusion, event ID 4741, which records the creation of computer
accounts, is also essential, as threat actors can interactively use a computer account to log
on and execute commands in the same manner that a user account can be utilized.

AnyDesk Service

Within minutes of the new user account creation, the threat actor was observed dropping an
AnyDesk binary into the Confluence installation directory (C:\Program
Files\Atlassian\Confluence) from the HAHLGiDDb.exe process. Interestingly, the second
Metasploit loader process also downloaded and saved AnyDesk.exe to the same folder a
few minutes later. This suggests that these actions were part of an automation script.

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_018.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_019.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_020.png?ssl=1

11/57

This initial AnyDesk binary was then executed via the command line, also spawned from the
HAHLGiDDb.exe process, to install AnyDesk on the system as a service in the ProgramData
directory:

Sysmon logs captured the creation of the newly installed AnyDesk service

Installation triggered several Sysmon ‘FileCreate’ events as well when dropping new
configuration files in the
‘C:\Windows\SysWOW64\config\systemprofile\AppData\Roaming\AnyDesk\‘ directory

Files Created:

user.conf
ad.trace
system.conf
service.conf

After the installation was completed, several more commands were run to finish the setup,
including a command line to start the service immediately:

CommandLine: anydesk.exe --start-service

The AnyDesk documentation shows how command line arguments can be used to set up
unattended access.

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_021.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_022.png?ssl=1
https://support.anydesk.com/knowledge/command-line-interface-for-windows

12/57

An argument to set the unattended access password for AnyDesk, as well as an echo
command to provide the password “P@ssword1” to the AnyDesk password prompt:

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_023.png?ssl=1

13/57

Figure: AnyDesk Command line to set unattended access password

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_024.png?ssl=1

14/57

Figure: Command line echo to send password “P@ssword1” to AnyDesk unattended
password prompt.

Finally – as a part of the observed tradecraft, the threat actor ran a command to get the
AnyDesk ID of the newly installed system (to be able to reconnect later):

ANYDESK.EXE --GET-ID

This sequence of events to set the AnyDesk unattended password occurred three times
during the intrusion. The first two occurrences were just two minutes apart on day one, and
the last time was on day three. The same password was set each time.

Spider.dll

On the third day of the intrusion, the threat actor, using an AnyDesk session, transferred a
folder named “Attacker” from their host to the Desktop folder of a user on the Confluence
server. A subfolder named “share” inside the “Attacker” folder contained two DLL files named
“spider.dll” and “spider_32.dll”. Many other files were also in this folder.

The process that created the DLLs was explorer.exe. Reverse-engineering this DLL revealed
its purpose. It contains a hard-coded username “Crackenn” and a hard-coded password
“*aaa111Cracke” which are passed to the NetUserAdd Windows API function to add a local
user account, then it adds the newly-created user account to the Administrators local group

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_025.png?ssl=1

15/57

and the Remote Desktop Users local group. This username, password, and functionality
match a report published by SentinelOne about an intrusion that led to BlackBasta
ransomware.

Figure: DllMain function of spider.dll

Note that no evidence was found in the security logs indicating that a user named
“Crackenn” was created, authenticated, or used to run any programs during this incident, nor
was there any evidence of spider.dll being executed using rundll32 or regsvr32.

Privilege Escalation

Initial Exploit

Upon initial access, the threat actor already had obtained NETWORK SERVICE level access
as the Confluence web server (Tomcat) exploited was running under this more limited
privilege:

https://www.sentinelone.com/labs/black-basta-ransomware-attacks-deploy-custom-edr-evasion-tools-tied-to-fin7-threat-actor/
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_026.png?ssl=1
https://thedfirreport.com/?p=43853&preview=true#privilege-escalation

16/57

Metasploit ‘getsystem’

It appears in this case, the threat actor either attempted to getsystem using all methods, or at
the very least attempted several methods that were observed in the logs.

With this initial limited privilege, the threat actor attempted two methods to escalate access.
The first of which observed in the logs was the
‘ELEVATE_TECHNIQUE_SERVICE_NAMEDPIPE2’ method- or Named Pipe
Impersonation (DLL Dropper Variant). This elevation method was observed (as
documented in the execution section) with the creation of a DLL/Named Pipe under the
same name

DLL Dropped: nbjlop.dll
Named Pipe: \nbjlop

Source code confirms that this module will use the ‘cpServiceName’ field to create the DLL
and the Named Pipe fields:

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_027.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_028.png?ssl=1

17/57

This did not work, as the requirements for this to succeed is the initial shell must already be
running under Administrator rights.

The second method observed in the logs was the Token Duplication method. From the
documents, this method only requires the SeDebugPrivilege privilege (which the NETWORK
SERVICE account does have), and iterates through all services to find one running under
SYSTEM, then attempts to use reflective DLL Injection to run the elevator.dll in the memory
of that service. We can see this activity in the logs with several SYSMON process access
events, which stop at the first service accessed running under SYSTEM (lsass.exe):

This also appears to have failed, despite having the correct permissions. According to
Rapid7’s documentation – this method only currently works on x86 systems.

The final method observed, which worked, was the Named Pipe Impersonation (RPCSS
Variant); this was observed with the creation of a second named pipe:

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_029.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_030.png?ssl=1
https://docs.rapid7.com/metasploit/meterpreter-getsystem/#elevate_technique_service_tokendup

18/57

From Rapid7’s documentation:

This technique will open a named pipe on the target, connects to and then impersonates
itself. Due to how LSASS functions if the Meterpreter process is running as NT
AUTHORITY\NETWORK SERVICE, this can yield the necessary privileges to open the
RPCSS process which itself contains handles to NT AUTHORITY\SYSTEM tokens. Using
the access to the RPCSS process, one of these tokens is selected and duplicated.

Shortly after the creation of this named pipe, the Metasploit payload (HAHLGiDDb.exe) was
observed creating two cmd.exe sub-processes running under the SYSTEM privilege
indicating successful escalation was obtained.

On day three of the intrusion, the threat actor used AnyDesk to drop Mimikatz and run it, as
described later in the Credential Access section. Within 15 minutes of execution of Mimikatz,
the threat actor was able to create a new interactive AnyDesk session session running under
an existing domain administrator level account, potentially obtained from the Mimikatz output
providing the final escalation required.

Zerologon

The threat actor made an unsuccessful attempt to escalate privileges by exploiting the
Zerologon vulnerability (CVE-2020-1472). They utilized a tool named zero.exe, directing it
against several domain controllers. The objective was to leverage the critical flaw in the
Netlogon Remote Protocol to gain domain administrator privileges. The executed
commands, aimed to verify successful exploitation by running the whoami command in an
elevated context. Despite these efforts against the domain controllers, the Zerologon
exploitation attempt was unsuccessful.

zero.exe [TARGET_DC_NETBIOS_NAME] [TARGET_DC_MACHINE_ACCOUNT$] administrator -c
"whoami"

Suricata alerts fired during these attempts. If a successful exploit occurs then a total of three
ET EXPLOIT rules will fire, in each instance only the first two of the three were recorded
confirming failed exploit attempts.

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_031.png?ssl=1

19/57

Defense Evasion

The Metasploit loader process then accessed several other processes that were already
running, including tomcat9.exe, conhost.exe, mysqld.exe, java.exe, and finally svchost.exe,
as evidenced by Sysmon event ID 10 logs. The granted access for each event was 0x1f3fff,
which indicates that full access was granted to the process. That access flag is used by
many Sigma rules as an indication of suspicious process access preceding injection.

Figure: Sysmon log: Metasploit loader accessing a svchost.exe process with full access
0x1f3fff

Near the end of the intrusion, the threat actor executed Defender Control, an executable they
had previously downloaded to the Confluence server as “DC.exe”

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_032.png?ssl=1
https://thedfirreport.com/?p=43853&preview=true#defense-evasion
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_033-scaled.png?ssl=1

20/57

This tool was used to stop Windows Defender Antivirus Service by setting the registry value
to 1 at the following key:

HKLM\SOFTWARE\Policies\Microsoft\Windows Defender\DisableAntiSpyware

Following their initial activities, the threat actor took steps to ensure Remote Desktop
Protocol (RDP) access to the compromised system. They began by querying the registry to
identify the configured RDP port:

reg query "HKLM\System\CurrentControlSet\Control\Terminal Server\WinStations\RDP-Tcp"
/v PortNumber

Subsequently, they modified a key registry value to explicitly enable RDP connections by
setting fDenyTSConnections to 0 :

reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server" /v
fDenyTSConnections /t REG_DWORD /d 0

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_034.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_035.png?ssl=1

21/57

To guarantee network connectivity, the actor then adjusted Windows Firewall settings using
netsh advfirewall commands. This involved enabling the predefined “Remote Desktop” group
of rules and adding a new specific inbound rule named “allow RDP” for TCP port 3389:

netsh advfirewall firewall set rule group="remote desktop" new enable=yes

netsh advfirewall firewall add rule name="allow RDP" dir=in protocol=TCP
localport=3389 action=allow

These actions collectively aimed to establish reliable and unimpeded RDP access for the
threat actor.

Credential Access

Just 30 seconds after the first Metasploit loader process started running, it created a remote
thread in the Local Security Authority Subsystem (lsass.exe) process, detected in Sysmon
event ID 8.

Figure: Sysmon Event ID 8: Remote Thread created in lsass.exe

Several SIGMA rules detected this activity:

Potential Shellcode Injection -
proc_access_win_susp_potential_shellcode_injection.yml

Potentially Suspicious GrantedAccess Flags On LSASS -
proc_access_win_lsass_susp_access_flag.yml

LSASS Access From Program In Potentially Suspicious Folder -
proc_access_win_lsass_susp_source_process.yml

https://thedfirreport.com/?p=43853&preview=true#credential-access
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_036.png?ssl=1

22/57

Access to Domain User Credentials

Once system privilege was obtained, AnyDesk was installed to obtain remote command and
control. Upon connecting to an AnyDesk session on day three of the intrusion, the threat
actor was able to obtain interactive access to a logged-on domain user account. Access to
this user’s profile was used to drop additional tools into the Desktop folder and start the
enumeration activity.

The threat actor used the AnyDesk session to drop mimikatz.exe (both 32-bit and 64-bit
versions) and its associated drivers and library files on the Confluence server, as the
SYSTEM user:

mimikatz.exe
mimidrv.sys
mimilove.exe
mimilib.dll

Figure: Sysmon FileCreate events showing Mimikatz files being created on the beachhead
server

Along with these files, a simple batch script named !start.cmd which detects the OS
architecture and runs the appropriate version of Mimikatz with command line arguments was
also dropped.

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_037-scaled.png?ssl=1

23/57

Figure: Contents of !start.cmd batch script

Just 30 seconds after dropping these files, the threat actor used the batch script to execute
the 64-bit version with the following command line arguments:

.\mimikatz\x64\mimikatz.exe "privilege::debug" "log .\!logs\Result.txt"
"sekurlsa::logonPasswords" "token::elevate" "lsadump::sam" exit

The mimikatz.exe process accessed the Local Security Authority Subsystem Service
(lsass.exe) to access credentials, and was granted access.

Figure: Process Access event ID 10 showing mimikatz.exe accessing lsass.exe

The access granted flags 0x1010 translates to:

PROCESS_QUERY_LIMITED_INFORMATION (0x1000)
PROCESS_VM_READ (0x0010)

About 20 seconds after the 64-bit version of mimikatz.exe ran, the 32-bit version executed
from the same folder, because the !start.cmd batch file runs both 64-bit and 32-bit versions
when a 64-bit OS is detected. Then, about 24 minutes later, the 64-bit version of

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_038-scaled.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_039-scaled.png?ssl=1

24/57

mimikatz.exe was run again from a different user account (a local administrator), followed by
the 32-bit version 20 seconds later.

In all four executions of mimikatz, a Sysmon ProcessAccess event ID 10 was generated
targeting lsass.exe with the granted access flags 0x1010.

Each time after running mimikatz, the threat actor used notepad.exe one or more times to
view the contents of the “!logs\Result.txt” file containing the credential hashes dumped by
mimikatz.

Figure: Notepad was used to view the Mimikatz output file after each execution

Further activity potentially related to credential access involved ProcessHacker, which was
installed and run on a backup server 12 minutes after Mimikatz execution, and again on a file
server 15 minutes thereafter. Sysmon logs (event ID 10) showed ProcessHacker.exe
accessing lsass.exe as SYSTEM and being granted 0x1010 access on both occasions.
Although this level of access is typical for tools attempting to dump credentials from LSASS,
we did not observe corresponding file creation events to confirm an LSASS dump via
ProcessHacker.

Shortly after running Mimikatz, the threat actor ran a program named secretsdump.exe on
the compromised Confluence server, providing NTLM hashes as authentication for user
accounts. Most likely, the NTLM hashes came from the output of Mimikatz.

C:\Windows\system32\cmd.exe secretsdump.exe -hashes :[HASH REDACTED] [USERNAME
REDACTED]@[IP ADDRESS REDACTED]

In a timespan of less than two minutes, the threat actor ran secretsdump.exe eight times,
using combinations of two different usernames, two different IP addresses, and two different
hashes.

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_040-scaled.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_041-scaled.png?ssl=1

25/57

Analysis of the secretsdump.exe file revealed it was a Python 2.7 script built into a Windows
Portable Executable using PyInstaller. Using pyinstxtractor and uncompyle6, the embedded
Python script secretsdump[.]py was extracted, and found to be the secretsdump.py script
from the Impacket suite of tools.

Figure: Python script extracted from secretsdump.exe and decompiled

According to the comments in the latest secretsdump[.]py file on GitHub, the purpose of the
script is to dump hashes from a remote machine without executing an agent on the remote
machine:

https://github.com/fortra/impacket/blob/master/examples/secretsdump.py
https://github.com/fortra/impacket/tree/master
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_042.png?ssl=1

26/57

Description:

Performs various techniques to dump hashes from the

remote machine without executing any agent there.

For SAM and LSA Secrets (including cached creds)

we try to read as much as we can from the registry

and then we save the hives in the target system

(%SYSTEMROOT%\\Temp dir) and read the rest of the

data from there.

For NTDS.dit we either:

a. Get the domain users list and get its hashes

and Kerberos keys using [MS-DRDS] DRSGetNCChanges()

call, replicating just the attributes we need.

b. Extract NTDS.dit via vssadmin executed with the

smbexec approach.

It's copied on the temp dir and parsed remotely.

#

The script initiates the services required for its working

if they are not available (e.g. Remote Registry, even if it is

disabled). After the work is done, things are restored to the

original state.

The command-line arguments handled by the version of the secretsdump[.]py that was
embedded in the secretsdump.exe file are shown in the screenshot below. Even if the
executable file had not so obviously been named secretsdump.exe, threat hunting or writing
detections for the unique command line arguments used by common post-exploitation tools
can be a powerful technique to detect malicious activity. The suite of tools in Impacket have
been observed in many intrusions. Red Canary published a useful blog on detection of
Impacket tools.

Another artifact produced by secretsdump.exe was a file named starting with
“sessionresume_” followed by random characters, and no file extension:

https://redcanary.com/threat-detection-report/threats/impacket/
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_043-scaled.png?ssl=1

27/57

This artifact filename pattern is found in the Impacket secretsdump[.]py source code, which
shows that the filename will always start with “sessionresume_” and end in 8 random ASCII
letters:

Discovery

Several discovery methods were observed in use throughout the attack chain to assist the
threat actor in enumerating information about the environment. Many of the discovery
commands were issued as a direct result of the initial Confluence exploit, originating from the
Tomcat process itself. These commands included running whoami, as well as directory
listings of the host running the Confluence application:

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_044-scaled.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_045.png?ssl=1
https://thedfirreport.com/?p=43853&preview=true#discovery

28/57

Figure: Web server sub-processes spawned from exploitation.

Account Discovery Using DIR, WHOAMI, and NET

On the second day of the intrusion, Confluence was exploited multiple times over a roughly
twenty-minute period from the IP address 109.160.16.68. No link was found from this IP to
the other activity detailed so far in the report leading us to assess this was likely a separate
threat actor.The initial exploit attempts from this IP appeared designed to run the whoami
command, likely to ascertain the Tomcat web server’s privileges. Interestingly, a
typographical error was noted (“cmd.exe /c whaomi”), hinting at the possibility of manual

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_046.png?ssl=1

29/57

input, though the direct attribution of this specific activity to the primary threat actor is
uncertain. This was followed by several commands used to perform directory listings under
the ‘c:\Users\’ path to identify valid account names:

Figure: PCAP of Confluence Exploit using DIR command to list user directories

Figure: Full listing of commands issued during a twenty-minute span of Discovery
commands, including the “whaomi” typo

During this process, the threat actor also used the net.exe command to list members of the
local ‘Administrators’ group, presumably to determine if any of the discovered users would be
directly listed.

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_047.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_048.png?ssl=1

30/57

There were two other exploits of Confluence to run “whoami” also on day two, from these two
IP addresses: 185.228.19[.]244, and 185.220.101[.]185. Because there were no follow-up
commands from either of these IP addresses beyond the initial “whoami”, it is not possible to
tell whether this activity was discovery related to the same threat actor or if it was random
vulnerability scanning.

NetScan

On the third day of the intrusion – the threat actor dropped netscan in a users Desktop folder
on the beachhead while connected to an interactive session via AnyDesk. Shortly after the
file was created, the threat actor then initiated a scan of the local subnet, scanning ports:

88/tcp (kerberos)
137/tcp (nbns)
445/tcp (smb)
3389/tcp (rdp)
6160/tcp (veeam agent)

Additionally, during this scan, netscan was configured to check SMB access (read/write) on
any network shares discovered. This generated a Security log event 5145, with the tell-tale
netscan file ‘delete[.]me’ being created, and tripped a DFIR Report Sigma rule ‘NetScan
Share Enumeration Write Access Check’:

This process was repeated later in the same day by the threat actor once a ‘Domain Admin’
level account was acquired using a similar pattern (netscan being dropped to the desktop,
same scanning profile and same targets).

RPCDUMP (PrintNightmare Vulnerability Discovery)

On the third day of the intrusion, the threat actor attempted to enumerate RCP endpoints
available on two IP addresses, both associated with Domain Controller systems, using a tool
named rpcdump.exe, which is a component of the impacket tool designed to map DCE/RPC

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_049.png?ssl=1
https://github.com/fortra/impacket/blob/master/examples/rpcdump.py

31/57

endpoints compiled for Windows. In this particular case, the rpcdump.exe was automated
with a batch script, combined to look for specific output (as indicated by the findstr /C:”MS-
RPRN” /C:”MS-PAR” string) that could show if either of the two RPC endpoints is available
on the target systems:

MS-RPRN – The Print System Remote Protocol
MS-PAR – The Print System Asynchronous Remote Protocol

Figure: CheckVuln.bat Script Contents

Because the systems targeted with this script were observed to be Domain Controllers, the
threat actor was likely looking for systems vulnerable to the PrintNightmare (CVE-2021-
34527) vulnerability.

Figure: Process Tree Created when CheckVuln.bat was run

An analysis of the DCE/RPC Lookup response from the DC indicated that neither of these
endpoints seemed to be active among the 473 returned entries.

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_050.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_051.png?ssl=1

32/57

Figure: DCE/RCP Endpoint Mapper Lookup Response from Domain Controller

Lateral Movement

The threat actor heavily used wmiexec to run commands remotely on a domain controller
from the Confluence server initially exploited. All the commands on the domain controller
were child processes of wmiprvse.exe.

WMIEXEC

Shortly after executing mimikatz and testing the credentials with secretsdump.exe, the threat
actor dropped a secondary tool (wmiexec.exe) from the Explorer process (from AnyDesk
copy/paste session capability which supports both file and text) – this is confirmed in the
ad.trace file located in the user directory
(c:\users\%USERNAME%\AppData\Roaming\AnyDesk\ad.trace). For each tool/file transfer
event initiated via the copy/paste functionality in AnyDesk, there are a set of corresponding
logs that indicate a file transfer has been initiated from the threat actor’s machine to the
victim machine:

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_052.png?ssl=1
https://thedfirreport.com/?p=43853&preview=true#lateral-movement
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_053.png?ssl=1

33/57

This corresponds with a sysmon ‘FileCreate’ event type for the creation of the wmiexec.exe
tool:

Initially, the threat actor issued two commands to test hashes using a Pass-the-Hash
technique obtained against two domain controllers:

After the threat actor obtained access to an account with domain administrator rights, the
wmiexec.exe command was slightly altered to create an interactive command prompt on the
remote domain controller:

C:\Windows\system32\cmd.exe wmiexec.exe :NTLM_HASH domain_admind@dc_ip

On the domain controller – this interactive command prompt was used to issue several
commands, which included listing current user (whoami), and eventually adding a new user
(NONAME) to the domain (and to several privileged groups):

C:\WINDOWS\SYSTEM32\NET1 USER NONAME SLEPOY_123 /DOMAIN /ADD

C:\WINDOWS\SYSTEM32\NET1 GROUP "DOMAIN ADMINS" NONAME /DOMAIN /ADD

C:\WINDOWS\SYSTEM32\NET1 GROUP "ENTERPRISE ADMINS" NONAME /DOMAIN /ADD

These wmiexec commands were observed on the remote side (domain controller) as a type
of redirection command to the local admin share. For example, when running the ‘whoami’
command, the command was redirected to a local file created in the ADMIN$ directory:

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_054.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_055.png?ssl=1

34/57

There was a corresponding “FileCreate” event in the sysmon logs, which matched the
redirect file name that was created (file name was the epoch timestamp for when the
command was issued):

On the remote target side (domain controller) – several existing SIGMA rules detected this
activity:

proc_creation_win_wmiprvse_spawning_process.yml

proc_creation_win_cmd_redirect.yml

proc_creation_win_hktl_impacket_lateral_movement.yml

proc_creation_win_susp_redirect_local_admin_share.yml

Create Share/Enable SMBv2

From the beachhead – the threat actor uploaded a tool set that included several exploits as
well as batch scripts to automate running these tools:

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_056.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_057.png?ssl=1

35/57

In order to make these tools accessible to other targets on the network, one of these batch
scripts automated setting up an SMB share on the beachhead. This script created a local
share (named ‘share’), set permissions to enable/ensure access, and rebooted the machine:

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_058.png?ssl=1

36/57

Windows Security Event ID 5142 can be used to identify the creation of new network shares:

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_059.png?ssl=1

37/57

Shortly after the execution of the batch script, the threat actor was observed restarting the
system to ensure all the changes took effect:

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_060.png?ssl=1

38/57

Additionally, several SIGMA rules tripped when the batch script was run that can be useful in
detecting this activity:

proc_creation_win_net_share_unmount.yml (deletion of existing share)

proc_creation_win_susp_file_permission_modifications.yml (creation of share)

proc_creation_win_net_start_service.yml (Starting LanManServer and LanManWorkstation)

Remote Desktop Protocol

After the threat actor obtained a domain account with administrative privilege, they were
observed using RDP to move laterally to a file server as well as a backup server.

Of note, in at least one instance, the threat actor used the discovery mapping conducted
from the Netscan discovery tool to launch the RDP session. This is GUI feature offered in
Netscan that allows the user to choose options on a discovered host and launch any number
of pre-configured commands:

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_061.png?ssl=1

39/57

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_062.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_063.png?ssl=1

40/57

This can be observed on the beachhead side in process creation events – Security Event
Logs (event ID 4688) or Sysmon Event Logs (event ID 1) – when netscan.exe is observed
spawning a sub-process of mstsc when the threat actor clicked the “Remote Desktop” option
and launched a RDP session with the backup server:

SIGMA rule to detect mstsc.exe being spawned by netscan.exe

Command and Control

Metasploit and Meterpreter

Metasploit was used to exploit the Confluence server and deliver a Meterpreter executable
payload via curl, which was then immediately executed. This was repeated three times
during the intrusion. Each time, the executable payload was downloaded from IP address
91.191.209[.]46, and the Meterpreter payload connected to the same IP address on port
12385. This IP address appears on many threat feeds including Open Threat Exchange
associated with vulnerability scanning and RDP scanning.

The client (Meterpreter running on the victim) started many of its connections to the server
by sending a consistent pattern of 27 bytes, exactly the same each time, then one byte that
was different, then 4 bytes that were consistent each time the client sent a packet to the
server. This is illustrated in the screenshot below. The consistent bytes are outlined in a red
box and the byte that was different each time is outlined in a blue box.

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_064.png?ssl=1
https://thedfirreport.com/?p=43853&preview=true#command-and-control

41/57

Figure: Screenshot from Wireshark showing client communication (in red shading) and
server replies (in blue shading) between the victim Confluence host and the Metasploit
server 91.191.209[.]46 on port 12385

The network communication with the Metasploit server triggered the following Suricata
signature from the Emerging Threats ruleset (sid 2025644):

ET MALWARE Possible Metasploit Payload Common Construct Bind_API (from server)

The Command and Control traffic to the Metasploit server used raw TCP sockets, not HTTP
or other common protocols. The connections did not last very long, only about 13 minutes
between Confluence exploitation and closing the Metasploit C2 connection, and the threat
actor appeared to favor using Metasploit just to run an initial set of commands, and to deliver
AnyDesk, then continued most of the intrusion activity over AnyDesk.

AnyDesk

AnyDesk software can be used with either Cloud servers, or “On-Prem” (self-hosted)
servers. The threat actor hosted their own On-Prem AnyDesk server at IP address
45.227.254[.]124 (port 443), which was the same IP address that exploited the Confluence

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_065.png?ssl=1

42/57

vulnerability to run “whoami” 20 minutes before the Metasploit payload was delivered using
the same vulnerability.

Figure: AnyDesk Certificate Exchange with Threat Actor’s AnyDesk server 45.227.254.124

Neither Censys nor Shodan had any history of scan data for this IP address. Neither
VirusTotal nor AlienVault Open Threat Exchange had any reporting of threat activity
associated with this IP. However, scan results from fofa.info showed that less than one
month after the intrusion activity, this host was presenting a self-signed certificate on port
3389 with certificate serial number 104770999709883145161872575332968665437 and
common name “D-422”

During the intrusion, the threat actor utilized AnyDesk’s Direct Connection feature to
establish a connection to a threat actor’s controlled server at IP address 45.227.254.124,
bypassing AnyDesk’s relay servers. This direct connection method suggests an attempt to
evade detection by network security tools that might otherwise monitor traffic routed through
AnyDesk’s central infrastructure. Connecting directly to an external server under their control
allows the threat actor to exfiltrate data or control the compromised system more discreetly.

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_066.png?ssl=1
http://fofa.info/
https://support.anydesk.com/knowledge/settings

43/57

Exfiltration

In an unusual turn for a ransomware incident, there was no extensive file exfiltration before
the ransomware was deployed to encrypt files. While some individual files might have been
taken through AnyDesk, there were no large archives created, nor was there a significant
data transfer to external IP addresses, as indicated by netflow records. A total of just under
70 MB was exchanged in both directions between the threat actor’s AnyDesk server and the
compromised network, including all remote desktop screen images, as well as the
ransomware and other tools sent to the affected systems.

Impact

On the third day of the intrusion, about 62 hours after the initial exploit of the Confluence
server, the threat actor used an AnyDesk session to drop a file named ELPACO-team.exe on
the Confluence server, but did not immediately execute it. Less than one minute later, the
threat actor used RDP to connect from the Confluence server to a backup server, using the
“noname” user account that they had previously created using the “u1.bat” script, and using
the RDP session, they copied the ELPACO-team.exe file to the backup server in the folder
D:\Admin\, then executed it on the backup server.

During sandbox execution, we found that the ransomware binary executes with a graphical
user interface as depicted in the screenshots below:

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_067.png?ssl=1
https://thedfirreport.com/?p=43853&preview=true#exfiltration
https://thedfirreport.com/?p=43853&preview=true#impact

44/57

Figure: ELPACO-team ransomware GUI interface 1

Figure: ELPACO-team ransomware GUI interface 2

The ELPACO-team.exe file was a self-extracting 7-zip SFX file, which expanded the
following files, all in the path “C:\Users\noname\AppData\Local\Temp\5\7ZipSfx.000\”. The
7za.exe file was created and executed. The 7za.exe file then created the rest of the files.

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_068-scaled.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_069-scaled.png?ssl=1

45/57

7za.exe
Everything.exe
Everything32.dll
DC.exe
ELPACO-team.exe

gui35.exe
gui40.exe
xdel.exe

This pattern of file creation is consistent with a ransomware analysis blog published by
Cyfirma in November 2024. The blog describes ELPACO-team ransomware as a variant of
Mimic ransomware.

The ELPACO-team.exe file in the 7ZipSfx.000 folder was executed, and it created a new
folder:

C:\Users\noname\AppData\Local\F6A3737E-E3B0-8956-8261-0121C68105F3\

Then, it copied all the files listed above to the new folder, while also creating new files in that
folder:

svhostss.exe
Everything.ini
Everything2.ini
Everything32.dll
Everything64.dll
global_options.ini

The svhostss.exe file hash matched the hash of the ELPACO-team.exe file that was
extracted to the C:\Users\noname\AppData\Local\F6A3737E-E3B0-8956-8261-
0121C68105F3\ by 7za.exe, showing that it was just a renamed copy of the same file. A
second version of the ransomware binary was also observed with a different hash.

Filename SHA256

svhostss.exe 0b83f2667abff814bb724808c404396e6ad417591165f1762a8e99ec108d4996

ELPACO-
team.exe

0b83f2667abff814bb724808c404396e6ad417591165f1762a8e99ec108d4996

ELPACO-
team.exe

a710ed9e008326b981ff0fadb1c75d89deca2b52451d4677a8fd808b4ac0649b

The Everything64.dll file was extracted using the password “7595128543001923103”

https://thedfirreport.com/cdn-cgi/l/email-protection
https://www.cyfirma.com/research/elpaco-team-ransomware-a-new-variant-of-the-mimic-ransomware-family/

46/57

After extracting the files, the “svhostss.exe” file was executed as a child process of ELPACO-
team.exe

The svhostss.exe process then executed itself as a child process several more times, about
45 seconds later, with command line arguments “-e u1” and “-e u2” and “-e watch -pid 5544
-!”

Persistence was established by setting the value of the registry Windows Run key:
“HKLM\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run\\svhostss”

to the path of the svhostss.exe file:

“C:\\Users\\noname\\AppData\\Local\\F6A3737E-E3B0-8956-8261-
0121C68105F3\\svhostss.exe\”

The ransomware process created two files in the C:\temp\ folder on every system it ran on,
one called “MIMIC_LOG.txt” and the other named “session.tmp”

The svhostss.exe ransomware process accessed other processes over 12000 times in less
than 10 minutes. Most of the process access events targeted lsass.exe (granted access
0x40) and svchost.exe (granted access 0x40 and 0x121411)

Process access granted 0x40 means PROCESS_DUP_HANDLE which is required to call
the DuplicateHandle Windows API.

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_070.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_071.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_072.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_073.png?ssl=1

47/57

Process access granted 0x121411 means the combination of:

PROCESS_QUERY_INFORMATION
PROCESS_VM_READ
PROCESS_TERMINATE
PROCESS_QUERY_LIMITED_INFORMATION
SYNCHRONIZE
READ_CONTROL

Analysis of command-line activity reveals the threat actor’s use of specific PowerShell
cmdlets for discovering and interacting with virtual machines. They initiated powershell.exe
with the -ExecutionPolicy Bypass flag to execute sequences such as Get-VM for VM
enumeration, followed by Get-VHD to identify associated virtual disk files. The pipeline
further extended to Get-DiskImage -ImagePath $_.Path and Dismount-DiskImage,
suggesting a process of accessing and then unlinking VHD contents. Commands to halt
virtual machine operations (Get-VM | Stop-VM) were also noted.

Figure: Virtual machine discovery commands

After encrypting, files were appended with the .ELPACO-team extension.

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_074.png?ssl=1

48/57

Following execution on the backup server, the threat actor was observed opening and
presumably checking the ransom note, C:\Decryption_INFO.txt, using Notepad.

"%WINDIR%\system32\NOTEPAD.EXE" C:\Decryption_INFO.txt

The threat actor then repeated this process on a key file server, including preliminary steps
such as disabling security tools with DefenderControl and installing Process Hacker before
running the ELPACO-team.exe payload. While these two servers were the primary targets for
ransomware execution and file encryption, further impact was observed through limited SMB
share scanning and which affected a domain controller. To cover their tracks, the threat actor
performed some file deletions on the beachhead host before ceasing their activity.

Timeline

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_075.png?ssl=1
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_076.png?ssl=1
https://thedfirreport.com/?p=43853&preview=true#timeline

49/57

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_079_2.png?ssl=1

50/57

Diamond Model

Indicators

Network

45.227.254.124

91.191.209.46

File

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_079_2.png?ssl=1
https://thedfirreport.com/?p=43853&preview=true#diamond-model
https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_078.png?ssl=1
https://thedfirreport.com/?p=43853&preview=true#indicators

51/57

elpaco-team.exe

be8f00c11010e4e6078d383026833c07

32f9259285bb3425b67633d73bc74b93859f40a7

a710ed9e008326b981ff0fadb1c75d89deca2b52451d4677a8fd808b4ac0649b

logs_delete.cmd

35893c46af1af2089498b062379c039f

238424b26da6e53738aa28a46ba007a195ad608c

36d3b20e9380aaaac9151280b4ac3e047a0871efbb158f04344946ff67176a48

runassystem.exe

3f7d6e5a541aad1a52beb823f1576f6a

69519da0edeb9ad6ed739982a05b638d3fee20fb

085ad59bb8d32981ea590a7884da55d4b0a3f5e89a9632530c0c8ef2f379e471

defendercontrol.exe

0a50081a6cd37aea0945c91de91c5d97

755309c6d9fa4cd13b6c867cde01cc1e0d415d00

6606d759667fbdfaa46241db7ffb4839d2c47b88a20120446f41e916cad77d0b

defendercontrol.ini

c9bc430ea5bd0289cf3a6acdb69efac4

79d3fbde198ffa575904998b92285e3815a860c2

6e5a6629b5ec2eea276fe93553d31f3d23885b214db0a4c2c9201f65180d767f

fast.ex_

127fe6658efb06e77b674fdb9db7d6d5

4790bde7c2d233c07165caaab0f5b7d69a60c950

d5746d9f3284dadf60180f7f7332a08895c609520e0c2327918f259d182cbaf6

ns v.2.exe

597de376b1f80c06d501415dd973dcec

629c9649ced38fd815124221b80c9d9c59a85e74

f47e3555461472f23ab4766e4d5b6f6fd260e335a6abc31b860e569a720a5446

processhacker-2.39-setup.exe

54daad58cce5003bee58b28a4f465f49

162b08b0b11827cc024e6b2eed5887ec86339baa

28042dd4a92a0033b8f1d419b9e989c5b8e32d1d2d881f5c8251d58ce35b9063

!start.cmd

92fd70f19771360bd820091025107382

dda90a452cc1540657606e5d40d304b1e58da751

6b93e585479a3c5b9a8edbe2b11a8371cb028e8b196acb1c16a425e8d8530cd7

hahlgiddb.exe

77ef2cad0de20482a6bb6cfcdc5d94d1

f46fa1fbab35f0d697ea896e81c4504de0487e57

abbe5619e1d7a08f807b57d0949a7f97108a546a415778f25ed35f31ee2cd2f5

secretsdump.exe

96ec8798bba011d5be952e0e6398795d

52/57

af7c73c47c62d70c546b62c8e1cc707841ec10e3

c3405d9c9d593d75d773c0615254e69d0362954384058ee970a3ec0944519c37

u1.bat

9a875116622272a7f0fb32ce6cc12040

02c264691764f3c7ab9492dcb443e52b0ee66229

15348e1401fe18b83e30a7e7f6b4de40b9981a0e133c22958324a89c188f2c49

wmiexec.exe

47e001253af2003985f15282cdc90a1c

6ee6664df9bfb47d97090492b6cde68bf056a42a

14f0c4ce32821a7d25ea5e016ea26067d6615e3336c3baa854ea37a290a462a8

ypnppsft.exe

e703ffdf065094f30b8b9c107a64736b

7314f85595ab4496abe02c48b476f57cb6b96804

9b1df0db16b3b73fe3549856fb4a74414faecffabee0d001865e05b93dda14ec

checkvuln.bat

1b1e95ea1d26da394688f4c8883721d1

9e22f5e394ffd8df94b1601fe73f2ae14df731ba

2c656109db6d2059c41a50e623ceb5e656ff764c44b1e1dbf41131f0206f8238

create share runasadministrator2.bat / step1-runasadmin.bat / create-share-
runasadmin.bat

96fc8c743f6ba38a69bf866b7fa9e4d1

5bef86615c8bd715c794505127a6d5245bba9206

51f2d5fba3d02cba1c99cf2dfd9968b98d0047f501b54b9531e7ad2719706e47

lpe-exploit-runasuser.bat

3e872ca0ac6261b85dd9524a8f3a83db

b8551ef02737bc7801d2077d7d8aca168eb79b0d

c7440e621d1c5e90ca4963a4b3b52d27bac05a44248ca88dd51510489d1171bb

rce-exploit-runasuser.bat

09ba9214257381231934a0115d7af8be

89e3247d2940d78ab13f060761f0c79afa806f39

22436fe549d791caa3007b567d28d51c8c75869519019c40564af4de53490fa2

step2-runasuser.bat

6fbf6350c52d2f2e6f61530d05148562

1217a97009eb86249e6c8010d3024f050f62c40d

3e92ca5b4069eba89d9fcfd7885924282fdf6ca26d0ff8d0502973d9c9bc1fef

rpcdump.exe

91625f7f5d590534949ebe08cc728380

bf1b0ab5a2c49bde5b5dbe828df3e69af5d724c2

3c300726a6cdd8a39230f0775ea726c2d42838ac7ff53bfdd7c58d28df4182d5

sharpprintnightmare.exe

96a1e516cef1ff4791d8785886d56cce

241f9d2495b0b437813d8cf31fe4e4de8be203ec

53/57

9875d1947b8d18974c938721c273d9322fc9af36be96e0ec696daac2929bb802

sharpprintnightmare_nf3.exe

ee8d08b380bf3d3fe9961a0ab428549f

8900b1ef864eb390bf99b801d78a0b8dbd5d90b6

ff547a7803cd989f9f09a22323ec3f7079266b9a20a07f2c6f353547318ff172

spn.exe

44c031e3c922e711f7e3784f6d90b10f

5f13d476e9fabdf2ac6f805a98d62f3027c473c2

9e18fcc595d4e158ac7aa9250e45145445b31018b35d6ed91239da2b931b5c37

spn_nf3.exe

53e2e8ce119e2561bb6065b1a42f1085

d01f72d0a4609be76a83ac76a760485d29be854b

e5f985b5a1f4f351616516553295e1224a02219825c35e3c64b55ecdc8a0d699

spider.dll

30a6cd2673ef5b2cb18f142780a5b4a3

1e0ec6994400413c7899cd5c59bdbd6397dea7b5

90cdcf54bbaeb9c5c4afc9b74b48b13e293746ee8858c033fc9d365fd4074018

spider_32.dll

f635d1c916a7c56678f08d1d998e7ce4

35ff55bcf493e1b936dc6e978a981ee2a75543a1

4f4864a1d5f19a3c5552d80483526f3413497835549dce8c61fef116b666fa09

netscan.exe

e7aa5608c81ba4fcd8d166501b90fc06

5c714fda5b78726541301672a44eaf886728f88c

5748bfb17e662fb6d197886a69df47f1071052c3381eb1c609a2bc5dba8c2992

netscan.exe

a75de4c4fd88d94642ad30310c641252

f7e11585ee968ad256be5a2e4c43a73c07034759

6492e765829974c4a636bff0e305261b18eea92fcb1df6fff69890366efc972d

Detections

Network

https://thedfirreport.com/?p=43853&preview=true#detections

54/57

SID 2026033: ET WEB_SPECIFIC_APPS Apache Struts java.lang inbound OGNL injection
remote code execution attempt

SID 2025644: ET MALWARE Possible Metasploit Payload Common Construct Bind_API (from
server)

SID 2027762: ET USER_AGENTS AnyDesk Remote Desktop Software User-Agent

SID 2025701: ET POLICY SMB2 NT Create AndX Request For an Executable File

SID 2025705: ET POLICY SMB2 NT Create AndX Request For a Powershell .ps1 File

SID 2027204: ET HUNTING Possible Powershell .ps1 Script Use Over SMB

SID 2025699: ET POLICY SMB Executable File Transfer

SID 2050543: ET EXPLOIT Atlassian Confluence RCE Attempt Observed (CVE-2023-22527) M2

SID 2851878: ETPRO MALWARE Cobalt Strike Stager Payload

SID 2035480: ET HUNTING PE EXE Download over raw TCP

SID 2844488: ETPRO HUNTING Suspicious Offset PE EXE or DLL Download on Non-Standard
Ports

SID 2025644: ET MALWARE Possible Metasploit Payload Common Construct Bind_API (from
server)

SID 2030870: ET EXPLOIT Possible Zerologon Phase 1/3 - NetrServerReqChallenge with
0x00 Client Challenge (CVE-2020-1472)

SID 2035258: ET EXPLOIT Zerologon Phase 2/3 - NetrServerAuthenticate2 Request with
0x00 Client Challenge and Sign and Seal Disabled (CVE-2020-1472) M1

Sigma

Search rules on detection.fyi or sigmasearchengine.com

5cb299fc-5fb1-4d07-b989-0644c68b6043 : Suspicious File Download From IP Via Curl.EXE

1ddaa9a4-eb0b-4398-a9fe-7b018f9e23db : CVE-2023-22518 Exploitation Attempt -
Suspicious Confluence Child Process (Windows)

0eb46774-f1ab-4a74-8238-1155855f2263 : Disable Windows Defender Functionalities Via
Registry Keys

6e2a900a-ced9-4e4a-a9c2-13e706f9518a : HackTool - Potential Remote Credential Dumping
Activity Via CrackMapExec Or Impacket-Secretsdump

10c14723-61c7-4c75-92ca-9af245723ad2 : HackTool - Potential Impacket Lateral Movement
Activity

962fe167-e48d-4fd6-9974-11e5b9a5d6d1 : LSASS Access From Non System Account

06d71506-7beb-4f22-8888-e2e5e2ca7fd8 : Mimikatz Use

4627c6ae-6899-46e2-aa0c-6ebcb1becd19 : HackTool - Impacket Tools Execution

8202070f-edeb-4d31-a010-a26c72ac5600 : Suspicious Process By Web Server Process

ca387a8e-1c84-4da3-9993-028b45342d30 : PUA - SoftPerfect Netscan Execution

DFIR Public Rules Repo:

03f4ca17-de95-428d-a75a-4ee78b047256 : HackTool - Impacket File Indicators

DFIR Private Rules:

62095f03-ba2a-45d7-bce9-204dcb574c0c : Detect Suspicious Curl Download and Execution

d8bbf664-f1f0-4eed-adec-118d7d116e2b : Potential Impacket Usage via Command Line

Yara

https://detection.fyi/
https://sigmasearchengine.com/

55/57

Rules from https://yarahq.github.io/ and https://github.com/elastic/protections-artifacts/

BINARYALERT_Hacktool_Windows_Mimikatz_Files

DITEKSHEN_INDICATOR_KB_CERT_C2Cbbd946Bc3Fdb944D522931D61D51A

DITEKSHEN_INDICATOR_TOOL_EXP_Sharpprintnightmare

DITEKSHEN_INDICATOR_TOOL_PET_Defendercontrol

ELASTIC_Windows_Ransomware_Phobos_11Ea7Be5

ELASTIC_Windows_Trojan_Metasploit_91Bc5D7D

ELASTIC_Windows_Trojan_Metasploit_A91A6571

Impacket_Keyword

Impacket_Lateral_Movement

Impacket_Tools_Generic_1

Impacket_Tools_rpcdump

Impacket_Tools_secretsdump

Impacket_Tools_wmiexec

Mimikatz_Memory_Rule_1

SEKOIA_Ransomware_Win_Eking_Rich_Header

SIGNATURE_BASE_Impacket_Keyword

SIGNATURE_BASE_Impacket_Lateral_Movement

SIGNATURE_BASE_Impacket_Tools_Generic_1

SIGNATURE_BASE_Impacket_Tools_Rpcdump

SIGNATURE_BASE_Impacket_Tools_Secretsdump

SIGNATURE_BASE_Impacket_Tools_Wmiexec

SIGNATURE_BASE_Mimikatz_Memory_Rule_1

SIGNATURE_BASE_Wiltedtulip_Tools_Clrlg

WiltedTulip_Tools_clrlg

MITRE ATT&CK

https://yarahq.github.io/
https://github.com/elastic/protections-artifacts/
https://thedfirreport.com/?p=43853&preview=true#mitre

56/57

https://i0.wp.com/thedfirreport.com/wp-content/uploads/2025/05/30043_079_1.png?ssl=1

57/57

Application Layer Protocol - T1071

Create Account - T1136

Create Process with Token - T1134.002

Data Encrypted for Impact - T1486

Disable or Modify System Firewall - T1562.004

Disable or Modify Tools - T1562.001

Exploitation for Privilege Escalation - T1068

Exploit Public-Facing Application - T1190

Ingress Tool Transfer - T1105

Local Account - T1136.001

LSASS Memory - T1003.001

Modify Registry - T1112

NTDS - T1003.003

PowerShell - T1059.001

Process Discovery - T1057

Query Registry - T1012

Remote Access Software - T1219

Remote Desktop Protocol - T1021.001

Remote System Discovery - T1018

System Network Configuration Discovery - T1016

Windows Command Shell - T1059.003

Windows Management Instrumentation - T1047

Windows Service - T1543.003

Internal case #TB30043 #PR35928

