
1/12

April 23, 2025

Malware Analysis - AsyncRat
0xmrmagnezi.github.io/malware analysis/AsyncRAT/

3 minute read

Sample:

17a59db354f270147d5da27aa7978a3c


Background

https://0xmrmagnezi.github.io/malware%20analysis/AsyncRAT/


2/12

AsyncRAT is a Remote Access Tool (RAT) designed to remotely monitor and control other
computers through a secure encrypted connection. It provides functionality such as
keylogger, remote desktop control, and many other functions. In addition, AsyncRAT can be
delivered via various methods such as spear-phishing, malvertising, exploit kit and other
techniques.

Static Analysis




This sample was initially uploaded from the Netherlands and has since spread, with notable
activity observed in Israel and the United States.




Figure 1: Malware Bazaar Entry

Figure 2: First Stage Code



3/12

The first stage uses a relatively simple split and join technique to construct a new string.
To
disable the original functionality and observe variable values, I modified the code to use
console.log, as shown in Figure 3.




In addition, I used a neat trick: I opened the browser’s developer tools and ran the code
directly there to observe the output, as demonstrated in Figure 4.

Figure 3: Disarmed JS Code



4/12







These results uncovered a Pastebin URL used to retrieve the second stage of the malware.

Figure 4: Dev Tool Code



5/12

Second Stage

The Second stage features heavily obfuscated code, containing around 7,500 lines, intended
to obstruct analysis and evade detection.
As shown in Figure 5, this snippet represents a
small segment of the heavily obfuscated code.




The majority of the obfuscation techniques involved injecting junk code to mask the
malware’s original functionality.
After removing the junk code, what remained was a simple
function that modifies a string and a long string. In the final step, the code is executed using
WScript as shown in Figure 6.




Figure 5: Obfuscated Code

Figure 6: Clearing The Code



6/12

Using CyberChef, I was able to replicate the functionality of the previously observed string
manipulation.
This revealed the type of manipulation applied to the long string: it replaces a
specific word with the letter ‘A’ and then decodes the result from Base64.




Next, I took the long string and applied the manipulation uncovered earlier, which revealed
what appears to be a reversed URL, as shown in Figure 8.




Downloading the content hosted at that URL revealed a long, reversed Base64-encoded
string. After decoding it, a new executable file was uncovered, as shown in Figure 9.

Figure 7: CyberChef Extraction

Figure 8: CyberChef to decode the string



7/12




Third Stage

The third stage of the malware is written in .NET and is most likely the unpacked version of
the final payload.




Figure 9: Outputs New EXE

Figure 10: Using Detect it Easy



8/12

Figure 11 highlights the capabilities of the RAT, including C2 communication, code execution,
debugging features, and more.




Given that the malware was written in .NET, I used dnSpy to decompile and analyze the
code, which allowed me to extract the full configuration, as presented in Figure 12.

Figure 11: Capabilities Of The RAT



9/12




As expected from a RAT, it also collects various environment details such as the hostname,
user ID, and more.

Figure 12: Settings Configuration Of AsyncRAT



10/12




Dynamic Analysis

Once executed, the RAT attempts to establish a connection on port 5090 at regular intervals,
as observed in TCPView and shown in Figure 14.




The network communication can also be observed using Wireshark, providing further insight
into the RAT’s connection attempts.




IOCs

Figure 13: System Information

Figure 14: TCPView Output

Figure 15: Using WireShark



11/12

Hash:

17a59db354f270147d5da27aa7978a3c

40fb01ac9879cf7ea9e9a375bd525a66


URL

hxxps://paste[.]ee/d/1Juiw3uF/0

hxxps://paste[.]ee/d/m6drh6pM/0

deadpoolstart2050[.]duckdns[.]org


Extras

Curious about what AsyncRAT looks like from the attacker’s perspective?
The following
images provide a glimpse into the control panel of the AsyncRAT server, highlighting some of
its core functionalities.










Figure 16: RAT GUI

Figure 17: RAT Options

Figure 18: RAT Options



12/12




Figure 19: RAT Options


