
1/20

Lumma Stealer Analysis
trellix.com/en-ca/blogs/research/lumma-stealer-analysis/

XPand Live 2022 Logo

ARIA Resort & Casino | Las Vegas

September 27-29, 2022

Register Now Learn More

https://www.trellix.com/en-ca/blogs/research/lumma-stealer-analysis/
https://trellix.g2planet.com/xpand_live_2022/register
https://www.trellix.com/en-ca/about/events/2022/trellix-xpand-live-2022/

2/20

Blogs
The latest cybersecurity trends, best practices, security vulnerabilities, and more

Unmasking the Evolving Threat: A Deep Dive into the Latest Version of Lumma InfoStealer with Code
Flow Obfuscation

By Mohideen Abdul Khader · April 21, 2025

Summary

Lumma Stealer, first identified in 2022, remains a significant threat to this day, continuously evolving its tactics, techniques, and procedures
(TTPs) to stay aligned with emerging trends. It is distributed on the dark web via a subscription-based model, Malware-As-A-Service(MaaS).
Lumma is designed to detect virtual and sandbox environments, allowing it to avoid detection by security systems that depend on the
sandbox environment to assess the file behaviour. The malware is capable of exfiltrating sensitive data, including information from web
browsers, email applications, cryptocurrency wallets, and other personally identifiable information (PII) stored in critical system directories.

The Trellix Advanced Research Center has been tracking recent campaigns by the threat actors behind Lumma Stealer and analyzing the
evolution of their TTPs. In this blog we present our technical analysis on how Lumma performs the below objectives

Infection chain
Code flow obfuscation
API hash resolving
Heaven’s gate
Disabling ETWTi callbacks
Anti-Sandox techniques
Command and control, exfiltration

Infection Chain

Figure 1: Lumma stealer’s infection chain

https://www.trellix.com/en-ca/blogs/contributors/mohideen-abdul-khader/
https://www.trellix.com/en-ca/advanced-research-center/threat-reports/june-2024/#genAi
https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-1.jpg

3/20

A threat actor was observed distributing Lumma via obfuscated PowerShell scripts. These scripts contain two executable files in Base64-
encoded format,

1. A .NET executable (loader) named GOO.dll
2. The Lumma payload

Figure 2: Obfuscated Powershell Script

The PowerShell script loads the .NET executable using the Reflection API, then locates the "R2" Class within the assembly, and invokes its
"Run()" method. The arguments supplied to the "Run" method are stored within the $YOO variable. The first argument is the path to
RegSvcs.exe ("C:\Windows\Microsoft.NET\Framework\v4.0.30319\RegSvcs.exe"), and the second argument is the Lumma payload ($hgh).

Powershell

$YOO=[object[]]

('C:\Windows\MicrFFosoft.NFFET\FraDDmewDDork\v4.0.30319\RegSvcs.exe'.replace('FF','').replace('DD',''),$hgh

)

The .NET binary, obfuscated with Crypto Obfuscator, injects the Lumma binary into the RegSvcs.exe process. The injected Lumma payload
then continues to operate, masquerading as the legitimate RegSvcs.exe utility.

Figure 3: Packer information

https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-2.jpg
https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-3.jpg

4/20

Figure 4: .NET assembly and the function used to invoke Lumma payload

Figure 5 : Powershell spawning Regsvcs.exe

Technical Analysis of Lumma Stealer

During the analysis of the derived sample, the command and control (C2) servers were inactive, resulting in an incomplete behavioral
analysis. To provide a thorough analysis for our readers, we have detailed the observed behavior of the latest Lumma sample, which may be
delivered to the victim's environment via the technique previously discussed.

Sample hash (SHA256) : 80741061ccb6a337cbdf1b1b75c4fcfae7dd6ccde8ecc333fcae7bcca5dc8861

Performing code analysis on the Lumma’s binary, its main function begins by passing encrypted strings to a decryption routine. The first string
to be decrypted is "ntdll.dll". Similarly, the names of other important libraries such as kernel32.dll, user32.dll, winhttp.dll, and crypt32.dll are
also decrypted during runtime.

The decrypted string is passed as an argument to a function that leverages Process Environment Block (PEB) data structure in Windows to
resolve the library's address in memory. With this technique, Lumma avoids calling very commonly monitored APIs like LoadLibrary and
GetProcAddress, which are scrutinized by EDR and other security systems.

Code flow obfuscation

Lumma employs advanced codeflow obfuscation techniques to significantly complicate the analysis. As a result, this malware makes it
difficult for decompilers(a commonly used tool in malware analysis) to fully decompile the code.

Due to this, static analysis methods are rendered ineffective in revealing the complete logic of the program.

Figure 6: The next instruction is determined by calculating ECX, with the green box highlighting the calculation used to derive ECX

From the image above, the larger box highlights the routine responsible for calculating the next jump, while the smaller box shows a jump
instruction that contains the next instruction address in the “ecx” register. As a result, the code-blocks are scattered without any static links
between them, the links (i.e.,addresses to the next valid code-block) are calculated dynamically, resulting in the decompiler failing to analyze
the code accurately and the code-flow is broken. Lumma Stealer extends this obfuscation technique to control flow statements such as If-Else
and Do-While, further complicating the analysis.

https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-4.jpg
https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-5.jpg
https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-6.jpg

5/20

Additionally, the calculation varies with each jump, making it difficult to automate or clean the code effectively. In this case, the jump leads to
the immediate next instruction at address ECX = 0067BCD6 (Refer Image).

API hash resolving

Lumma uses an API hashing technique to dynamically resolve API functions during runtime, a common method employed by malware to
locate APIs as needed.

Below listed are a few API’s resolved by Lumma dynamically,

RtlAllocateHeap
RtlReAllocateHeap
RtlFreeHeap
RtlExpandEnvironmentStrings

Also, APIs required for networking are resolved using the same function.

Lumma sample being 32-bit, it uses Heaven’s gate technique to run 64-bit code when it is executed on a 64-bit machine.

Heaven’s gate

Lumma identifies whether it’s running on a 32-bit or 64-bit machine by comparing the value of the Code Segment (CS) register.

If the value is 0x23. Then it's a 32-bit machine.

If the value is 0x33. Then it's a 64-bit machine.

When running on a 64-bit system, Lumma transitions to 64-bit code using the ‘jmp far 33’ instruction.

Figure 7: Jmp far instruction for 32 to 64 bit transition

To invoke NTAPI functions, Lumma constructs a table that includes Syscall Hashes and Syscall Indexes. It traverses the export table of the
ntdll.dll library to generate custom hashes for API names starting with "Nt" such as NtQueryInformationFile and NtOpenFile.

Lumma hashes syscalls based on their opcode pattern. Specifically,

Syscalls that begin with the opcode B8 and end with a return opcode of C2 or C3 are considered for hashing

Figure 8: Hashing Criteria

Below image depicts the syscalls matching above discussed pattern.

For example:

NtYieldExecution syscall starts with B8 and returns using “C3” opcode
NtAddAtom syscall starts with B8 and returns using “C2” opcode

https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-7.jpg
https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-8.jpg

6/20

Figure 9: Debugger snippet

On the other hand, syscalls like NtCurrentTeb, which do not start with B8, are excluded from the Syscall hash table.

Figure 10: NtCurrentTeb Syscall pattern not matching the hashing criteria

Syscall hash/index table

Figure 11: Syscall hash table

The above image shows the syscall table, A DWORD (hash) followed by another DWORD containing “Syscall Index”.

For instance, the first DWORD is the hash value for the NtAcceptConnectPort/ZwAcceptConnectPort API (Index = 2) followed by the second
DWORD consisting of the syscall index(2). Whenever Lumma has to Invoke a NTAPI, it finds the syscall index by traversing the table and
matching on the respective hash.

Figure 12: ZwAcceptConnectionPort Syscall pattern

https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-9.jpg
https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-10.jpg
https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-11.jpg
https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-12.jpg

7/20

NTDLL Re-mapping

Lumma leverages the syscall table to remap ntdll.dll based on the system architecture. The correct version of the DLL (32-bit or 64-bit) is
determined by checking the value of the Code Segment (CS) register.

On a 32-bit system, knowndlls32/ntdll.dll is mapped.

On a 64-bit system, knowndlls/ntdll.dll is mapped.

Below listed NTAPI system call Indexes are resolved using their respective hash

API Hash Syscall Index

NtOpenSection 0x06519B84 0x37

NtMapViewOfSection 0xCB8D7CB0 0x28

NtUnMapViewOfSection 0xE40A7173 0x2A

NtClose 0x2C331E1F 0x3000F

Table 1 : API, respective hash values as generated by the malware and Syscall Index

Based on the remapped NTDLL, syscall table is re-generated, and the previously created hashtable is overwritten, it is unclear why the
process is repeated twice. Probably, by loading NTDLL from disk, the malware aims on getting a clean, unhooked version of the DLL, which
would prevent the EDR from detecting its activities because the hooks wouldn't be in place.

Below image depicts two NTDLL libraries loaded in memory, highlighted in red is the originally loaded NTDLL module library, highlighted in
green is the remapped NTDLL library.

Figure 13: Lumma remapping the NTDLL library

Post syscall generation, newly loaded NTDLL is unmapped using “NtUnMapViewOfSection “ and its handle closed using “NtClose”.

Disabling ETWTi callbacks

Lumma invokes the NtSetInformationProcess API, passing a structure that modifies the ProcessInformation class. By setting the Callback
field to 0 in the structure, callbacks set by security softwares like ETW (Event Tracing for Windows) are removed and this prevents those
software from monitoring the system calls made by Lumma stealer.

https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-13.jpg

8/20

Figure 14: Arguments passed to NtSetInformationProcess

Figure 15: Twelve null-bytes are being passed as the ProcessInformation argument

Above image shows NtSetinformationprocess’s parameters, with third argument (ProcessInformation) set to null the callbacks

Anti-sandbox techniques

To avoid detection in sandbox environments, Lumma checks for the presence of specific sandbox or antivirus-related DLLs. The malware
verifies that these DLLs are not loaded into memory, using the hardcoded hash values stored in Lumma’s .rdata section.

After validation, Lumma proceeds to the next stage. We wrote a python implementation of the hashing algorithm to obtain the below list of
process names verified by Lumma to detect sandbox environments.

Hash DLL name Description

0xA7FD5028 avghookx.dll AVG

0x8EF13DC7 avghooka.dll AVG

0x25D20435 snxhk.dll AVAST

0x27185A1A sbiedll.dll Sandboxie

0x6B46ED5E api_log.dll iDefense Labs

0xB267D178 dir_watch.dll iDefense Labs

0x24BFD795 pstorec.dll Sunbelt Sandbox

0x51B7A9D8 vmcheck.dll Virtual PC

0x9CEDCD6D wpespy.dll WPE Pro

0x23437B0F cmdvrt64.dll Comodo Container

0x187DF7E0 cmdvrt32.dll Comodo Container

Table 2 : Analysis details of Lumma’s Dynamic hashing

For anti-analysis purposes, Lumma includes an optional feature to detect virtual machine (VM) environments. This check is performed based
on the response from the Command and Control (C2) server, specifically by verifying if the response contains the property named “vm” set to
"true". The command and control section below contains a detailed analysis of this feature.

Region specific execution

Lumma also includes a region-specific execution check. If the User Default Language is set to Russian (identified by the language code
0x419), the malware will exit with a prompt that the country is not supported.

Figure 16: GetUserDefaultUILanguage API being resolved using dynamic API hashing

https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-14.jpg
https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-15.jpg
https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-16.jpg

9/20

Command and control, exfiltration

Dynamic analysis revealed that Lumma is calling multiple domains before calling the legitimate “steamcommunity.com”.

Figure 17: Lumma attempting to connect to the list of embedded domains

All strings related to C2 communications including domains, backup domains, header, and HTTP methods are stored in encrypted format.

For instance, an encrypted C2 domain is decrypted as “mercharena[.]biz”.

Figure 18: Analysis details of Wireshark capture

For each decrypted domain, a connection attempt (POST) is made with below request parameters

Method POST

User Agent "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36"

Endpoint /api

Content-type application/x-www-form-urlencoded

body act=life

Table 3 : POST request parameters

https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-17.jpg
https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-18.jpg

10/20

Figure 19: POST request arguments starting Alternative Domain, Endpoint, Content-Type and request body

The response from the server is expected to be "ok".

Figure 20: Lumma validates the response from the server to match the string “ok”. Notably, this string is encrypted rather than stored in plain
text.

Steam as backup Domain

Lumma checks if the primary domain is available, If not, it attempts to reach the backup domains. In the event that all backup domains are
unresponsive, Lumma will use the gaming website Steam[.]com to generate a C2 URL.

Lumma initiates a request to a Steam community profile at the following URL:

hxxps://steamcommunity.com/profiles/76561199724331900

From the response, Lumma extracts the Steam username and uses it to derive the C2 URL. Below image shows the usernames, used by the
threat actor in the past. The usernames represent the C2 domain name in encrypted fashion.

https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-19.jpg
https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-20.jpg

11/20

Figure 21: Threat actor frequently modifies the steam usernames

For example, the HTML title tag in the profile page might be:

<title>Steam Community :: ytvzwlj-czxlyzg.df</title>

The username is initially encrypted, but the Lumma decrypts it to obtain the final C2 URL, which is:

hxxps://nikolay-romanov[.]su/

For this sample, the domain “mercharena[.]biz” was active and returned the expected “ok” response. Then, Lumma sends another POST
request with body containing action(act) property as “recive_message” (with the misspelling of the word receive), version as “4.0” and license
ID as “f9tVYj--testik1”

“act=recive_message&ver=4.0&lid=f9tVYj--testik1&j=”

Sha256 80741061ccb6a337cbdf1b1b75c4fcfae7dd6ccde8ecc333fcae7bcca5dc8861

Build ID f9tVYj--testik1

C2 domains http:[//]blast-hubs.com/

http:[//]blastikcn.com/

http:[//]generalmills.pro/

http:[//]mercharena.biz/

http:[//]naturewsounds.help/

http:[//]nestlecompany.pro/

http:[//]shiningrstars.help/

http:[//]stormlegue.com/

Table 4 : Malware Build ID and Command & Control domains

C2 returned an encrypted configuration file. After decryption, the contents revealed a malware configuration file in JSON format, which
detailed the specific data Lumma intends to exfiltrate, including browser data, wallet information, password manager details, and critical file
paths.

https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-21.jpg

12/20

Figure 22: Encrypted Lumma Response

The image below displays the decrypted configuration file in JSON format.

https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-22.jpg

13/20

Figure 23: Decrypted Response containing build version, walletnames

Anti-VM

Analysing the JSON file, the "v" property indicates the version of Lumma. The "se" property which is set to “true” appears to be responsible
for taking screenshots.

The "vm" property is set to “false” in this sample, but when enabled, Lumma uses the "CPUID" instruction to check if it's running in a virtual
machine environment.

The CPUID function passed with an EAX value of 0x40000000, and the return value in ECX is compared against the following VM values:

564B4D56 - VMware
43544743 - QEMU
4D566572 - VMware
786F4256 - VirtualBox
65584D4D - Xen

Exfiltration

Lumma's configuration includes around 89 application names related to wallets, crypto applications, password managers, authentication
apps, payment apps, and more, which are targeted for exfiltration.

Wallets targeted

1. MetaMask
2. 1Password
3. Braavos
4. AgrentX
5. Coinhub
6. LeapWallet
7. Safepal

https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-23.jpg

14/20

8. LastPass
9. RoninWallet

10. BladeWallet
11. Evernote
12. MultiversXWallet
13. ForniterWallet
14. FluviWallet
15. GlassWallet
16. MorphisWallet
17. XVerseWallet
18. CompasWallet
19. HavahWallet
20. SuiWallet
21. VenomWallet
22. MetaMask
23. TrustWallet
24. TronLink
25. RoninWallet
26. OKX
27. BinanceChainWallet
28. Yoroi
29. Nifty
30. Math
31. Coinbase
32. Guarda
33. EQUA
34. JaxxLiberty
35. BitApp
36. iWlt
37. EnKrypt
38. Wombat
39. MEWCX
40. Guild
41. Saturn
42. NeoLine
43. Clover
44. Rabby
45. Pontem
46. Martian
47. Bitwarden
48. Nami
49. Petra
50. Sui
51. ExodusWeb3
52. Sub
53. PolkadotJS
54. Talisman
55. CryptoCom
56. Liquality
57. TerraStation
58. Keplr
59. Sollet
60. Auro
61. Polymesh
62. ICONex
63. Nabox
64. KHC
65. Temple
66. TezBox
67. DAppPlay
68. BitClip
69. SteemKeychain
70. NashExtension

15/20

71. HyconLiteClient
72. ZilPay
73. Coin98
74. Authenticator
75. Cyano
76. Byone
77. OneKey
78. Leaf
79. Solflare
80. MagicEden
81. Backpack
82. Authy
83. EOSAuthenticator
84. GAuthAuthenticator
85. TrezorPasswordManager
86. Phantom
87. UniSat
88. Rainbow
89. BitgetWallet

In addition to application names, the Lumma configuration includes paths to browsers, wallets, FTP applications, VPN software, Telegram,
cloud-service provider applications, Anydesk, and password managers. Below table highlights the directory path(p), search terms(m),
destination path(z), directory recurse depth(d) and exfiltration filesize(fs) - which is typically 20971520(20 MB).

Here is a table based on the provided JSON data:

t Directory path (p) Searc

0 %appdata%\Ethereum keysto

0 %appdata%\Exodus\exodus.wallet *

0 %appdata%\LedgerLive *

0 %appdata%\atomic\LocalStorage\leveldb *

0 %appdata%\Armory *.walle

0 %localappdata%\Coinomi\Coinomi\wallets *

0 %appdata%\AuthyDesktop\LocalStorage\leveldb *

0 %appdata%\Bitcoin\wallets *

0 %appdata%\Binance app-s
print.f
windo

0 %appdata%\com.liberty.jaxx\IndexedDB *

0 %appdata%\Electrum\wallets *

0 %appdata%\Electrum-LTC\wallets *

0 %appdata%\ElectronCash\wallets *

0 %appdata%\Guarda\IndexedDB *

0 %appdata%\DashCore\wallets *.dat

0 %appdata%\WalletWasabi\Client\Wallets *

0 %appdata%\DaedalusMainnet\wallets she.*.

1 %localappdata%\Google\Chrome\UserData

1 %localappdata%\Google\ChromeBeta\UserData

16/20

1 %appdata%\OperaSoftware\OperaStable

1 %localappdata%\OperaSoftware\OperaNeon\UserData

1 %appdata%\OperaSoftware\OperaGXStable

1 %localappdata%\Microsoft\Edge\UserData

1 %localappdata%\BraveSoftware\Brave-Browser\UserData

1 %localappdata%\EpicPrivacyBrowser\UserData

1 %localappdata%\Vivaldi\UserData

1 %localappdata%\Maxthon\UserData

1 %localappdata%\Iridium\UserData

1 %localappdata%\AVG\Browser\UserData

1 %localappdata%\Tencent\QQBrowser\UserData

1 %localappdata%\360Browser\Browser\UserData

1 %localappdata%\SuperBrowser\UserData\BrowserWorkbench_1

1 %localappdata%\CentBrowser\UserData

1 %localappdata%\Chedot\UserData

1 %localappdata%\CocCoc\Browser\UserData

2 %appdata%\Mozilla\Firefox\Profiles

2 %appdata%\Waterfox\Profiles

2 %appdata%\MoonchildProductions\PaleMoon\Profiles

0 %userprofile% *.kbdx

0 %localappdata%\1Password .sqlite

0 %appdata%\Bitwarden data.j

0 %appdata%\NordPass nordp
nordp

0 %userprofile% seed,
metam
wallet

0 %userprofile%\Desktop *.txt

0 %appdata%\TelegramDesktop *s

0 %programfiles%\TelegramDesktop *s

0 %programw6432%\TelegramDesktop *s

0 %localappdata%\Packages\TelegramMessengerLLP.TelegramDesktop_t4vj0pshhgkwm\LocalCache\Roaming\TelegramDesktopUWP *s

0 %appdata%\FileZilla recen
sitema

0 %appdata%\GHISLER wcx_f

0 %userprofile% site.xm

0 %programdata%\SiteDesigner\3D-FTP sites.i

0 %appdata%\SmartFTP\Client2.0\Favorites *

0 %appdata%\FTPGetter serve

17/20

0 %appdata%\FTPbox profile

0 %appdata%\FTPInfo Serve

0 %appdata%\FTPRush RushS

0 %programfiles%\FTPCommanderDeluxe FTPL

0 %localappdata%\DeskShareData\FTPManagerLite FTPM

0 %localappdata%\DeskShareData\AutoFTPManager AutoF

0 %appdata%\OpenVPNConnect config

0 %localappdata%\NordVPN\NordVPN.exe_Path_5foiwug0gwlftdgafkj0xqqcuqqyshwn user.c

0 %localappdata%\ProtonVPN\ProtonVPN_Url_cmnccr2xp2ofmvhglly0haihuyzzqh0i user.c

0 %appdata%\AnyDesk *.conf

0 %appdata%\gcloud *.db, *

0 %userprofile%.azure *

0 %userprofile%.aws *

0 %localappdata%.IdentityService msal.c

Table 5 : Lumma’s configuration extracted from the JSON response

The image below illustrates the file paths that Lumma searches. If a specified path is found, the file is read and stored in the designated
directory path before being exfiltrated to C2.

Figure 24: Lumma’s File activities recorded

https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-24.jpg

18/20

Lumma is also capable of stealing data from below listed mail applications,

TheBat
Pegasus
Mailbird
EmClient

Figure 25: Config JSON - Mail Clients

Conclusion

In conclusion, Lumma Stealer continues to pose a significant threat to data security. It constantly adapts its TTPs and payloads to bypass
security defenses. Trellix remains committed to persevering in the fight against this ever-evolving malware, ensuring the protection of our
customers' data.

IOC’s and artifacts

C2 Domains/URLs

http:[//]blast-hubs.com/

https://www.trellix.com/en-us/img/newsroom/stories/lumma-infostealer-25.jpg

19/20

http:[//]blastikcn.com/

http:[//]generalmills.pro/

http:[//]mercharena.biz/

http:[//]naturewsounds.help/

http:[//]nestlecompany.pro/

http:[//]stormlegue.com/

https:[//]nikolay-romanov[.]su/

SHA256 Hashes

80741061ccb6a337cbdf1b1b75c4fcfae7dd6ccde8ecc333fcae7bcca5dc8861 (Lumma)

e9e568dce12ca4392001860c693292203b2bfcbbb277a484e4d2ebb5b0449207 (Lumma)

1345ad4c782c91049a16ec9f01b04bfc83a4f0e1e259cfed2b535f8ec6b75590 (Lumma)

4abe068f8e8632a9074556f2adb39dd2c52a1bf631abbf5bfd47888059c35350 (Lumma)

629618eb8225361b068a11ce07f46eefd0ce4098266f274f0d56b75fb5a77321 (Lumma)

7034406778028fd6edbb340fdaeddbbec3d1f8665e8332063edc75dfaee482d1 (Lumma)

aa2dfa4e02b2eb688c7ba0d29619e082214251930e39727e35b53a436766825a (Lumma)

c2ab516bb3a39832d963770d813ab77027d454a087ad9fae8ce24336a78f9073 (Lumma)

c340bf332f68794afa171c68efadf9b1e742e4ad577582adfed61567a65aa91c (Lumma)

e52f5fcfc8034e46e0f3ff826d437ce69f7d9da30019115008f823c9b7ffb929 (Lumma)

eb69158f493de304592e67de21a42cd094693bda13fb211c46353248706df696 (Lumma)

253cdcfd6f8b6e52133bc59df92563e432b335d2a207f2f8e01fac2423ccbac8 (Powershell script)

90e35b4a519af394e32cd09d34c6d5f60b31726672aa41e37e2163c387f96a75 (Powershell script)

B3428248caa364461d4521e2ff3c853228c38f9dc2fb5bcc9049e6652bb94ba2 (Lumma payload)

B33648806f28bae6d57103a2081df7d8e8dd03db586c03057f9c60e9ac3b2bc0 (Lumma payload)

101e4eabfde77d3a2d3877042a72bed101973d0c511ba031e6e27785d48f61fd (GOO.dll)

A7f7a3c408c4839fb2dc28b7fc99f64f464d4e1aeedd75293937769626962c18 (GOO.dll)

Tactics, Techniques, and Procedures

Tactic Technique Sub-
Technique
ID

Use

Defense
Evasion

Obfuscated Files or Information T1027 Implements Code flow obfuscation

 Impair Defenses: Disable or
Modify Tools

T1562 Disables Process instrumentation callback hooks

 Obfuscated Files or Information:
Dynamic API Resolution

T1027 Uses API resolving technique to dynamically resolve APIs

Discovery System Information Discovery T1082 Collects system informations such as username, Computer name, User
Default Language, HWID, RAM size, CPU/GPU information,

https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1562/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1082/

20/20

 File and Directory Discovery T1083 Collects process and installed software information

Collection Automated Collection T1119 Collects data automatically based on C2 server JSON response

 Data from Local System T1005 Steals system data

 Clipboard Data T1115 Steals clipboard data

 Screen Capture T1113 Performs Screen capture

Command
and Control

Encrypted Channel T1573 Uses encryption to conceal exfiltrated data

Trellix ENS detections

Hash (MD5) Detection Name

9eaede7e8981fc39c0ccbe45e8ee2bf3/

80741061ccb6a337cbdf1b1b75c4fcfae7dd6ccde8ecc333fcae7bcca5dc8861

Lumma!9EAEDE7E8981

fbcf8775e7fb3ac822f8f67ff2fe990e/

e9e568dce12ca4392001860c693292203b2bfcbbb277a484e4d2ebb5b0449207

Lumma!FBCF8775E7FB

Trellix EDR Detections

Rule Name Description

_Api_PE_header_WriteProcessMemory2 Wrote PE header into remote process (PE file DOS header)

_api_process_hollowed_regasm Suspicious process injection by Regasm.exe or Regsvcs.exe (process hollowing)

_apt_process_regdotnet Manipulated .NET Component Object Model (COM) assemblies

_process_psloadassembly Invoked methods from .Net Assemblies via PowerShell and Reflection API

_script_base64_dos_header Script executed includes encoded DOS header

_process_api_getlogicaldriveSW Suspicious process performed File and Directory discovery via GetLogicalDriveStringsW API

_api_apc_injection (Exploratory) APC Injection via NtQueueApcThread API (Variation)

_process_ce_lolbin Created and executed LOLBIN binary (potential malware behaviour)

Discover the latest cybersecurity research from the Trellix Advanced Research Center: https://www.trellix.com/advanced-research-center/

RECENT STORIES

Get the latest

Stay up to date with the latest cybersecurity trends, best practices, security vulnerabilities, and so much more.

Please enter a valid email address.

Zero spam. Unsubscribe at any time.

https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1119/
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org/techniques/T1115/
https://attack.mitre.org/techniques/T1113/
https://attack.mitre.org/techniques/T1573/
https://www.trellix.com/en-ca/advanced-research-center/

