
1/22

March 28, 2025

Auto-color - Linux backdoor
zw01f.github.io/malware analysis/auto-color/

17 minute read

Meet Auto-color

https://zw01f.github.io/malware%20analysis/auto-color/


2/22

Auto-color is a Linux backdoor that has been seen in cyberattacks targeting government
organizations and universities in North America and Asia. It was first observed between
November and December 2024 and is designed to avoid detection while remaining hidden in
systems for a long time. The malware acts as be benign color-enhancement tool and uses
common file names like “door,” “egg,” and “log” to disguise itself.

Auto-color gets its name from the file name that the initial payload uses to rename itself after
it is installed.

Technical in Points

Auto-Color encrypts its strings to prevent easy extraction of its functionality.
Additionally, it dynamically resolves APIs at runtime, loading libc and retrieving function
addresses with dlsym. This makes static detection harder by avoiding direct system
calls.

Auto-Color uses multiple evasion techniques to avoid detection. It hides itself with a
benign name merged with system files and operates as a background process without
user interaction. If executed with root privileges, more advanced tactics are used.
Dropping a shared library that hooks libc functions to hide network connections, stop
uninstallation, and ensure its activities remain undetected.

Auto-Color’s data section contains an embedded custom encrypted configuration,
including information about its Command-and-Control (C2) server. It then sets a
communication channel with the C2 server using a TCP socket and validates the
exchange via a random value handshake.

Auto-Color receives remote commands to execute on the infected machine, including
gathering system and host information, reading, writing, deleting, and modifying files,
creating a reverse shell backdoor, configuring the device as a proxy, and self-
destructing to erase all traces of its presence. This gives the attacker full control over
the compromised system.

First look



3/22

Figure(1): Sample on VT



The sample is a C/C++ ELF64 binary compiled for Ubuntu Linux. On the writing date, only
15 security vendors flagged it as malicious.

Auto-color seems to require explicit execution by the victim and follows two main paths
based on root privileges.

https://zw01f.github.io/assets/images/malware-analysis/auto_color/VT.png


4/22

Figure(2): Main function



If running as root, it checks its execution path against the target path /var/log/cross/auto-
color to determine if it has already been installed and executed before. If not, it tries to
install itself and prints “install ok” if successful.

If it is not running as root or the path check fails, it follows another path called “green mode.”

Regardless of the path taken, Auto-color daemonizes itself to run in the background before
connecting to a command-and-control (C2) server for further instructions.

String Decryption

Auto-color obfuscated its strings using an XOR operation and additional arithmetic
transformations to make analysis more difficult.

https://zw01f.github.io/assets/images/malware-analysis/auto_color/flow.png
https://zw01f.github.io/assets/images/malware-analysis/auto_color/str_dec.png


5/22

Figure(3): Sring decryption function



The decryption function always follows the same instruction sequence:

lea     rsi, enc_str_ptr

mov     rdi, rax

call    mw_string_decryption


We can use this pattern to write an IDAPython script that automatically finds and decrypts
obfuscated strings, making analysis easier.



6/22

import idautils

import idc

import idaapi


def decrypt_string(enc_data):

   res = []

   for byte in enc_data:

       dec_byte = ((int(byte) + 123) ^ 0x1F) - 123 & 0xFF


       if dec_byte == 0:

           break

       res.append(dec_byte)

   return bytes(res).decode('utf-8', errors='replace')


def read_enc_data(ptr):

   # read memory until a null byte 

   address = idc.get_name_ea_simple(ptr)

   if address == idc.BADADDR:

       return None  

   

   data = []

   while (byte := ida_bytes.get_byte(address)) != 0:

       data.append(byte)

       address += 1


   return bytes(data) 


def find_decryption_function_xrefs():

   # (i + a2) + 123) ^ 0x1F) - 123

   pattern = "0F B6 00 83 C0 7B 83 F0 1F 83 E8 7B 89 C2 8B 85 ?? ?? ?? ??"

   ea = idaapi.find_binary(0, idc.BADADDR, pattern, 16, idc.SEARCH_DOWN)

   if ea == idc.BADADDR:

       return []  

   

   func_ea = idc.get_func_attr(ea, idc.FUNCATTR_START)

   if func_ea == idc.BADADDR:

       return []  


   return list(idautils.CodeRefsTo(func_ea, 0))  


def set_hexrays_comment(address, text):

   cfunc = idaapi.decompile(address)

   tl = idaapi.treeloc_t()

   tl.ea = address

   tl.itp = idaapi.ITP_SEMI

   cfunc.set_user_cmt(tl, text)

   cfunc.save_user_cmts() 


def main():

   xrefs = find_decryption_function_xrefs() 




7/22

   for ref in xrefs:

       prev_ins_addr = idc.prev_head(ref)   

       prev_ins_addr = idc.prev_head(prev_ins_addr)  # go up twice


       if (idc.print_insn_mnem(prev_ins_addr) == 'lea' and 

           idc.print_operand(prev_ins_addr, 0) == 'rsi'):  

           ind = idc.print_operand(prev_ins_addr, 1)

           enc_data = read_enc_data(ind)

           dec_str = decrypt_string(enc_data)

           idc.set_cmt(ref, f"String : {dec_str}", 0) 

           set_hexrays_comment(ref,f"String: {dec_str}") 


if __name__ == "__main__":

   main()


This script finds the decryption function by searching for its instruction pattern, determines all
cross-references to the function and locates the lea instruction that loads the encrypted
string. It then reads the bytes, decrypts them, and finally adds comments in both the
disassembly and decompiled views.

full strings list

Expand to see more

   config-err-
   %d


   %x

   /var/log/cross





Malware Installation

Auto-color first creates a directory /var/log/cross to mix in with system logs and avoid
suspicion. It sets 777 permissions, allowing it to read, write, or execute files inside. Then, it
copies itself into this folder and renames its file to “auto-color” to appear benign.

It also drops a malicious shared library named libcext.so.2 into the system’s library path.
This library mimics the legitimate libcext.so.0 to avoid suspicion. Auto-color dynamically
resolves the system’s standard library directory using the dladdr() function with the
strerror() symbol. If successful, it extracts the directory path from info.dli_fname,
removes the filename, and constructs the final path. If dladdr() fails, it defaults to /lib as
the base directory, to Make sure it works on various Linux versions.

It finally modifies the /etc/ld.preload , a Linux file that forces specified libraries to load into
every process . By adding libcext.so.2 to this file, it ensures its library is loaded even
before legitimate system libraries. This enables it to hook and override critical functions ,
which I will explain later in the blog.



8/22

Figure(4): Malware Installation function


It also unlinks (deletes) any previous executable and malicious shared library to remove
traces of old installations. This avoids conflicts and ensures a clean setup.

Running in the Background - Demonstration

Auto-color ensures that only one instance runs by using a file-based locking mechanism. It
creates a lock file in /tmp based on the user’s ID, opens it, and tries to lock it using flock() .
If another instance has already locked the file, it exits to prevent multiple copies from
running.

Figure(5): file-based locking mechanism used



Auto-color then daemonizes itself, following a famous technique to run in the background
without a controlling terminal. It first creates a child process and exits the parent, then calls
setsid() to start a new session and fully separate from the terminal. A second fork is used
to stop the process from accidentally retrieving a terminal connection.

https://zw01f.github.io/assets/images/malware-analysis/auto_color/installation.png
https://zw01f.github.io/assets/images/malware-analysis/auto_color/lock_file.png


9/22

Figure(6): Demonstration function



To complete the process, Auto-color shifts input, output, and error to /dev/null to control
unwanted interactions. It also closes all open file descriptors, removes file permission
restrictions with umask(0), and changes its working directory to / to avoid issues with
folders.

These steps ensure the malware runs smoothly in the background, making it harder to detect
and stop.

Auto-color ’s C2 Functionality

Before connecting to its C2 servers, Auto-color first extracts the C2 address from an
encrypted configuration.

Config extraction

Auto-color contains an embedded custom encrypted configuration within its .data section.

Figure(7): Encrypted config .

https://zw01f.github.io/assets/images/malware-analysis/auto_color/fork.png
https://zw01f.github.io/assets/images/malware-analysis/auto_color/enc_config.png


10/22




This decryption algorithm uses a key-based transformation, where the key is extracted from
the last four bytes of the encrypted data. The key is dynamically updated at each step using
a mathematical formula. Each byte of the data is modified through bit shifts, subtraction, and
XOR operations.

Figure(8): Custom decryption algorithm used .



Here is the Python version of the decryption function:

def decryption_algo(key, enc_data):

   dec_data = bytearray(len(enc_data))

   

   for i in range(len(dec_data)):

       key = (1023 * key - 0x70E52827) & 0xFFFFFFFF

       dec_data[i] = ((enc_data[i] - (key >> 19)) ^ (key >> 11)) - (key >> 3) & 0xFF

   

   return dec_data


hex_input = 
"5B742B73F5A211A1FB87436A463AE1BBF27BB3D9EA6CD9A725AC2B059FFFE9E18902FBBE25D201379347
FB775B08E97E861C4423088ACDA973AEEBA1C87F2C4B66346BD3D56351E1DB47839B35774DED13F2E2ED2
8223C05707A7E6BD33B3057C0174C7AE6BEF24A566E7847684B6DF2D3CC5E65066A"


data = bytes.fromhex(hex_input)

key = int.from_bytes(data[-4:], "big") 

output = encryption_algo(key, data)


Auto-color will store the encrypted configuration in a file for later use. If running as root, it
uses /var/log/cross/config-err-X. If not, it will use /tmp/cross/config-err-X. This X is
a hexadecimal value generated dynamically using the following formula; the used seed is
extracted from the decrypted configuration:

https://zw01f.github.io/assets/images/malware-analysis/auto_color/config_decryption.png


11/22

a4 = 0xCE7C0B42;

for (i = 0; i < v20; ++i)

   a4 = (0x3FFFF * a4) + *(seed + i);


Connecting to C2 Server

Auto-color establishes a communication channel with its Command and Control (C2) server
using a TCP socket. This allows the malware to receive commands from the attacker and
send back responses.

It first parses the decrypted config to extract the required network components protocol,
hostname (C2 domain or IP), and port. Once extracted, it resolves the hostname into an IP
address, ensuring it can communicate directly with the server (some configs come with direct
IPs ). The resolved IP is then stored in a shared memory segment used to track previously
used IPs for C2 communication.

Finally, Auto-color establishes a non-blocking TCP socket. And performs an authentication
step. It generates a pseudo-random number and derives three challenge values by XOR-ing
it with constants. These values are sent to the C2 server, which must respond with the
correct transformed values. If the response is incorrect, the connection is terminated.

Figure(9): The authentication step



Each sent message consists of a header and a payload. The header includes a dynamically
generated encryption key, a session ID, a status flag, and the payload size. It first encrypts
and sends the header, followed by encrypting and sending the payload. If any step fails, an
error code is returned. Both of them are encrypted using a custom encryption algorithm,
which is the reverse of the algorithm used for decrypting the configuration.

https://zw01f.github.io/assets/images/malware-analysis/auto_color/checksum.png


12/22

Here’s its python version :

    for i in range(size):

       key = 1023 * key - 0x70E52827

       res_data[i] = ((key >> 3) + enc_data[i]) ^ (key >> 11) + (key >> 19)

   return size - 1


Each received message consists of an encrypted header followed by an encrypted payload.
Auto-color first receives the encrypted header and decrypts it using a custom decryption
algorithm, the same algorithm used for decrypting the configuration.

The decrypted header includes a key, a command ID, a status flag, and the payload size.
After validating the header, Auto-color receives the encrypted payload and decrypts it using
the same algorithm, but with the key extracted from the header.

Executing C2 Commands

After retrieving the C2 command ID and performing the necessary decryption, the malware
validates the command and routes it for execution.

Command - 0x1

https://zw01f.github.io/assets/images/malware-analysis/auto_color/send_message.png
https://zw01f.github.io/assets/images/malware-analysis/auto_color/recieved.png


13/22

This command gathers detailed information about the infected system and then sends that
data to a Command and Control (C2) server.

Figure(10): Collect data about the host



Info Collected Description

System Date The current date (year, month, day).

OS Version Details about the operating system (e.g., version, release).

Hostname The name of the system (unique identifier).

Username The name of the currently logged-in user.

IP Addresses The system’s internal or external IP addresses.

Processor Info The model of the system’s CPU

Total Memory The total amount of system RAM (memory).

Total Disk Space The total available disk space on the system.

Process ID The ID of the currently running process.

Executable Path The file path of the program that is currently running.

It also sends the configuration associated with the sample, as this configuration can change
between different infections.

https://zw01f.github.io/assets/images/malware-analysis/auto_color/command_1.png


14/22

Command - 0xF

This command deletes system files and directories associated with the malware, including
the /var/log/cross directory and its contents, as well as the modified
/etc/ld.so.preload. After cleaning up these files, it terminates the malware itself by calling
kill() with its process ID .

Command - 0x400

This command reads the configuration and sends it to the C2 server. If no config is found, it
sends a default value instead.

Command - 0x401

This command modifies the configuration and the config file using a received payload. If
successful, it sets a global flag to 1. Finally, it sends a response back to the C2 server

0 if it failed
the new config file path if successful.

Command - 0x201

This command scans a selected directory obtained from the C2 server, gathers metadata
about its files and subdirectories, and sends the collected information back.

It checks whether each path is a file or a directory and collects details such as permissions
(read, write, execute), timestamps (creation, modification, access), and file size. If it finds a
directory, it looks for subdirectories and marks them accordingly.

All gathered data is structured and transmitted in an encrypted packet.

Command - 0x202

This command is used to send or receive files between the infected machine and the C2
server.

https://zw01f.github.io/assets/images/malware-analysis/auto_color/command_15.png
https://zw01f.github.io/assets/images/malware-analysis/auto_color/command_400.png


15/22

If the task is to download a file (“R2L”), it opens the file and sends its contents in chunks. If
the task is to upload a file (“L2R”), it creates or opens a file and writes the incoming data
from the C2 server.

Command - 0x204

This command creates a directory or file on the host based on the command received from
the C2 server. Finally, It sends a response back to the C2 server with the status of the
operation.

Command - 0x205

This renames a file or directory based on a command from the C2 server. It retrieves the old
and new names tries to rename the target and sends a response back to the C2 server
indicating success or failure .

Command - 0x206

This deletes a file or directory as it retrieves the file or directory name and tries to remove it.
Finally, it sends a response back to the C2 server indicating success or failure.

Command - 0x100

Auto-color creates a reverse shell, allowing a remote server to interact directly with the victim
host. It sets up communication channels using pipes, forks a new process, and launches an
interactive Bash shell /bin/bash -i . The child process shifts input/output, clears the
command record, and modifies environment variables to evade detection.

https://zw01f.github.io/assets/images/malware-analysis/auto_color/dir_or_file.png


16/22

The parent process sets an encrypted connection with the remote server, manages
execution threads, and ensures cleanup by terminating the shell if needed.

Command - 0x300

This command lets Auto-color use the infected machine as a proxy, relaying connections
between the attacker and a remote target. It does this by using two sockets: one for receiving
connections from the command-and-control (C2) server and another for connecting to a
target IP, which is retrieved from the C2 server.

The first socket listens for incoming connections, while the second establishes
communication with the target. It then uses select() to monitor both sockets for incoming
data. When data is received from the attacker, it is forwarded to the target, and when data is
received from the target, it is sent back to the attacker.

https://zw01f.github.io/assets/images/malware-analysis/auto_color/reverse_shell.png


17/22




Analysis of libcext.so.2

This library is designed with two primary goals: evading detection and ensuring persistence.

Protecting /etc/ld.preload

Auto-color’s malicious library employs various hooks to manipulate system calls, ensuring
that /etc/ld.so.preload remains protected, and persistent by turning any operation
involving it to /etc/ld.so.preload.xxx. If an attempt is made to delete
/etc/ld.so.preload.xxx, the operation is allowed since only the malware creates this file.

Hooked API Purpose

chmod, fchmodat Prevents permission changes

remove, unlink, unlinkat Prevents deletion

rename, renameat Prevents renaming

https://zw01f.github.io/assets/images/malware-analysis/auto_color/proxy.png
https://zw01f.github.io/assets/images/malware-analysis/auto_color/hook_example.png


18/22

Hooked API Purpose

stat, lstat, fstat, fstatat, statx, _lxstat Hides presence

access, faccessat Hides presence

realpath, getattr Prevents file path resolution

open, openat, fopen Prevents access

read, pread Hides malicious content

opendir, readdir, scandir Hides directory entries

Persistance

It retrieves the name of the calling process and checks if it matches one of the following
system daemons :

/sbin/auditd

/sbin/cron

/sbin/crond

/sbin/acpid

/sbin/atd

/usr/sbin/auditd

/usr/sbin/cron

/usr/sbin/crond

/usr/sbin/acpid

/usr/sbin/atd


As these daemons (background processes) run continuously in a normal system, they are a
perfect choice for persistence. If a match is found, it forks a new process and then uses
execl() to launch the auto-color, ensuring it runs within a trusted system service while the
parent process exits to stay stealthy.

Figure(11): Persistence function





19/22

Hiding Network Activity

Auto-color’s malicious library also hides its Command and Control (C2) network activity by
blocking tries to read /proc/net/tcp. This special Linux file lists all active TCP connections,
including source/destination IPs and ports.

By hooking different file access functions [open, openat64, fopen, and fopen64 ], it detects
when a process tries to read this file. Instead of returning the actual data, It parses each
entry, compares it against specific C2-related IPs and ports stored by Auto-color previously in
shared memory, and filters them out.

The cleaned-up data is saved in a temporary file at /tmp/17EF88CF, allowing the malware to
reuse it while keeping the changes hidden from tools like netstat or system monitors.




YARA Rule

https://zw01f.github.io/assets/images/malware-analysis/auto_color/hide_network.png


20/22

rule detect_Auto_Color

{

   meta:

       description = "Detects Auto-color malware family "

       author = "Mohamed Ezzat (@ZW01f)"

       hash1  = "815b74947d3a78a1b7d2aece43596ddc0ffc264e26092f1f9b6409c62e1437d6"

       hash2  = "270fc72074c697ba5921f7b61a6128b968ca6ccbf8906645e796cfc3072d4c43"


   strings:

       $elf = "\x7fELF" // ELF header

       $s1 = "/var/log/cross"  

       $s2 = "/tmp/cross"   

       $s3 = "/door-%d.log"  

       $s4 = "/etc/ld.so.preload.xxx" 

       $s5 = "%s/auto-color" ascii wide 

       $s6 = "%s memory dump %d bytes..." wide ascii


   condition:

       (filesize < 300KB) and ($elf at 0) and (5 of ($s*)) 

}





Python Automated Configuration Extraction



21/22

from elftools.elf.elffile import ELFFile

import re


def extract_data_section(filename):

   with open(filename, "rb") as f:

       elf = ELFFile(f)

       

       for section in elf.iter_sections():

           if section.name == ".data":

               return section.data()

   

   return None  


def custom_crypto_algo(key, data):

   length = len(data)

   decrypted = bytearray(length)
   

   for i in range(length):

       key = (1023 * key - 0x70E52827) & 0xFFFFFFFF

       decrypted[i] = ((data[i] - (key >> 19)) ^ (key >> 11)) - (key >> 3) & 0xFF

   

   return decrypted


def extract_c2_urls(text):

   pattern = r'TCP://[a-zA-Z0-9.-]+:\d+' # c2 URL come in : 
TCP://hostname_or_ip:PORT

   return re.findall(pattern, text, re.IGNORECASE)


def main():

   file_path = input("Enter the file path: ")

   data_section = extract_data_section(file_path)


   enc_data_offset = 0x24 #The config data begins at offset 0x24 inside the .data 
section

   size_offset = 0x20 

   

   size = int.from_bytes(data_section[size_offset:enc_data_offset], byteorder='big')

   enc_config = data_section[enc_data_offset:enc_data_offset + size]

   key = int.from_bytes(enc_config[-4:], "big") # key is the last 4 bytes

   

   decrypted_data = custom_crypto_algo(key, enc_config).decode("utf-8", 
errors="ignore")

   print("Decrypted config :" ,decrypted_data)

   

   extracted_url = extract_c2_urls(decrypted_data)

   if extracted_url:

       print("Extracted C2  URLs :")

       for address in extracted_url:

           print(address)


if __name__ == '__main__':




22/22

   main()


References

New Linux Malware ‘Auto-color’ Grants Hackers Full Remote Access to Compromised
Systems

https://thehackernews.com/2025/02/new-linux-malware-auto-color-grants.html

