New HijackLoader Evasion Tactics | ThreatLabz

#> zscaler.com/blogs/security-research/analyzing-new-hijackloader-evasion-tactics

Zscaler Blog
Get the latest Zscaler blog updates in your inbox
Subscribe

Security Research

lwimage

Introduction

HijackLoader (also known as IDAT Loader and GHOSTPULSE) is a malware loader

initially discovered in 2023. The loader is not only capable of delivering second-stage
payloads, but also offers a variety of modules to expand the malware’s capabilities.

The modules are mainly used for configuration information and to evade security software, as
well as inject and execute code. Recently, Zscaler ThreatLabz uncovered new HijackLoader
modules with additional evasion techniques. In this blog, we analyze these modules that
implement features including call stack spoofing to mask the origin of function calls from
endpoint detection, virtual machine detection to identify analysis environments, and another
module that establishes persistence via scheduled tasks.

Key Takeaways

¢ HijackLoader is malware downloader dating back to 2023 that has received continuous
updates via new modules.

+ HijackLoader released a new module that implements call stack spoofing to hide the
origin of function calls (e.g., APl and system calls).

o HijackLoader added a new module to perform anti-VM checks to detect malware
analysis environments and sandboxes.

¢ Another new module is designed to establish persistence via scheduled tasks.

1/15


https://www.zscaler.com/blogs/security-research/analyzing-new-hijackloader-evasion-tactics
https://www.zscaler.com/blogs?type=security-research
https://www.zscaler.com/author/mirfanva
https://www.zscaler.com/blogs/security-research/technical-analysis-hijackloader
https://www.zscaler.com/blogs/security-research/hijackloader-updates

Technical Analysis

In the following sections, we examine HijackLoader’s new modules and changes in evasion
tactics. The module names added since our last analysis are the

following: ANTIVM, MUTEX, CUSTOMINJECT, CUSTOMINJECTPATH, modTask, modTask64, PERSDATA,
and sM.

First stage

HijackLoader’s first stage has undergone two changes. The first change involves the blocklist
processes check, where a new process name, avastsvc.exe, was added to the list. If any of
the processes in the table below are running, HijackLoader delays execution by 5 seconds.

SDBM Hash Process
Value Name Description

5C7024B2 avgsvc.exe The avgsvc.exe process is a component of AVG
Internet Security.

6CEA4537 avastsvc.exe The avastsvc.exe process is a component of Avast
Antivirus.
Table 1: Processes blocklisted by HijackLoader.

The second change pertains to the decryption of modules. While most HijackLoader samples
still use IDAT headers in a PNG file to store encrypted modules, a few samples are
embedding them in the PNG'’s pixel structure.

Second stage (ti module)

As mentioned in our previous blog, HijackLoader uses the Heaven's Gate technique to
execute x64 direct syscalls. We have now observed that call stack spoofing has been added
to the list of evasion tactics used by HijackLoader. This technique uses a chain of EBP
pointers to traverse the stack and conceal the presence of a malicious call in the stack by
replacing actual stack frames with fabricated ones.

The ti module only uses call stack spoofing for the following native system APIs:

e ZwCreateSection

e ZwMapViewOfSection

e ZwUnmapViewOfSection

e ZwProtectVirtualMemory
e ZwReadVirtualMemoy

e ZwWriteVirtualMemory

2/15


https://www.elastic.co/security-labs/tricks-and-treats
https://www.zscaler.com/blogs/security-research/technical-analysis-hijackloader

e ZwWriteFile

e ZwResumeThread

e ZwGetContextThread

e ZwSetContextThread

e ZwRollbackTransaction
e ZwClose

e ZwTerminateProcess

HijackLoader API calls

HijackLoader collects the API hash, system call number, function name, and function address
of all APl names that start with Zw in ntd11.d11. This information is stored as an array of
elements, with each element being a structure of size 16, which we will refer to as

a DIRECTSYSCALL_STRUCT, as shown below.

struct DIRECTSYSCALL_STRUCT {

uint32_t APIHash; // CRC32 hash of the API function name
uint32_t ssn; // System service number (SSN)

char *APIName; // API function name

void *APIFunctionAddress; // API function address

H

When HijackLoader calls a Windows API function, the malware first locates the corresponding
structure (DIRECTSYSCALL_STRUCT) for the specified API. HijackLoader then invokes the
Windows API function either by directly calling its address (if not running under WOWG64) or by
utilizing a combination of call stack spoofing, Heaven's Gate, and direct syscalls (if running
under WOWG64).

Call stack spoofing

Call stack spoofing is used to mask the origin of function calls such as APl and system calls.
The figure below shows a high-level view of how HijackLoader leverages call stack spoofing:

3/15


https://www.zscaler.com/blogs/security-research/coffeeloader-brew-stealthy-techniques

+++++++++++ ©

—— )
HijackLoader makes HijackLoader uses
a call to execute a call stack spoofing to
targeted API. hide the origin of the
syscall.

32-bit process

——————————— -
64-bit code

HjackLoader
leverages the
Heaven’s Gate
technigue to execute
64-bit code (direct
syscall ) in a 32-bit
process.

mov rl0, rex
mov eax, ssn
syscall

ret

HjackLoader
leverages direct
syscalls instead of
calling the native
NTDLL APL.

> zscaler \ ThreatLabz

Figure 1: Diagram showing how HijackLoader uses call stack spoofing to mask the origin of

function calls.

HijackLoader uses the base pointer register (EBP) to navigate the stack by following the chain

of EBP pointers. The malware retrieves the return address pointer (EBP+4) from the stack
frames. If the return address is not located in the text section of NTDLL or kernelbase,
HijackLoader collects both the return address pointer and the return address of the stack

frame. The return address pointer is then patched with a random address from the text section

of a legitimate system DLL. This activity is repeated until the stack limit is reached or when
three adjacent stack frames have the return address in the text section of NTDLL or
kernelbase. The process is illustrated in the diagram below:

4/15



/ I oo

cor -+ —» ISR cor -+ —» IS ER

EBP _" Stack Frame 1 EBP = saved ebp Stack Frame 1
cor -+ — o [T cee -0 —1» [

param 2 param 2

local var 2 local var 2

saved ebp saved ebp
return address in ti module

Stack Frame 2 Stack Frame 2

HijackLoader uses the frame If the return address is not in the
pointer register (EBP) to navigate text section of NTDLL or

the stack and retrieves the return -+ kernelbase, HijackLoader collects
address pointer (EBP+4) from each both the return address pointer
stack frame. and the return address. The return

address pointer is then patched
with a random address from the
text section of a legitimate system
DLL.

@>zscaler | ThreatLabz

Figure 2: Diagram depicting how HijackLoader traverses the stack to retrieve and patch the
return addresses to spoof stack frames.

The name of this legitimate system DLL is specified in the HijackLoader sM module. After this,
HijackLoader employs the Heaven’s Gate technique, which allows it to switch from executing
32-bit (x86) code to executing 64-bit (x64) code. Once in 64-bit mode, HijackLoader performs
the direct syscall. HijackLoader uses the syscall number (ssn) and the necessary parameters
for the native system service API to execute the direct syscall. Following the syscall,
HijackLoader transitions back to x86 and patches the return address pointers with the actual
return addresses.

Previously, HijackLoader utilized direct syscalls for process injection and to remap the . text
section of the x64 ntd11.d11 in memory with the . text section of the x64 ntd11.d11 from
disk. In addition to remapping ntd11.d11, HijackLoader now also remaps the . text section of
the x64 wow64cpu.dll from disk to memory to remove user-mode hooks.

Other than the ti module, the modules modCreateProcess, modUAC, and modTask also use call
stack spoofing. However, these modules do not use Heaven's Gate or make direct syscalls,
but instead invoke Windows API functions directly.

5/15


https://www.crowdstrike.com/en-us/blog/hijackloader-expands-techniques/

The figure below shows the call stack for a call to createProcessw after the return addresses
have been patched by the modCreateProcess module. In the call stack, the return addresses
outside of the text section of NTDLL and kernelbase are patched with addresses from the text
section of a legitimate system DLL (shdocvw.d11) until three adjacent stack frames have the

return address in the text section of NTDLL or kernelbase.

Frame Module Location

K0 ntoskmlexe  NtFindAtom + (x3ef

K1 ntoskmlexe  PsWow6B4GetProcessMachine + (kb 22

K 2 ntoskmlexe  FsRtlAlocateExtraCreateParameterlist + (x10d0
K3 ntoskmlexe  setjmpex + Ix7c95

U4 nitll.dll NtCreate UserProcess « (k14

U5 wowbddl Wow64Alloc ThreadHeap + (x13b9

Ues wowbd di Wowb4Alloc ThreadHeap + (xbS0

U7  wowbddl Wow64System ServiceEx + (x15a

U8  wowbdcpudl TurboDispatchJumpAddressEnd + Oxb
Us wowbdcpu dl BTCpuSimulate + (x9

U110 wowsddl Wow64KilUserCallback Dispatcher + Oxdb5
U1l wowbddl Wow64Ldmpinitialize + 0x12d

U12 ntdidl Ldrinit ShimEngine Dynamic + (k337
U13 ntdidl Ldrintialize Thunk + B 1db

U 14  nididi Ldrinitialize Thunk + 0x63

U 15 ntdidl Ldrinitialize Thunk + (ke

U116 nidldi NtCreate UserProcess + (xc

U7 CreateF'rocesuhtundW (xced

U3?

nitdll dll

0meHL+&3
Ordinal 142 + 19
Ordinal221 + (xb
DICanUnloadNow + (xe&
Ordinal 185 + x7
Ordinal173 + (x8

Ordinal 123 + (x5
Ordinal 145 + Ox7
SafeOpenPrompt ForShellExec + (98

Hﬂmﬁeﬁdwmmmsde Fast + (xe2
RtlEqualUnicode String + (x5a3
RtlEquallnicode String + (x711

RtllsCritical SectionLockedBy Thread + (kb5
LdrLoadDll = Ox4b2

LdrloadDll + (6

KemelBase dll LoadLibraryExW + (x156

Address

(Oufiff 803 Fcd 23af
A 803 Fc 3302
OufFiF 803 Fc 72440
Ouffff 803 FalaSb5
(Ox Aidcd 20e 84
OxAfdcbb91739
(x Afdcbb 30610

(x Afdcbb8901a
x77ae17c3
077221169

(x Hdcbb838c9
Ox 7fdcbb832bd

O HAdcd2439c7
(x Hdcdledd2b
OxAfdcd 1edbb3
(xMdcdledbbe
76371
0x779c01f4

&?33923-11:
0x73992a6b
Ox 73992065
Ox73983806
x73992049
x73992e30
Ox73992e 5
x73392c29
0x7398ced8
Ox 73984201
(x73992eba

Cb:??bi!deﬂz
Ox77>41903
x77b41a71
x77p42315
Ix77b3el32
Ox77b3df 76
Ox779d1d9%6

6/15



U 33 KemelBasedl
U 35 pyexecexe
U 40 kemeld2dl
U 41 ntdidl

U 42 ntdidl

LoadLibraryA + (k42 Ox779d28b2
pyexec exe + (x1cf4 Ox401cf4

Base Threadinit Thunk + (x19 (76229
RtiGet AppContainerNamedObjectPath + x11le (x77b57b5e
RtiGet AppContainerNamedObject Path + (kee x7b57b2e

&> zscaler ‘ ThreatLabz

Figure 3: Example of HijackLoader spoofing the call stack with the fake frames enclosed in a

red square.

Recent HijackLoader modules

The table below lists information about the more recent HijackLoader modules.

CRC32 Module Name Description

0x4dad7707 ANTIVM Contains the configurations HijackLoader uses for anti-
VM checks (explained in detail in the following section).

0x1999709f MUTEX Contains a mutex name. If a mutex with this name
exists, HijackLoader will exit.

0x6703f815 CUSTOMINJECT Contains a legitimate executable file which is used for
injecting code into its process memory. The process is
created in a custom path specified by
the CUSTOMINJECTPATH module.

0x192a4446 CUSTOMINJECTPATH Contains a file path used to create the legitimate file in
the CUSTOMINJECT module.

0x3115355e modTask Creates a scheduled task for persistence (explained in
detail in the next section).

0x9bfaf2d3 modTask64 A 64-bit version of the modTask module.

Oxa2edab5d PERSDATA Contains the configuration used by the modTask module

to create scheduled tasks.

7/15



CRC32 Module Name Description

0xd8222145 SM Contains the name of the system DLL used in call stack
spoofing to patch the return addresses. TinycallProxy
module is also copied to this system DLL.

Ox455cbbc3  TinycallProxy Acts as a proxy to execute API calls. The call to
the TinycallProxy module will have the address of the
API function, number of parameters for the API call, and
parameters for the API call as its arguments.

Ox5515dcea TinycallProxy64  This module is a 64-bit version of the TinycallProxy
module.

Table 2: Description of more recent HijackLoader modules.

Virtual machine detection module

The virtual machine detection module ANTIVM contains a configuration used by HijackLoader
to identify virtual machines and analysis environments. This configuration is stored in a
structure which we will refer to as the ANTIVM_STRUCT, as shown below.

struct ANTIVM_STRUCT {

uint32_t antiVMType;

uint32_t timeThreshold;

uint32_t minPhysicalMemory;

uint32_t minProcessorCount;

uint32_t antiVMType2;

wchar_t username[20]; // Hardcoded to "george" (may change between samples)
byte PhysicalMemory;

byte ProcessorCount;

iy

The first member, antivMType determines the type of anti-VM check to be performed. These
checks employ common anti-VM techniques. The antivMType can include multiple values
combined using bitwise OR operations. The values supported are listed in the table below.

Value Check Performed

0x1 Calculates the average time taken to execute the CPUID instruction using
the RDTSC instruction and compares it against the timeThreshold member of
the ANTIVM_STRUCT. If the measured time equals or exceeds the timeThreshold,
HijackLoader exits.

8/15



Value Check Performed

Ox4 Calls the CPUID instruction with EAX set to 1 and checks if the 31st bit of the ECX
register (the hypervisor present bit) is set. If the bit is set, HijackLoader terminates.

0x8 Retrieves the maximum input value for hypervisor CPUID information by calling
the CPUID instruction with EAX set to 0x40000000. If this value is greater than or
equal to 0x40000000, HijackLoader exits. For instance, on Microsoft hypervisors,
this value will be at least 0x40000005.

0x10 Retrieves the total physical memory of the system in gigabytes and compares it to
the minPhysicalMemory member of the ANTIVM_STRUCT. If the total physical
memory is less than or equal to minPhysicalMemory, HijackLoader exits.

0x20 Retrieves the number of processors on the system and compares it to
the minProcessorCount member of the ANTIVM_STRUCT. If the processor count is
less than or equal to minProcessorCount, HijackLoader exits.

0x40 Encompasses multiple checks, determined by the antiVMType2 member of
the ANTIVM_STRUCT. The supported checks are:

e 0x1 - Verifies if the computer name consists only of numbers.

e 0x2 - Verifies if the username matches the username member of
the ANTIVM_STRUCT.

o Ox4 - Verifies if HijackLoader is executed from the Desktop folder or any of its
subfolders.

ANALYST NOTE: These three checks appear to be in development, as
HijackLoader does not exit even if the conditions are met.

Additionally, irrespective of the antiVMType2 value, HijackLoader compares the
system's total physical memory in gigabytes with the PhysicalMemory member of
the ANTIVM_STRUCT and the number of processors with the ProcessorCount
member of the ANTIVM_STRUCT. If both of these checks are equal (which may be a
specific configuration for a malware sandbox), HijackLoader exits.

Table 3: Description of values supported by the HijackLoader virtual machine detection
module.

Persistence module

Before transferring control to the modTask persistence module, the ti module copies itself to a
new address and the ti module copy is XOR’ed with the performance counter value obtained
by calling the QueryPerformanceCounter APIl. The new address of the XOR’ed ti module and

9/15



the XOR key are stored for restoration purposes.

When control is transferred to the modTask module, HijackLoader begins by overwriting the
entire plaintext ti module with zeros. HijackLoader then performs call stack spoofing as
previously described. Next, the modTask module copies the TinycallProxy module into the
text section of the system DLL specified in the sM module and uses this copied TinycallProxy
module to call APls.

Then, HijackLoader creates a scheduled task for persistence using the configuration in
the PERSDATA configuration module. The configuration is stored in a structure which we will
refer to as the PERSDATA_STRUCT, with the definition shown below.

struct PERSDATA_STRUCT {
uint32_t triggerTaskOnLogon; // If set, the task will be triggered when the
// user logs in, otherwise the task will execute
// at regular intervals.

uint32_t TaskFlag; // Flag used in ITask::SetFlags method
uin32_t MinutesInterval; // Task execution interval in minutes
uin32_t wRandMinutesInterval;// Unused by the TASK_TRIGGER structure
wchar_t taskName[50]; // Name of the task

iy

More information about HijackLoader’s modules are available in our previous blog.

Conclusion

HijackLoader is a highly modular malware loader that shows no signs of slowing down.
HijackLoader's new modules demonstrate the malware’s evolving evasion tactics that
increasingly focus on enhancing its anti-detection capabilities. Thus, we anticipate that
HijackLoader will continue to introduce new modules that are further designed to complicate
analysis and detection.

Zscaler Coverage

Zscaler’s multilayered cloud security platform detects indicators related to HijackLoader at
various levels. The figure below depicts the Zscaler Cloud Sandbox, showing detection details
for HijackLoader.

10/15


https://www.zscaler.com/blogs/security-research/hijackloader-updates

SANDBOX DETAIL REPORT
Report 1D (MDS): EEZ49ABEZ40164 39EEFDS65502D89463

CLASSIFICATION

Class Type Tr

1. (j.'o -

SPREADING

Figure 4: Zscaler Cloud Sandbox report for HijackLoader.

SHgRBE S odese s Low ek

Analysis Performed : 13/01/2025 06:22:08

MITRE ATTECK

ains 27 ATTACK techniques mapped to 9 tactics

NETWORKING

INFORMATION LEAKAGE

« Tries To Harvest And Steal Browser informatio

numerates The File System

File Type: exe64

VIRUS AND MALWARE

ay Try To Detect The Windows Explorer Process

@ zscaler | ThreatLabz

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects
indicators related to HijackLoader at various levels with the following threat names:

¢ Win64.Downloader.HijackLoader

o Win32.Downloader.HijackLoader

Indicators Of Compromise (IOCs)

SHA256 Hash

Description

67173036149718a3a06847d20d0f30616e5b9d6796e050dc520259a15588ddc8 HijackLoader

sample

7b399ccced1048d15198aeb67d6bccd9ebd88c7ac484811a7000b9e79a5aac90 HijackLoader

sample

6¢fbffa4e0327969aeb955921333f5a635a9b2103e05989b80bb690f376e4404 HijackLoader

sample

b2b5c6a6a3e050dfe2aa13db6fob02ce578dd224926f270eal0a433195ac1ba26  HijackLoader

sample

d75d545269b0393bed9fd28340ff42cc51d5a1bd7d5d43694dac28f6ca61df03

HijackLoader
sample

11/15


https://threatlibrary.zscaler.com/threats/183f23ab-50dc-43b8-9e36-f1fb048b57c3
https://threatlibrary.zscaler.com/threats/6ed3f210-0111-425a-b297-13208170ac67

SHA256 Hash Description

9218c¢8607323d7667f69ef26faea57cb861f9b3888a457ed9093c1b65eefad2b HijackLoader
sample

b8f1341ade1fe50c4936b8f7bec7a8e47ad753465f716a1ec2f8220a18bf34a5 HijackLoader
sample

35dca05612aede9c1db55a868b1cd314b5d05bac00bed577fd0d437103c2a4a4  HijackLoader
sample

08f1ca6071cb206f53c2e81568b73d4bee7ac6a019d93d3ceaac7637b6dc891a  HijackLoader
sample

b480fec95b84980e88e0e5958873b7194029ffbaa78369cfe5c0e4d64849fb32 HijackLoader
sample

273bc7700e9153f7063b689f57ece3090c79e6b1038a9bc7865f61452¢c7377b0  HijackLoader
encrypted
modules.

28eb6ce005d34e22f6805a132e7080b96f236d627078bcc1bedee1a3a209bd1f  HijackLoader
encrypted
modules.

2be2c90c725¢c2a03d2bd68e39d52c0e16e7678d1d42fa7fdf75797806e0eb036  HijackLoader
encrypted
modules.

2e5cf739a84c726dfe3cfa3ddf47893357713240e77adf929ef30d87b1ccb52e HijackLoader
encrypted
modules.

307¢c1756¢21ee8f4f866ff8327823b55d597fecca3d79f98bcd45581e2e33adee HijackLoader
encrypted
modules.

3142e4b40d27f63bcf7c787e96811€9a801224ce368624d75e88fa6408af896e HijackLoader
encrypted
modules.

12/15



SHA256 Hash

Description

3500426eb9bb67fa91d4848cabeab2fe8e8a614768ed1e389e1f42a2428f64a8

HijackLoader
encrypted
modules.

3aa32545a2f53138d5f816d002b00d45¢c581cd56b1cfab6a2f72a03d6041346

HijackLoader
encrypted
modules.

3ca78fbfbb46722af5f8acac511e77ec0382439f84c78c5710496fe1c377893d

MITRE ATT&CK Techniques

HijackLoader
encrypted
modules.

ID Technique Name Description
T1574.002 Hijack Execution HijackLoader samples mostly use DLL sideloading for
Flow: DLL Side- execution.
Loading
T11027.007 Dynamic API HijackLoader uses the SDBM hashing algorithm and
Resolution CRC32 hashing algorithm for API resolution.
T1027.003 Steganography HijackLoader uses steganography to hide its modules
in a PNG image.
11140 Deobfuscate/Decode  HijackLoader uses XOR to decode its modules and
Files or Information final payload.
T1057 Process Discovery HijackLoader checks for process names and
compares them against antivirus security software.
11620 Reflective Code The ti module is reflectively loaded by stomping it to

Loading

a legitimate DLL using LoadLibrary and
VirtualProtect.

13/15


https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1027/007/
https://attack.mitre.org/techniques/T1027/003/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1057/
https://attack.mitre.org/techniques/T1620/

ID Technique Name

Description

T1547.001 Registry Run Keys /
Startup Folder

HijackLoader creates a shortcut file (LNK) in the
Windows Startup folder as one of its methods for
persistence.

11197 BITS Jobs

HijackLoader uses BITS Jobs to achieve persistence.

T1053 Scheduled Task/Job

HijackLoader’s modTask module uses Windows Task
Scheduler for persistence.

T1548.001 Abuse Elevation
Control Mechanism

HijackLoader’s moduAC modules use CMSTPLUA
COM interface for UAC bypass.

T1055 Process Injection HijackLoader uses process injection techniques to
inject its final payload.
11497 Virtualization/Sandbox HijackLoader’s ANTIVM modules contain multiple
Evasion virtualization evasion techniques.

T1562.001 Impair Defenses:
Disable or Modify
Tools

Thank you for reading

Was this post useful?

HijackLoader’s WwbDATA module contains the
PowerShell (PS) command for Windows Defender
exclusion.

Yes, very!Not really

Disclaimer: This blog post has been created by Zscaler for informational purposes only and is
provided "as is" without any guarantees of accuracy, completeness or reliability. Zscaler
assumes no responsibility for any errors or omissions or for any actions taken based on the
information provided. Any third-party websites or resources linked in this blog post are
provided for convenience only, and Zscaler is not responsible for their content or practices. All


https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1197/
https://attack.mitre.org/techniques/T1053/
https://attack.mitre.org/techniques/T1548/001/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1497/
https://attack.mitre.org/techniques/T1562/001/

content is subject to change without notice. By accessing this blog, you agree to these terms
and acknowledge your sole responsibility to verify and use the information as appropriate for
your needs.

Explore more Zscaler blogs

LA person typing at their computer screen where HijackLoader appears in large letters.
HijackLoader Updates

Read post

l.Modular cement blocks, side of building
Technical Analysis of HijackLoader

Read post

ls.Pikabot reverse engineering
Technical Analysis of Pikabot

Read post

Get the latest Zscaler blog updates in your inbox

=%

L

By submitting the form, you are agreeing to our privacy_policy.

15/15


https://www.zscaler.com/blogs/security-research/hijackloader-updates
https://www.zscaler.com/blogs/security-research/technical-analysis-hijackloader
https://www.zscaler.com/blogs/security-research/technical-analysis-pikabot
https://www.zscaler.com/privacy/company-privacy-policy

