Ransomware Lynx: saiba detalhes da operação e como mitigar essa ameaça

26 de março de 2025

Por <u>Ícaro Cesar</u> e <u>Ismael Rocha</u>: A crescente sofisticação dos ataques cibernéticos exige que empresas estejam sempre um passo à frente na proteção de seus dados. O **Lynx Ransomware** se destaca como uma das ameaças mais avançadas da atualidade, explorando vulnerabilidades para comprometer infraestruturas críticas.

Para ajudar organizações a entender e mitigar esse risco, apresentamos o Ransomware Lynx sob três perspectivas essenciais: **Estratégica, Tática e Operacional**. Neste artigo, apresentamos os principais insights desse estudo, trazendo uma visão completa sobre os métodos do malware, seus impactos e as melhores práticas para proteção.

Continue a leitura e descubra como fortalecer sua defesa cibernética contra essa ameaça emergente!

Sobre o Ransomware Lynx

O ransomware continua sendo uma das maiores ameaças à segurança cibernética global, com ataques cada vez mais sofisticados e direcionados a empresas e instituições. Nos últimos anos, a frequência e a complexidade dessas investidas cresceram exponencialmente, e essa tendência se intensifica em 2025, com novas variantes explorando vulnerabilidades inéditas.

Dentro desse cenário, o **Ransomware Lynx** se destaca como uma ameaça emergente, utilizando **técnicas avançadas de evasão e criptografia** para tornar a recuperação dos sistemas afetados extremamente difícil. Seu impacto já foi observado em diversos ataques documentados, reforçando a necessidade de **estratégias de defesa eficazes, monitoramento constante e resposta rápida a incidentes**.

Para aprofundar o conhecimento sobre essa ameaça, a equipe CTI-Purple Team da ISH Tecnologia realizou uma análise detalhada do Ransomware Lynx, explorando seu funcionamento, vetores de ataque e recomendações de mitigação. Continue a leitura e descubra como proteger sua organização contra essa nova onda de ataques cibernéticos.

Setores e regiões mais afetadas pela ameaça

O Lynx Ransomware tem como alvo principal empresas que lidam com dados críticos e possuem infraestruturas digitais essenciais para suas operações. Esse ransomware foca ataques em setores estratégicos, onde a interrupção de serviços pode causar grandes prejuízos operacionais e financeiros.

Principais setores mais afetados pelo Ransomware Lynx:

- Financeiro Instituições bancárias e empresas de pagamentos digitais.
- Manufatura Indústrias que dependem de processos automatizados.
- Arquitetura e Construção Organizações com projetos e dados estratégicos.
- Energia Infraestruturas críticas que garantem fornecimento elétrico e combustíveis.

Além de explorar vulnerabilidades em empresas de diferentes portes, o Ransomware Lynx tem alcance global, atingindo organizações em diversas regiões. Sua capacidade de se adaptar a diferentes ambientes digitais amplia o potencial de lucro dos cibercriminosos, tornando essa ameaça ainda mais preocupante para empresas de todos os tamanhos.

Quer saber mais sobre as táticas desse ransomware e como proteger sua empresa? Continue a leitura para entender a abrangência global do Lynx e como mitigar os riscos.

Países vítimas do Lynx Ransomware	
O Lynx Ransomware Group surgiu em meados de 2024 e tem sido amplamente reconhecido como uma evolução do <u>INC ransomware</u> que surgiu em meados de 2023, operando por meio de um modelo Ransomware-as-a-Service.	
Atividades do Lynx desde seu surgimento	
Essa abordagem permite que afiliados utilizem sua infraestrutura e ferramentas para lançar ataques de forma rápida e em larga escala, sem a necessidade de desenvolver o malware do zero.	

Como já mencionado, o grupo tem direcionado seus ataques para setores considerados críticos, essa seleção de alvos se deve à sensibilidade dos dados e ao potencial de causar impactos significativos nas operações, fazendo com que as vítimas se vejam pressionadas a pagar o resgate. Abaixo, podemos observar o website de Vazamentos de Dados das vítimas, onde ocorre o processo de dupla extorsão.

Leak Site do Lynx

Diversas empresas de grande porte já saíram na mídia como vítimas dos ataques do **Lynx**. Relatos de incidentes envolvendo estas organizações demonstram a abrangência das operações, evidenciando como o grupo consegue alcançar empresas que atuam em mercados nacionais e internacionais, causando prejuízos não apenas financeiros, mas também à reputação dos envolvidos.

Abaixo podemos observar um exemplo de dados vazados, com um alto preço de resgate, onde destaca-se a categoria de dados vazados:

Exemplo de Vazamento no Leak Site do Lynx

Embora o grupo afirme evitar alvos considerados "**socialmente importantes**" (conforme podemos observar na imagem abaixo), como hospitais e órgãos governamentais, a visibilidade dos ataques e a divulgação de informações sensíveis demonstram o potencial devastador de suas operações.

A atuação do Lynx ressalta a necessidade de uma postura de defesa cibernética robusta, capaz de mitigar os riscos e proteger os dados críticos das organizações.

Discurso de impressa do grupo

Modelo de negócio da ameaça

O Lynx Ransomware opera no modelo Ransomware-as-a-Service (RaaS), permitindo que cibercriminosos afiliados utilizem uma infraestrutura pronta e constantemente atualizada para realizar ataques sem precisar desenvolver o malware do zero.

Como funciona o RaaS do Lynx?

- O grupo centraliza o desenvolvimento e manutenção do ransomware.
- Afiliados recebem um kit completo para lançar ataques.
- A plataforma inclui interfaces de gerenciamento de vítimas e suporte via rede Tor.
- O monitoramento dos ataques acontece em tempo real, maximizando a eficiência da operação.

Essa abordagem acelera a **expansão do ransomware**, tornando-o mais acessível e perigoso. Enquanto os afiliados se concentram na execução dos ataques, o grupo responsável pelo Lynx garante **atualizações constantes** e suporte tecnológico, aumentando a sofisticação e a letalidade da ameaça.

Modelo de RaaS com afiliados

O **Lynx Ransomware** adota a perigosa estratégia de **dupla extorsão**, na qual os dados das vítimas são **criptografados e exfiltrados**. Isso significa que, além de bloquear o acesso às informações, os cibercriminosos ameaçam **vazar ou vender os dados roubados**, aumentando a pressão para o pagamento do resgate.

Por que a dupla extorsão é tão eficaz?

- Maior chance de pagamento: As vítimas temem não apenas a perda dos dados, mas também a exposição de informações sigilosas.
- **Pressão psicológica e reputacional**: Empresas afetadas podem sofrer danos irreparáveis à imagem e à confiança de clientes e parceiros.
- Lucros ampliados para cibercriminosos: O modelo gera ganhos expressivos tanto para os operadores do ransomware quanto para seus afiliados.

A dupla extorsão tem se tornado uma das táticas mais utilizadas por grupos de ransomware, tornando a proteção contra vazamento de dados e criptografia maliciosa ainda mais crucial para empresas de todos os portes.

Modelo de Dupla Extorsão

O Lynx Ransomware opera com um rigoroso processo de seleção e monitoramento de afiliados, garantindo que apenas operadores experientes tenham acesso à sua infraestrutura. Para incentivar ataques bem-sucedidos, o grupo oferece uma participação expressiva nos lucros, chegando a 80% do valor do resgate.

Por que esse modelo fortalece o Ransomware Lynx?

- Alto incentivo financeiro: Afiliados altamente motivados devido aos grandes lucros.
- Escalabilidade do ataque: Expansão rápida da ameaça sem necessidade de novos desenvolvedores.
- Maior eficiência operacional: O grupo central mantém o ransomware atualizado enquanto os afiliados executam os ataques.

Esse modelo de **Ransomware-as-a-Service (RaaS)** garante a **resiliência e escalabilidade** do Lynx, tornando-o uma das ameaças **mais lucrativas e persistentes** do cenário cibernético.

Análise do Lynx Ransomware

Nesta seção iremos explorar as principais características do Lynx Ransomware. Abaixo, podemos observar o fluxo macro da execução do Lynx Ransomware.

Falta de presença e ofuscação

O Lynx Ransomware se diferencia de outras variantes por não utilizar técnicas de ofuscação em seu código, tornando sua análise mais acessível para pesquisadores de segurança. Com ferramentas simples, como o 'strings', é possível extrair informações valiosas sobre seu funcionamento, sem a necessidade de técnicas avançadas de engenharia reversa.

O que isso significa para especialistas em segurança?

- Facilidade na detecção: A ausência de ofuscação permite identificar padrões e indicadores de comprometimento (IoCs) rapidamente.
- Extração de informações cruciais: Com ferramentas básicas, é possível acessar comandos, menus de ajuda e dados codificados.
- Resposta mais ágil a incidentes: A identificação rápida do malware possibilita estratégias eficazes de mitigação.

Na análise do Lynx Ransomware, foi possível extrair facilmente seu **menu de 'help' e um bloco de string codificado em Base64**, demonstrando como sua falta de camuflagem facilita investigações.

Identificação de Strings valiosas pela falta de Ofuscação	
Com o uso do <i>PowerShell</i> somos capazes de decodificar o Base64, permitindo que enhamos extraído a Nota de Ransomware, conforme podemos observar abaixo.	

Decodificação de Nota de Ransomware
Com a <i>flag</i> <u>-help</u> , somos capazes de observarmos de fato o menu de 'help' do Lynx Ransomware, podemos assim observar todas as capacidades que o Lynx pode implementar em sua execução.

Menu de ajuda do Lynx

Engenharia reversa do Lynx Ransomware

A partir desta seção, analisamos de forma técnica utilizando Engenharia Reversa para analisar as principais capacidades do Lynx. Abaixo podemos observar que a função main, também não há nenhuma ofuscação de alteração de fluxo do malware, sendo assim bem fácil de seguir o seu fluxo.

Função 'Main' do Lynx Ransomware

Decodificação de BASE64 da nota do Ransomware

Após checar se o Lynx foi executado com algum argumento (as *flags* descritas acima), o Lynx realiza o processo de decodificação do bloco de dados em *Base64*, conforme vimos anteriormente e anexo *do ID da Vítima* na **Nota de Ransomware**.

Funções de decodificação e construção da Nota de Ransomware

Abaixo, podemos observar que o Lynx não implementa nenhuma técnica de ofuscação de API, utilizando de maneira clara para seus propósitos. No caso abaixo, o Lynx utiliza o <u>CryptStringToBinaryA</u> para realizar o processo de *decode* da Nota de Ransomware.

Função de decodificação Base64 por meio de WinAPIs
Abaixo podemos observar a função, que adiciona o ID da Vítima à Nota de Ransomware (após a decodificação da Nota de Ransomware em <i>Base64</i>) identificado para esta amostra como "66ed20b7c8dfe0f702f199dd".

Função de adição do ID da vítima na Nota de Ransomware

Execução paralela de criptografia via threads

Após isso, o Lynx irá executar uma *Thread* independente para criptografar os arquivos, enquanto executa as capacidades indicadas pelas *flags* utilizadas para executá-lo. Abaixo, podemos observar o uso da criação de uma nova *Thread* por meio da API <u>CreateThread</u>, e tendo como endereço de início do que será executado nesta *Thread* a função de criptografia, na qual será utilizado o algoritmo AES.

Criação de Thread para criptografia paralela

Abaixo, podemos observar o fluxo da função principal que implementa o algoritmo de criptografia de arquivos através de um *loop*.

Loop de criptografia

Também fomos capazes de identificar o algoritmo, por conta da identificação das constantes referente à tabela **S-Box** do *AES*, conforme podemos observar abaixo:

Constantes do S-Box do AES

Montagem de discos "ocultos" para aumentar o impacto

O Lynx Ransomware adota técnicas avançadas para localizar e criptografar discos ocultos no sistema, tornando a recuperação de dados ainda mais difícil para as vítimas. Ao ser executado com a flag --load-drives, o malware inicia um processo automatizado para detectar backups escondidos, impedindo que os usuários restaurem suas informações.

Como funciona essa técnica?

- Identificação de discos ocultos: O Lynx usa as APIs FindFirstVolumeW e GetVolumePathNamesForVolumeNameW para localizar unidades escondidas.
- Montagem automática: O ransomware percorre um array de possíveis volumes, montando cada um deles.
- Criptografia de dados: Após a montagem, os discos são criptografados, eliminando qualquer possibilidade de recuperação manual.

Essa abordagem aumenta significativamente o impacto do ataque, pois **neutraliza backups armazenados em unidades ocultas**, forçando a vítima a considerar o pagamento do resgate.

Array de letras para montagem de disco
Em sequência, o código executa um <i>loop</i> neste <i>array</i> , com o objetivo de tentar montar cada um destes possíveis Discos no sistema.

Loop de montagem de discos para futura criptografia

Implementação não comum da exclusão do Volume Shadow Copy

O Lynx Ransomware adota uma técnica avançada para excluir backups do Volume Shadow Copy (VSS) sem utilizar os binários nativos do Windows, dificultando a detecção por soluções de segurança. Em vez de comandos tradicionais como vssadmin delete shadows, o Lynx manipula o tamanho do VSS para zero por meio da API DeviceloControl, eliminando completamente os pontos de restauração do sistema.

Por que essa técnica é eficaz?

- Evita detecção por ferramentas de segurança que monitoram comandos tradicionais de exclusão de backup.
- Impossibilita restauração manual, forçando a vítima a buscar alternativas mais custosas.
- Aumenta a taxa de sucesso do ransomware, já que as vítimas perdem o acesso a seus dados sem chance de recuperação.

Ao remover silenciosamente os backups do sistema, o Lynx **maximiza o impacto do ataque** e pressiona as vítimas a pagar o resgate. Essa abordagem reforça a necessidade de **estratégias de backup offline e soluções avançadas de segurança** para evitar perdas irreversíveis.

Implementação de técnica de exclusão do VSS via WinAPI

Assim, o Lynx implementa de maneira peculiar a técnica de Impacto <u>Inhibit System</u> <u>Recovery [T1490]</u> do MITRE ATT&CK, de maneira que evade qualquer tentativa de implementar uma detecção através de Logs.

Criação e configuração do Wallpaper padrão

O Lynx Ransomware adota uma estratégia visual para intimidar as vítimas e reforçar a pressão pelo pagamento do resgate. Caso a flag --no-background não seja utilizada, o malware altera automaticamente o wallpaper do sistema, exibindo a Nota de Ransomware na tela do usuário.

Como funciona essa técnica?

- Criação dinâmica do wallpaper: O Lynx gera um arquivo chamado backgroundimage.jpg na pasta Temporária do Windows.
- Uso de APIs para escrita da imagem: O ransomware escreve a nota de resgate na imagem antes de defini-la como fundo de tela.
- Impacto psicológico imediato: A vítima é confrontada visualmente com a exigência do resgate assim que acessa o computador.

Essa abordagem **aumenta a sensação de urgência** e diminui o tempo de resposta das vítimas, tornando-as mais propensas a considerar o pagamento. A alteração do wallpaper também **sinaliza claramente a infecção**, reforçando a necessidade de estratégias proativas de defesa contra o **Lynx Ransomware**.

Criação dinâmica de um Bitmap para a criação do Wallpaper
Basicamente, o fluxo acima irá criar um Wallpaper preto tendo a Nota de Ransomware centralizada na imagem, do tamanho exato da tela de Desktop do dispositivo infectado. Após criar o Wallpaper, o Lynx modifica a Chave de Registro HKU\ <usersid>\Control Panel\Desktop\Wallpaper para forçar a configurar o Wallpaper padrão do dispositivo, por meio da API RegOpenKeyW e RegSetValueExW.</usersid>
Alteração do Wallpaper padrão do dispositivo infectado Abaixo, podemos observar a tela do dispositivo infectado após a execução desta técnica

O Lynx Ransomware utiliza diversas técnicas de evasão, descoberta e impacto para
Mapeamento Tático do Lynx Ransomware segundo MITRE ATT&CK
MITRE ATT&CK - TTPs
Por meio desta técnica, o adversário acrescenta um fator psicológico que pode aumentar o impacto e induzir o cliente a ter mais disposição para realizar o pagamento pelos dados.
Scan de Impressoras Locais e Impressão de Nota de Ransomware

maximizar os danos e dificultar a recuperação do sistema. A tabela abaixo apresenta um resumo das principais táticas e técnicas identificadas, com base na matriz MITRE ATT&CK:

Description

Technique

Tactics

ID

Tactics	ID	Technique	Description
Defense Evasion	T1140	Deobfuscate/Decode Files or Information	Com o objetivo de dificultar a análise estática, o Lynx codifica a nota de resgate em Base64 e realiza sua decodificação de forma dinâmica.
Discovery	T1083	File and Directory Discovery	Utiliza APIs do Windows para percorrer recursivamente diretórios e identificar arquivos para criptografia. Evita arquivos com extensões .exe, .msi e .lynx, além dos diretórios Program Files, Program Files (x86) e AppData.
Discovery	T1082	System Information Discovery	Coleta informações do sistema, como a quantidade de núcleos da CPU, com o objetivo de otimizar a criação de múltiplas threads.
Discovery	T1135	Network Share Discovery	Enumera diretórios compartilhados na rede, ampliando o impacto ao criptografar recursos disponíveis em outros dispositivos.
Discovery	T1057	Process Discovery	Detecta e, se configurado com a flag stop-processes, encerra processos específicos durante a execução do ataque.
Impact	T1486	Data Encrypted for Impact	Utiliza o algoritmo AES para criptografar os arquivos do sistema, exigindo pagamento de resgate para a restauração dos dados.
Impact	T1491.001	Internal Defacement: Wallpaper	Altera o wallpaper da máquina comprometida para exibir a nota de resgate, deixando claro que o sistema foi infectado.
Impact	T1490	Inhibit System Recovery	Remove silenciosamente cópias de sombra (Volume Shadow Copy), dificultando a restauração do sistema sem pagamento de resgate.
Impact	T1489	Service Stop	Se configurado com a flagkill, finaliza serviços e processos específicos para facilitar a criptografia de arquivos em uso.

Malware Behavior Catalog (MBC)

Análise Comportamental do Lynx Ransomware segundo o MBC (Malware Behavior Catalog)

A seguir, apresentamos um mapeamento das táticas e técnicas utilizadas pelo Lynx Ransomware com base no catálogo MBC (Malware Behavior Catalog). Este levantamento visa destacar as ações executadas pela ameaça em diferentes fases de sua operação maliciosa:

Tactics	Technique	Description
Anti-Static Analysis	Obfuscated Files or Information::Encoding – Standard Algorithm	O Lynx codifica a nota de resgate em Base64 para dificultar a análise estática e realiza a decodificação de forma dinâmica.
Cryptography	Encrypt Data::AES	Utiliza o algoritmo Rijndael/AES para criptografar os arquivos da vítima.
Collection	Screen Capture::WinAPI	Captura informações sobre as dimensões da tela com o objetivo de gerar o wallpaper da nota de resgate.
Discovery	System Information Discovery	Coleta informações do sistema, como o número de núcleos da CPU, para otimizar o uso de threads paralelas.
Discovery	File and Directory Discovery	Percorre o sistema recursivamente usando APIs do Windows para localizar arquivos a serem criptografados. Evita arquivos com extensões .exe, .msi e .lynx, além dos diretórios Program Files, Program Files (x86) e AppData.
File System	Create/Write/Delete File	Cria notas de resgate, criptografa arquivos e altera suas extensões para . LINX em loops contínuos.
Process	Create Thread	Utiliza múltiplas threads para executar tarefas paralelas, evitando que a amostra fique limitada a uma única atividade.
Operating System	Registry::Set Registry Value	Altera a chave de registro responsável pelo wallpaper para exibir a nota de resgate.
Operating System	Wallpaper	Define um novo wallpaper com a nota de resgate, como tática de intimidação e pressão psicológica.
Impact	Data Encrypted for Impact	Criptografa os dados da vítima com o objetivo de exigir pagamento pelo resgate.

Indicators of Commitment (IOCs)

A ISH Tecnologia realiza o tratamento de diversos indicadores de compromissos coletados por meio de fontes abertas, fechadas e também de análises realizadas pela equipe de segurança Heimdall. Diante disto, abaixo listamos todos os Indicadores de Comprometimento (IoCs) relacionadas a análise do(s) artefato(s) deste relatório.

Indicators of Commitment (IoCs)

Tabela 1 – Indicadores de Comprometimento

MD5	57f45c0738af9cd49c61984ea99f83ca
SHA-1	5338cae40e5419a0567b8162c52484f390284f15
SHA- 256	b378b7ef0f906358eec595777a50f9bb5cc7bb6635e0f031d65b818a26bdc4ee
Nome do Arquivo	b378b7ef0f906358eec595777a50f9bb5cc7bb6635e0f031d65b818a26bdc4ee.exe

Tabela 2 – Indicadores de Comprometimento

MD5	65c0c7c9fe6bc1d5296447aae6c6c14c
SHA-1	67217e5c6859afb1b2c736625fcf8bee9ad158cc
SHA-256	4e5b9ab271a1409be300e5f3fd90f934f317116f30b40eddc82a4dfd18366412
Nome do Arquivo	win.exe

Tabela 3 – Indicadores de Comprometimento

MD5	0e521e0452f113cdf8b5c2fa6580db1f
SHA-1	4182106fbec3d3fcecde5056b8246b6db317c2a3
SHA-256	f71fc818362b1465fc1deb361de36badc73ac4dd9e815153c9022f82c4062787
Nome do Arquivo	build.exe

Tabela 4 – Indicadores de Comprometimento

MD5	ff458208c49836cdec92f0a4a7ba6afd

SHA-1	c0b013fd8a38c0e7ffa8394de49f401ac7625773
SHA-256	5da4f51e3ced3166336277bb04c32d0cd20f3e28db3d4f02826fee88b7583040
Nome do Arquivo	windows.exe

Tabela 5 – Indicadores de Comprometimento

MD5	a20886a5b378624d16972db66bd4e7e1
SHA-1	89d84ab72b2e5116f4a46b19f4d8096a0a9c7a88
SHA-256	31de5a766dca4eaae7b69f807ec06ae14d2ac48100e06a30e17cc9acccfd5193
Nome do Arquivo	dd.exe

Tabela 6 – Indicadores de Comprometimento

MD5	f16238836909d07f86154c5ccbade96a
SHA-1	558f259459d0ed1b30cbeaee71aa46eb5e40b090
SHA-256	3e68e5742f998c5ba34c2130b2d89ca2a6c048feb6474bc81ff000e1eaed044e
Nome do Arquivo	build.exe

Tabela 7 – Indicadores de Comprometimento

MD5	b1d81e8bbecccc547645d17395538a2d
SHA-1	637728e7bd41bb100a5730547e53960d2bab9b29
SHA- 256	0315dbb793f855f154aa8d227151f1098bd9b580a4f85064648b85bac1321663
Nome do Arquivo	0315dbb793f855f154aa8d227151f1098bd9b580a4f85064648b85bac1321663.exe

Tabela 8 – Indicadores de Comprometimento

MD5	146d350fd6271b4411714c630d8cda87

SHA-1	f22bda5fa8a632e7d2dd2982300b4374168f8f32
SHA- 256	589ff3a5741336fa7c98dbcef4e8aecea347ea0f349b9949c6a5f6cd9d821a23
Nome do Arquivo	589ff3a5741336fa7c98dbcef4e8aecea347ea0f349b9949c6a5f6cd9d821a23.exe

Tabela 9 – Indicadores de Comprometimento

MD5	571684f28ce1cf4d8236dbd46ef6f7f0
SHA-1	d758d1f048ace4547dd3c22357aa2cf223426a50
SHA- 256	468e3c2cb5b0bbc3004bbf5272f4ece5c979625f7623e6d71af5dc0929b89d6a
Nome do Arquivo	468e3c2cb5b0bbc3004bbf5272f4ece5c979625f7623e6d71af5dc0929b89d6a.exe

Tabela 10 – Indicadores de Comprometimento

MD5	d972bbbb3edb0e5ab5751b911f3dda17
SHA-1	c632223f5f7a8a469bbf07eb017863bb83564b84
SHA- 256	571f5de9dd0d509ed7e5242b9b7473c2b2cbb36ba64d38b32122a0a337d6cf8b
Nome do Arquivo	11.exe

Recomendações para manter seu negócio seguro

Além dos indicadores de comprometimento elencados acima pela ISH, poderão ser adotadas medidas visando a mitigação da infecção do referido *malware*, como por exemplo:

Mantenha sistemas e softwares atualizados

Garanta que todos os sistemas operacionais, aplicativos e softwares de segurança estejam atualizados com os patches mais recentes. Isso corrige vulnerabilidades que podem ser exploradas por atacantes.

Implemente soluções de segurança confiáveis

Utilize ferramentas de segurança robustas, como antivírus e firewalls, para detectar e bloquear ameaças potenciais.

Make regular backups

Mantenha backups atualizados e armazenados em locais seguros, preferencialmente offline ou em ambientes isolados, para garantir a recuperação de dados sem necessidade de pagar resgates.

Eduque e treine funcionários

Promova treinamentos regulares sobre segurança cibernética para que os colaboradores reconheçam e evitem e-mails de phishing e outras tentativas de ataque.

Restrinja privilégios de acesso

Adote o princípio do menor privilégio, garantindo que usuários tenham apenas as permissões necessárias para suas funções, limitando o potencial de movimentação lateral de atacantes na rede.

Monitore e analise atividades da rede

Implemente ferramentas de monitoramento para identificar atividades suspeitas ou não autorizadas, permitindo respostas rápidas a possíveis incidentes.

Desenvolva um plano de resposta a incidentes

Estabeleça e teste regularmente um plano de resposta a incidentes específico para ataques de ransomware, assegurando que sua equipe saiba como agir rapidamente para conter ameaças e restaurar operações.

Utilize autenticação Multifator (MFA)

Implemente MFA para adicionar uma camada extra de segurança, dificultando o acesso não autorizado, mesmo que credenciais sejam comprometidas.

Desative serviços e protocolos não utilizados

Reduza a superfície de ataque desativando serviços e protocolos desnecessários que podem ser explorados por cibercriminosos.

Realize avaliações de vulnerabilidades

Conduza avaliações regulares para identificar e corrigir pontos fracos em sua infraestrutura de TI antes que sejam explorados.

References: