
1/13

By Suresh Reddy March 25, 2025

Inside Kimsuky’s Latest Cyberattack: Analyzing
Malicious Scripts and Payloads

labs.k7computing.com/index.php/inside-kimsukys-latest-cyberattack-analyzing-malicious-scripts-and-payloads/

Kimsuky, also known as “Black Banshee,” a North Korean APT group active at least from
2012, is believed to be state-sponsored. Their cyber espionage targets countries like
South Korea, Japan, and the U.S. Their tactics include phishing, malware infections (RATs,
backdoors, wiper malware), supply chain attacks, lateral movement within networks and
data exfiltration.

Recently , we came across IOCs of this APT’s latest attack shared in a tweet, which
pointed to a ZIP file containing the actual payloads. In this blog, we will analyse the
infection chain and conduct a deep dive into the examination of these payloads. We will
also explore how the malware operates, its behaviour, and the techniques used to execute
the attack.

Fig.1.Tweet.

Inside the ZIP file, there are four files: a VBScript, a PowerShell script, and two encoded
text files. These encoded text files contain obfuscated data, which, with further analysis,
could provide crucial insights into the malware’s behaviour and objectives. Below are the
figures showing the encoded content of the two text files, which we will decode and
analyse to uncover the next steps in the attack chain.

Fig.2.Inside Zip file.

https://labs.k7computing.com/index.php/inside-kimsukys-latest-cyberattack-analyzing-malicious-scripts-and-payloads/

2/13

Fig.3.Encoded data of “1.log”.

Fig.4.Encoded data of “2.log”.

In the 1.vbs file, the obfuscated script uses the chr() and CLng() functions to dynamically
generate characters and execute commands. This obfuscation technique helps the script
bypass signature-based detection methods, ensuring that it remains hidden during
execution.

At the end of the script, the generated characters together form a command that is
executed. This command likely runs the 1.ps1 PowerShell script passing 1.log as an
argument to it.

3/13

Fig.5. Script in “1.Vbs” file to generate characters.

Fig.6. Deobfuscated command to run “1.ps1”.

In the 1.ps1 file, the script contains a function to decode base64-encoded data found in the
1.log file and executes the script.

Fig.7. Script in “1.ps1” file.

4/13

Fig.8. ”1.log” file after decoding.

The 1.ps1 script then collects the BIOS serial number, a unique identifier of the
compromised system. This serial number is then used to create a new directory within the
system’s temp folder, ensuring that the attack-related files are stored in a machine-specific
location which is shown in Fig.8.

 Being a VMAware sample, the script determines if it is running in a VM, if yes, it will delete
all four files involved in the attack (1.vbs, 1.ps1, 1.log, and any payload files stored in the
serial number named directory), effectively aborting its execution which is shown in Fig.8.

This script contains 11 functions that outline the further steps in the malware’s operation,
including data exfiltration, Coin information stealing, and Command-and-Control (C2)
communication execution. These functions represent the core of the attack, allowing the
malware to perform its objectives and establish a connection with the attacker.

1. UploadFile ()

In the upload function, it uploads the data exfiltrated as a file to the server in chunks of
1MB, ensuring it can handle large files. It waits for the server’s response; if it gets a “200”
status, it proceeds with the execution. Otherwise, it terminates the execution. It sends
each chunk via an HTTP POST request and checks for success with each loop.

Fig.9. UploadFile function.

2. Unprotect-Data ()

5/13

In the unprotect-data function, it takes the encrypted data from the browser paths of Edge,
Firefox, Chrome, and Naver Whale, decodes that data and stores it into a file.

Fig.10. Unprotect-Data function.

3. GetExWFile ()

In the GetExWFile function, it checks for the crypto wallet extensions mentioned in the
following three hash tables. If it finds any of those wallets, it takes the “.ldb” and “.log” files
of those extensions for exfiltration purposes and stores them in the destination folder
specified by “$Storepath”.

Fig.11. GetExWFile function.

Fig.12. Hash Table1.

6/13

Fig.13. Hash Table2.

Fig.14. Hash Table3.

4.GetBrowserData ()

In the getbrowserdata() function, it verifies if any of Edge, Firefox, Chrome, and Naver
Whale is currently running to extract user profile data such as cookies, login info,
bookmarks, and web data. It also stops the browser before collecting information about
the installed extensions and cache data, such as webcacheV01.dat, for each browser. For
some of the browsers, it also performs decryption to access encrypted keys and retrieve
sensitive data, which is then stored along with the decrypted master key of encryption.

7/13

Fig.15. Content inside Get Browser Data ().

5.Init ()

In the Init() function, it collects detailed information about the system hardware, disk and
volume details, network adapter status, and a list of all installed programs, including their
version, publisher, and installation date. These details are then saved into a text file called
“info.txt”.

Fig.16. Init function.

6.Download file ()

The download file function downloads any file based on the C2 command.

Fig.17. Download file function.

7.CreateFileList ()

The create_file_list() function checks all the drives in the system for specific extensions
and name patterns, and stores the results in the path “$storepath/filelist.txt”.

8/13

Fig.18. CreateFileList function.

Fig.19. Extensions for checking in drivers.

Fig.20. Searching name patterns.

8.RegisterTask ()

It creates persistence for the files “1.log” and “1.vbs”.

Fig.21. Persistence.

9.Send ()

The send () function uploads all the collected information to the server after compressing
the data into a ZIP file named “init.zip”. It then renames the ZIP file to “init.dat” and deletes
all backup files from the system after uploading.

Fig.22. Send function.

10.Get-ShortcutTargetPath () andRecentFiles ()

9/13

It checks all the “.lnk” files in the Recent folder and stores all the target paths, which are
retrieved with the help of the Get-ShortcutTargetPath function. This information is then
saved to the text file “recent.txt”.

Fig.23. Get-ShortcutTargetPath function.

Fig.24. RecentFiles function.

11. Work ()

The work function handles the execution of C2 commands along with uploading files and
writing files to the system. It enters an infinite loop, sleeping for 600 seconds (10 minutes)
before uploading the “k.log” file, which was generated from the execution of the “2.log” file.
After uploading, it deletes the file from the system.

Fig.25. Work function.

10/13

Fig.26. C2 Command execution.

This is the flow of execution of the above functions in this attack, where it executes
another PowerShell command that invokes the “2.log” file, which performs keylogging.

Fig.27. Flow of execution of functions and command to execute “2.log”.

Fig.28. “2.log” after decoding.

The above figure.28 shows the “2.log” file after decoding. It contains a script for importing
all the Windows API functions required for detecting key presses, getting window titles,
and managing keyboard states. It performs actions such as clipboard monitoring,
keystroke monitoring, and window title logging.

11/13

Fig.29. Code for clipboard monitoring.

Fig.30.Window title logging.

12/13

Fig.31.Keystroke monitoring.

Malicious activities by this stealer discussed here could be considered the groundwork to
understand the victim and the further C2 commands from the attacker could cause further
damage.

As we can see, threat actors are employing techniques that are time consuming,
interlinked multi component based to to become more evasive. Compared to other
stealers, this one is mainly focused on network related information which could be used for
active reconnaissance. As the stealer is aiming at the user’s sensitive information,
protecting yourself with a reputable security product such as K7 Antivirus is necessary in
today’s world. We at K7 Labs provide detection for such kinds of stealers at different
stages of infection and all the latest threats.

IOCs

13/13

Name Hash Detection Name

1.vbs CE4549607E46E656D8E019624D5036C1 Trojan (0001140e1)

1.ps1 1119A977A925CA17B554DCED2CBABD85 Trojan (0001140e1)

1.log 64677CAE14A2EC4D393A81548417B61B Trojan (0001140e1)

2022 K7 Computing. All Rights Reserved.

