
1/27

March 23, 2025

Analyzing Vidar Stealer🔎
aviab1.github.io/Vidar-Stealer/

13 minute read

Overview

Vidar is an infostealing malware designed to collect a variety of sensitive information from an
infected computer and exfiltrate it to an attacker. It operates as malware-as-a-service (MaaS)
and has been widely used by cybercriminals since its discovery in late 2018.

Vidar is typically distributed to victims via phishing emails and fake installers. I have
personally seen many fake installers containing some type of stealer, such as cracked
software, game cheats, keygens, and more.

https://aviab1.github.io/Vidar-Stealer/

2/27

Here’s an infection flow that I’ve created for what we’re going to analyze today. This is just to
give you a general idea of the infection chain and is not 100% accurate:

Sample Information

MD5: b6fff0854975fdd3a69fd2442672de42

SHA256: fe0d2c8f9e42e9672c51e3f1d478f9398fe88c6f31f83cadbb07d3bb064753c6

Size: 270,336 bytes

Compilation date: 2025-03-13 10:34:19

Loader Analysis

Static Analysis

The first thing I do in every investigation involving files is gain an overview of the files and
their capabilities, encryption used, obfuscation, and packers. At this stage, I make
hypotheses about the file’s capabilities and goals so I can focus on the important aspects
and avoid unnecessary rabbit holes.

Dropping the file into Detect it easy, it didn’t identify any known packers, and it seemed like
the sample was compiled with Microsoft Visual C/C++(2022+)[-] using the Microsoft
Linker(14.42).

3/27

As seen above, the sample appears to be 64-bit. We can verify this by checking the magic
header in the optional header of the PE file. A value of 0x20B indicates a 64-bit file, while
0x10B signifies a 32-bit file.

As we can see, this is indeed 0x20B (Little Endian) which means this is 64-bit file.

Next, let’s check the compilation time. We can examine the TimeDateStamp, which contains a
DWORD (4 bytes) value representing the time of compilation.

4/27

In order to get the actual value, we need to convert it to big endian and then to decimal. The
value is stored as epoch time (also known as Unix time), which is how computers store and
measure time, so we need to convert it accordingly.

As we can see, after all the conversions, the compilation date is 2025-03-13. We can verify
this by checking any PE parser, i.e., CFF Explorer, PE Bear, and others.

Checking the entropy of the file reveals that the .BSS section has high entropy. This section
usually contains uninitialized global and static objects, so high entropy could indicate that it
contains encrypted shellcode or additional payloads for the malware. It’s actually common for
attackers to store encrypted shellcode in the .BSS and .data sections, but we’ll revisit this
later.

5/27

Checking the imports reveals functionality that could be used for anti-analysis and anti-
debugging, such as UnhandledExceptionFilter, SetUnhandledExceptionFilter,
IsDebuggerPresent, and GetEnvironmentStringsW. Additionally, there are functions that
suggest potential malicious functionality.

Running Strings/Floss against the file didn’t yield any interesting results.

Now that we have an overview of the file, its capabilities, and potential functionality, we can
start analyzing it.

First thing that the program does is get it’s full path in order to load itself into memory, it’s
using GetModuleHandleW and GetModuleFileNameA.

6/27

After that, we can see that it opens the file in binary mode. It uses fopen, then moves the file
pointer to the end with fseek, retrieves the file size with ftell, and finally closes the file.

Next, we can see that it allocates memory using the size returned from ftell, then reads the
file’s contents into the buffer.

Next, we can see that it loads the file’s content into the R10 register. It then retrieves the
e_lfanew offset, which contains the address of the PE header. After that, it extracts the
number of sections and checks if it is zero, jumping accordingly.

If the number of sections is non-zero, it loads the effective address of a variable named .BSS.
As we recall, the .BSS section had very high entropy, which further supports the idea that it
contains some form of encrypted shellcode that will eventually be injected into memory.

7/27

Walking the PEB (Process Environment Block)

“Walking the PEB” is an approach malware authors use to interact with the Process
Environment Block in Windows. This data structure holds information about the process,
loaded modules, environment variables, and more. By walking the PEB, malware authors
can dynamically resolve APIs that are typically monitored by security products and may be
detected during static analysis.

We can see that the malware accesses the PEB at gs:60h, which is how the PEB is
accessed in a 64-bit architecture. In a 32-bit architecture, it would be accessed through
fs:30h.

Next, the malware moves the address of PEB_LDR_DATA into RCX. PEB_LDR_DATA is a structure
that holds three pointers to three doubly linked lists of loaded modules. It then accesses
offset 0x20, which corresponds to InMemoryOrderModuleList - a structure that contains all
the loaded modules in memory, including DLLs.

We can see the string "KERNEL32.DLL". The malware will parse the
InMemoryOrderModuleList, searching for this module. If found, it returns its address.

API Hashing

API hashing is a common trick malware uses to hide its function calls and make static
analysis harder. Instead of storing API names like LoadLibrary or GetProcAddress in plain
text, it converts them into hash values. This way, security tools and analysts can’t easily spot
which APIs the malware is using just by scanning the binary.

At runtime, the malware calculates hashes for loaded APIs and compares them against its
stored values to resolve what it needs. This is often combined with walking the PEB to find
loaded modules without relying on standard Windows API calls, making detection even more
difficult.

8/27

As we can see, it’s quite obvious that the malware implements API hashing. Hardcoded hash
values are being passed to the sub_1400011C0 function (ResolveFunctionByHash), and the
returned address is saved on the stack.

We can create an IDAPython script to retrieve the APIs by recreating the hashing algorithm
used by the malware and computing it against a list of exports from the relevant DLL - in this
case, kernel32.dll. Alternatively, we could debug it and resolve them dynamically.

9/27

The combination of resolved APIs looks like a classic preparation for process injection. This
also makes sense based on what we observed in the .BSS section.

Decryption of Encrypted Shellcode

After that, I see a call to the function sub_7FF7C53B13F0, which is responsible for the
decryption routine of the encrypted shellcode. The function likely uses RC4 encryption, as
indicated by the initialization of an array of 256 bytes, which is part of the Key Scheduling
Algorithm (KSA) in RC4.

10/27

Once the array is initialized, it gets shuffled with a key.

The final step is the Pseudo-Random Generation Algorithm (PRGA), which uses the array
to generate a keystream (a pseudo-random byte sequence) that is XORed with the plaintext
to produce the ciphertext.

Instead of analyzing it statically, we can just dynamically analyze it, let the magic happen,
and get the next stage (;

Unpacking

11/27

Okay, at this point, I have enough information to confidently say that we’re dealing with a
loader that uses remote process injection to execute its next stage.

There’s one neat trick that will help us unpack it with a single breakpoint. As we can see, the
malware uses WriteProcessMemory. This API takes several parameters, but the third one,
lpBuffer, is a pointer to the buffer that contains data to be written into the address space of
the specified process.

After setting the breakpoint, we can inspect the third argument on the stack, where we
should see the data that is about to be written to the process. By doing this, we get the most
beautiful thing -the MZ header. It seems like the malware is trying to inject a PE file into a
remote process.

We can follow the memory map and dump the process, but before that, let’s see which
process it’s getting injected into.

By following the CreateProcessA call, which we know the malware uses, we can see that the
process being injected with the PE is
C:\Windows\Microsoft.NET\Framework\v4.0.30319\MSBuild.exe.

Now, let’s dump the next stage by following the memory map

12/27

and dumping it to disk

That’s about it with the loader. Now, let’s analyze the real deal – the stealer!

Stealer Analysis

13/27

Overview

It seems like this time we’re dealing with a 32-bit binary compiled on
2025-02-23.

Running Strings yields quite interesting results:

Multiple occurrences of strings related to crypto wallets.
Multiple references to browser paths.
URLs of a Telegram channel and a Steam profile.
References to numerous files that could potentially store information about the target
and passwords.

Data Theft

Before the stealer begins data harvesting, it downloads several DLLs from the C2 server,
including:

freebl3.dll
mozglue.dll
msvcp140.dll
nss3.dll
softokn3.dll
vcruntime140.dll

These DLLs are legitimate and likely used by the stealer to enable parsing of relevant
information and to facilitate the necessary capabilities for data harvesting.

Vidar is capable of stealing a wide array of data, including:

Browser Data (history, autofill, cookies)
General Information (username, computer details, local time, language, installed
software, processes, and more)
Crypto Wallets
Screenshots of your PC
And more

Let’s go over some of the things the stealer harvests.

FileZilla

The stealer seems to parse the file \AppData\Roaming\FileZilla\recentservers.xml and
retrieve the hostname, port, and password if they exist.

14/27

WinSCP

Next, the stealer opens Software\\Martin Prikryl\\WinSCP 2\\Configuration, which is
the registry key that contains information about the configuration in WinSCP. Then, it
enumerates the values to check if Security and UseMasterPassword exist.

After that, the stealer opens Software\\Martin Prikryl\\WinSCP 2\\Sessions, which is
the registry key that contains information about saved WinSCP sessions. It then enumerates
the session keys and processes each one to extract details such as the HostName,
PortNumber, UserName, and Password. For each session, the stealer retrieves the values of

15/27

these registry keys and constructs a string with the session information. If the password
exists, it is retrieved and stored as part of the session details. The information is then
allocated and copied into memory

Screenshot

16/27

The stealer captures a screenshot by using GetDesktopWindow to get the window handle of
the desktop, then it calls GetDC to obtain a device context for the desktop window and
creates a compatible bitmap with CreateCompatibleBitmap to store the screenshot.

Then it delete any temporary objects, doing sort of a clean-up

Browser Data

Vidar stealer supports extracting information from the following browsers:

Google Chrome

Amigo

Torch

Vivaldi

Comodo Dragon

Epic Privacy Browser

CocCoc

Brave

17/27

Cent Browser

7Star

Chedot Browser

Microsoft Edge

360 Browser

QQBrowser

CryptoTab

Opera Stable

Opera GX Stable

Mozilla Firefox

Pale Moon

It seems like the stealer uses remote browser debugging to steal cookies. Besides that, it
goes through all the browser-related files and tries to extract information from them.

Crypto Wallets

Vidar supports stealing from various cryptocurrency wallets such as Bitcoin, Ethereum,
Binance, Brave Wallet, Opera Wallet, Monero, and the list goes on.
For example, the stealer
opens the registry key SOFTWARE\monero-project\monero-core and queries the value
wallet_path to check if the file wallet.keys exists.

The stealer creates an SQLite database to store information about the collected data, such
as passwords, browser history, and other sensitive details.
Here’s an example of the basic
structure used to store data:

18/27

There’s so much more that Vidar stealer is capable of in terms of stealing and harvesting
data, but I can’t go over all of them one by one because it would take forever.

19/27

Information Log

The stealer gathers almost all general information about the victim. After collecting the
relevant data, it saves it in a file named information.txt in memory and sends it to the C2
server.

Some of the fields it collects are:

Machine ID
HWID
GUID
Computer Name
Time Zone
Windows
And more

In order to extract the relevant information, it uses various APIs and parses registry keys to
build the information.txt file. For example, to obtain all running processes on the system,
the stealer uses the CreateToolhelp32Snapshot function to take a snapshot of all running
processes. It then iterates over these processes using the Process32First and
Process32Next functions.

Besides the process enumeration function, the stealer collects information about installed
programs from the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall. It then
parses the DisplayName and DisplayVersion values to list all installed software and their
respective versions.

20/27

This is how Information.txt looks like:

21/27

Version: 13.2

Date: 20/3/2025 15:44:39

MachineID: 169e761d-7c54-4ade-a217

GUID: {75ac9683-f7c2}

HWID: 8EBD693388E01671227304-75ac9683-f7c2

Path: C:\Users\AviaLab\Desktop\v7942.exe_000002166AC90000.bin

Work Dir: In memory

Windows: Windows 10 Pro

Install Date: Disabled

AV: Disabled

Computer Name: DESKTOP-C654J0B

User Name: AviaLab

Display Resolution: 1558x920

Keyboard Languages: English (United States) / Hebrew (Israel)

Local Time: 20/3/2025 15:44:39

TimeZone: -8

[Hardware]

Processor: AMD Ryzen 9 7950X3D 16-Core Processor

Cores: 2

Threads: 2

RAM: 8191 MB

VideoCard: VMware SVGA 3D

[Processes]

System

Registry

smss.exe

csrss.exe

wininit.exe

csrss.exe

winlogon.exe

services.exe

lsass.exe

fontdrvhost.exe

< ... >

[Software]

Digital Detective DCode v5.5 - 5.5.21194.40

Visual Studio Build Tools 2017 - 15.9.61

Event Log Explorer Standard Edition 5.5 - 5.5

Visual Studio Community 2022 - 17.9.6

Kernel OST Viewer ver 21.1

Kernel Outlook PST Viewer ver 20.3

Malcode Analyst Pack v0.24

Microsoft Edge - 134.0.3124.72

Microsoft Edge WebView2 Runtime - 134.0.3124.72

Nmap 7.93 - 7.93

Npcap - 1.73

22/27

PDFStreamDumper 0.9.5xx

vbdec

WinSCP 6.1.1 - 6.1.1

< ... >

In addition, there’s another file called passwords.txt, which appears to contain all the
collected passwords. This file is sent to the C2 during the data exfiltration process.

Additional Payloads

The stealer also acts as a downloader. Once it finishes all its harvesting activities, it
downloads additional payloads to C:\ProgramData\<GeneratedFolder>\ using
InternetOpenA.

We can verify this by using a debugger. Let’s set a breakpoint on InternetOpenUrl and
check the second argument passed on the stack. It should be lpszUrl, a pointer to a null-
terminated string variable that specifies the URL to begin reading.

After that, it uses WriteFileA to write the file to C:\ProgramData\<GeneratedFolder>\ with
a newly generated name and executes it using ShellExecuteExW.

23/27

Self-Deletion

Once the malware completes all its activities, it performs self-deletion using ShellExecuteA.
It does this by opening cmd.exe and running the following command:

"C:\Windows\system32\cmd.exe" /c del /f /q "<MalwarePath>" & timeout /t 11 &

rd /s /q "C:\ProgramData\<GeneratedFolder>" & exit

First, the malware forcefully and silently deletes its own executable with del /f /q "
<MalwarePath>". It then waits for 11 seconds (timeout /t 11) before recursively and
silently removing the dynamically generated directory <GeneratedFolder>.

24/27

C2 Communication

After looking into it a bit, I’ve discovered that the stealer uses a known technique called
“Dead Drop Resolver”, which leverages existing, legitimate external web services to host
information that points to additional command and control (C2) infrastructure. By doing this,
malware authors can avoid hardcoding C2 addresses in their malware, making detection and
takedown efforts more challenging.

I observed that the stealer uses two well-known sites — Steam and Telegram. For those
unfamiliar, Steam is a popular gaming platform where users can purchase thousands of
games, while Telegram is a widely used messaging platform.
Following those URLs reveals

25/27

the real C2 address in use by the stealer

The addresses are bundled with a hard-coded profile ID (dqu220), which is used to retrieve
the correct configuration of the malware.

C2 Data Exfiltration

From what it seems, the stealer creates a zip archive where it stores all the relevant files and
sends it in a POST request to the C2 server in a base64-encoded format. In the last POST
request, the stealer adds additional content to be sent to the C2 server.

26/27

Summary

Vidar Stealer is a highly versatile malware designed to steal a wide variety of sensitive
information. It uses smart techniques to avoid hard-coded command-and-control (C2)
servers, making it harder to track. On top of that, it can act as a downloader, fetching and
executing additional malicious payloads.

Indicators Of Compromise (IOC)

File Hashes (SHA256)

fe0d2c8f9e42e9672c51e3f1d478f9398fe88c6f31f83cadbb07d3bb064753c6
f2399716df6735c66dfa05a713ff41182e80a6c3c596ecb133b34b65f2d1f00f
dcc05c3ac7ae22d601bcb7c97cfcda568f3041bd39b2fd8899282dfde83369a5
879d835c2156b4d12a5e4d542c282861540c3799225238ff34ffa4b308c376cb
d2bcc0239e7a272fa47b91a726598fd7ad526d7ca16a3ca3556bfc3db7e3bb81

27/27

Related Domains,URLs,and IP addresses

hxxp[://]77[.]90[.]153[.]241/a07daa7aeaf96e14/vcruntime140[.]dll
hxxp[://]77[.]90[.]153[.]241/a07daa7aeaf96e14/softokn3[.]dll
hxxp[://]77[.]90[.]153[.]241/a07daa7aeaf96e14/nss3[.]dll
hxxp[://]77[.]90[.]153[.]241/a07daa7aeaf96e14/msvcp140[.]dll
hxxp[://]77[.]90[.]153[.]241/a07daa7aeaf96e14/mozglue[.]dll
hxxp[://]77[.]90[.]153[.]241/a07daa7aeaf96e14/freebl3[.]dll
hxxp[://]77[.]90[.]153[.]244/v7942[.]exe
hxxps[://]steamcommunity[.]com/profiles/76561199832267488
hxxps[://]t[.]me/g_etcontent
hxxps[://]t[.]p[.]formaxprime[.]co[.]uk

Yara Rules

rule Vidar_stealer {

 meta:

 description = "A rule for detecting Vidar stealer malware"

 sha1 = "689f5c3624a4428e9937ca6a6c26d449dc291a12"

 author = "AviaB"

 strings:

	 $mz = "MZ"

 $B1 = "steamcommunity.com/profiles/76561199832267488"

	 $B2 = "t.me/g_etcontent"

	 $B3 = "information.txt"

	 $B4 = "passwords.txt"

	 $B5 = "HWID:"

	 $B6 = "MachineID:"

	 $B7 = "GUID:"

	 &B8 = "AV:"

 condition:

 ($mz at 0) and 2 of ($B*)

}

