
1/14

March 20, 2025

Reversing FUD AMOS Stealer
denwp.com/amos-stealer-fud/

The AMOS Stealer is a macOS malware known for its data theft capabilities, often delivered
via an encrypted osascript (AppleScript) payload. In this blog, I’ll walk you through my
process of reverse engineering a Fully Undetected (FUD) AMOS Stealer sample using
LLDB, with Binary Ninja (Binja) as a reference for addresses, to extract its decrypted
osascript payload. We’ll start with static analysis, identify and bypass the anti-VM logic,
discover a partial payload, and finally use a Python script to extract the full decrypted
payload.

Initial Discovery

While hunting for FUD malware, I came across a sample similar to one posted by the
@MalwareHunterTeam. This malware remained undetected on March 11, 2025, thanks to a
single anti-VM command that halts execution on QEMU and VMware virtual machines. The
below sample screenshot (taken on March 11, 2025) confirms the FUD status and shows no
security vendors flagged it as malicious, with a community score of 0/61.

Looks the actors started to use a new anti sandbox method sometimes yesterday,
already seen a few samples with such behaviour...

😂
But it's enough to bypass VT sandboxes as you can see, so...

🤷‍♂️ pic.twitter.com/T0oVhg8oUo

— MalwareHunterTeam (@malwrhunterteam) March 11, 2025

Static analysis

The sample is a DMG file named Installer_v2.7.8.dmg. Upon mounting, instructions were
found directing the user to right-click the Installer binary and select "Open." This technique
is commonly used on macOS to bypass Gatekeeper, the security mechanism that enforces
code signing and prevents unverified apps from running unless explicitly allowed by the user.

https://denwp.com/amos-stealer-fud/
https://x.com/malwrhunterteam?ref=denwp.com
https://t.co/T0oVhg8oUo?ref=denwp.com
https://twitter.com/malwrhunterteam/status/1899365176832307630?ref_src=twsrc%5Etfw&ref=denwp.com

2/14

Extracting the contents of the DMG revealed its folder structure, including hidden files like
.background and .HFS+ Private Directory Data, a volume icon, and the main Installer
binary along with its resource file.

Running the file command on the Installer binary confirmed it’s a Mach-O universal binary
with two architectures: x86_64(for Intel Macs) and arm64 (for Apple Silicon Macs). This
makes the binary compatible with a wide range of macOS systems.

3/14

To look for readable commands or strings, I ran the strings command on the Installer
binary. However, the output revealed only random blobs of data, indicating that the strings,
including the osascript payload, are likely encrypted or encoded to evade static analysis.

For a deeper static analysis, Detect It Easy (DIE) was used to examine the file
properties. DIE confirmed that the Installer is a Mach-O FAT binary supporting x86_64 and
arm64 architectures. The x86_64 slice targets macOS 10.15.0 (or later), while the arm64 slice
targets macOS 11.0.0 (or later). Both are 64-bit executables compiled with clang and signed
with codesign to pass Gatekeeper checks.

4/14

Using LLDB debugger

With static analysis revealing obfuscated strings, dynamic analysis was necessary to
uncover the osascript payload.

Binary Ninja was used to analyze the binary’s structure and identify key addresses. In Binja,
the entry point at 0x1008722a0 (labeled _start(), but corresponding to
___lldb_unnamed_symbol50082 in LLDB), appeared central to the malware’s logic. I also
noted several calls to system(), which AMOS frequently uses to execute its osascript
payloads.

Bypassing Anti-VM logic using LLDB

AMOS Stealer often employs anti-VM techniques to evade analysis in sandboxed
environments, typically by querying system information to detect virtualization signatures like
QEMU or VMware.

The binary was loaded into LLDB, and initial breakpoints were set to catch key functions
potentially used for anti-VM or anti-debugging checks:

5/14

(lldb) breakpoint set --name ptrace

(lldb) breakpoint set --name system

(lldb) breakpoint set --address 0x100001220

(lldb) breakpoint set --name pthread_create

(lldb) breakpoint set --name sysctl

These breakpoints target:

ptrace: For debugger detection.
system: For the anti-VM osascript call.
0x100001220: For a sysctl check (system information query).
pthread_create: For threaded checks (e.g., parallel anti-debugging logic).
sysctl: For additional VM detection.

I resumed execution with continue, and the first breakpoint hit was at pthread_create,
indicating the program was attempting to create a thread—likely for additional checks or anti-
debugging logic. This was bypassed by forcing the pthread_create call to return
immediately with a success status (0), neutralizing the thread creation:

(lldb) thread return 0

(lldb) continue

6/14

The next breakpoint hit was at system(). The main thread was confirmed, and the command
string passed to system() was inspected:

(lldb) thread list

(lldb) thread select 1

(lldb) p (char*)$rdi

The %rdi register, which holds the first argument to a function in the x86_64 calling
convention, revealed the anti-VM osascript command. This script checks for QEMU or
VMware signatures in the system’s memory data, exiting with status 42 if a VM is detected, or
0 if not.

osascript -e 'set memData to do shell script \"system_profiler
SPMemoryDataType\"\n\tif memData contains \"QEMU\" or memData contains \"VMware\"
then\n\t\tdo shell script \"exit 42\"\n\telse\n\t\tdo shell script \"exit 0\"\n\tend
if'"

I checked the return value of system() in %eax, the register used to store return values in
x86_64. Then I patched %eax to 0 to trick the program into thinking no VM was present.

7/14

The current frame was disassembled to understand the logic after the system() call:

(lldb) disassemble --frame

The disassembly revealed hardcoded strings loaded into stack buffers, likely encrypted data
or keys, and confirmed the two additional system() calls at 0x10087248b and 0x1008724b4.

The code was stepped through to ensure the patch worked. At 0x100872370, the program
compared the value at -0xa0(%rbp) to 0:

(lldb) p/x *(int*)($rbp - 0xa0)

(int) 0x00000000

Since %eax was patched to 0, the value at -0xa0(%rbp) was 0, so the je jump to
0x10087240a was taken, allowing execution to continue.

8/14

Extracting the Decrypted osascript Payload

With the anti-VM check bypassed, the focus shifted to finding the main osascript payload. I
stepped to 0x10087240a and set a breakpoint at the second system() call to inspect its
command:

(lldb) breakpoint set --address 0x10087249b

(lldb) continue

When the breakpoint hit, the argument in %rdi was dumped:

(lldb) memory read --size 1 --format char --count 200 $rdi

This was not the osascript payload but a cleanup command to detach the process (disown)
and kill the Terminal app (pkill Terminal), likely to hide its activity.

9/14

The third system() call was targeted next, with a breakpoint set at 0x1008724b4 :

(lldb) breakpoint set --address 0x1008724b4

(lldb) continue

When the breakpoint hit, %rdi was dumped again:

memory read --size 1 --format char --count 500 $rdi

This was the osascript payload, starting with osascript -e 'set release to true...,
indicating the beginning of AMOS Stealer’s data theft logic, including hiding the Terminal
window and defining a filesizer function to process files.

Using LLDB scripted approach to extract full payload

To extract the entire payload without guessing its size, LLDB’s Python scripting was
employed to read the string in %rdi until its null terminator (\0). Since system() expects a
null-terminated C-style string, this approach ensures the entire payload is captured:

10/14

import lldb

Attach to the current process

process = lldb.debugger.GetSelectedTarget().GetProcess()

Evaluate $rdi to get its value

frame =
lldb.debugger.GetSelectedTarget().GetProcess().GetSelectedThread().GetSelectedFrame()

frame.EvaluateExpression("$rdi") gets the address stored in $rdi.

rdi_value = frame.EvaluateExpression("$rdi").GetValueAsUnsigned()

ReadCStringFromMemory reads from that address until \0, up to 65536 bytes (64 KB).
You can change this value depending on the payload.

error = lldb.SBError()

payload = process.ReadCStringFromMemory(rdi_value, 16384, error)

Print payload

print(payload)

Exit script mode

quit()

An initial buffer of 16384 bytes was used, but only after determining the payload exceeded
6000 bytes, the buffer was increased to 65536 bytes to ensure complete capture.

The script output the full osascript payload, which aligned with the format of other AMOS
Stealer payloads.

11/14

If you’re analyzing similar malware, this method—combining manual debugging with scripted
automation—can save you hours of guesswork.

Amos Stealer Payload

Atomic MacOS stealer malware is designed to exfiltrate sensitive information from macOS
systems. It leverages AppleScript to perform a variety of malicious tasks, including stealing
browser data, cryptocurrency wallet information, and personal files, before sending the
collected data to a remote server.

Stealth and persistence

Hides its execution by setting the Terminal window to invisible.

File collection

Browsers: Targets Chromium-based browsers (e.g., Google Chrome, Brave, Edge,
Vivaldi, Opera) and Firefox, extracting cookies, login data, web data, and extension
settings (e.g., crypto wallet plugins).
Cryptocurrency Wallets: Steals data from desktop wallets like Electrum by copying
wallet files from specific directories.
Telegram: Grabs Telegram Desktop data, including session files from the tdata folder.
File Grabber: Collects files with specific extensions (e.g., .txt, .pdf, .docx, .wallet, .key)
from Desktop, Documents, and Downloads folders, with a size limit of 30MB total.
System Information: Captures hardware, software, and display details using
system_profiler.

Password collection

12/14

Attempts to retrieve the user’s Chrome master password via the security command. Prompts
for the system password if needed, using a deceptive dialog disguised as a legitimate
"System Preferences" request.

Data exfiltration

Archives stolen data into a ZIP file (/tmp/out.zip) and uploads it to a hardcoded C2
(command-and-control) server (hxxp[://]95[.]164[.]53[.]3/contact) via a curl POST
request.

hxxp[://]95[.]164[.]53[.]3/contact

IOC

SHA256:

3f85a1c1fb6af6f156f29e9c879987459fb5b9f586e50f705260619014591aad

==

C2: 95[.]164[.]53[.]3

💡

Additional IOCs (196 file hashes) can be found related to AMOS Stealer in my git repository.

Yara

https://github.com/tonmoy0010/DenwpResearch/blob/main/Amos%20Stealer/16-03-2025-IOCs?ref=denwp.com

13/14

rule AMOS_Stealer_MacOS_AppleScript {

 meta:

 description = "Detects AMOS Stealer malware payload written in AppleScript
targeting macOS"

 author = "Tonmoy Jitu"

 date = "2025-03-19"

 threat_type = "Stealer Malware"

 platform = "macOS"

 strings:

 $func1 = "filesizer" ascii

 $func2 = "GrabFolderLimit" ascii

 $func3 = "GrabFolder" ascii

 $func4 = "parseFF" ascii

 $func5 = "chromium" ascii

 $func6 = "telegram" ascii

 $func7 = "filegrabber" ascii

 $func8 = "send_data" ascii

 $path1 = "/tmp/out.zip" ascii

 $path2 = "Library/Application Support/" ascii

 $path3 = "Telegram Desktop/tdata/" ascii

 $cmd1 = "osascript -e" ascii

 $cmd2 = "system_profiler SPSoftwareDataType SPHardwareDataType
SPDisplaysDataType" ascii

 $cmd3 = "curl -X POST" ascii

 $c2 = "http://95.164.53.3/contact" ascii

 $header1 = "user: cYZDDJE-ruVrlQxunrDdZoQY2qKvdxJ6Q/11uusIeNA=" ascii

 $header2 = "BuildID: zNJZpzGN34Rrvy1zljsQgIP1/9leq2QuwynS7XIo2d4=" ascii
 $prompt = "Required Application Helper.\nPlease enter password for continue."
ascii

 $browser1 = "Google/Chrome/" ascii

 $browser2 = "BraveSoftware/Brave-Browser/" ascii

 $wallet = "deskwallets/Electrum" ascii

 condition:

 (1 of ($func*)) and

 (

 (2 of ($path*)) or

 (1 of ($cmd*)) or

 ($c2) or

 (1 of ($header*)) or

 ($prompt)

) and

 (1 of ($browser*) or $wallet)

}

Reference:

14/14

Watch Video At:

https://youtu.be/lZKo8YP3GPw

Denwp Research © 2025

https://youtu.be/lZKo8YP3GPw
https://denwp.com/

