
1/26

admin March 14, 2025

Lumma Stealer – A tale that starts with a fake Captcha
v4ensics.gr/lumma-stealer-a-tale-that-starts-with-a-fake-captcha/

V4ensics has observed multiple malware campaigns, which start with a fake Captcha page.
The victim visits this page either by visiting a spear-phishing link or just, as seen
recently in multiple occasions, through a seemingly benigh advertisement / popup in a site,
which hosts pirated content (movies and tv series).

In the fake Captcha page, which the present article analyzes, v4ensics was called to
investigate the case of a user, who visited a popular site, which hosted pirated movies and
tv series. The user was bombarded with multiple popups, presenting him with seemingly
benign advertisements. One of these advertisements constituted the first stage of
a Lumma Stealer campaign, which by, inadvertently to the user, going through multiple
stages, started with the simple advertisement and could end up with the victim being infected
by one of the most notorious infostealers in the wild, Lumma Stealer, unless something went
wrong in the process (e.g. a security solution blocked one of the campaign stages making it
in this way impossible for the final campaign payload to be executed). While visiting the

https://v4ensics.gr/lumma-stealer-a-tale-that-starts-with-a-fake-captcha/

2/26

“original” site (in the examined case site with the pirated content) the victim is directed to
another page (hxxps://gubanompostra[.]fly[.]storage[.]tigris[.]dev/emogaping-gotten-into-
gubano.html), which consists of a fake captcha verification box. The page asks the intended
victim to perform specific actions, which end up with the victim running a malicious command
through a Windows OS run.exe prompt, so that the victim is verified as Human.

The command, which is initially copied to the victim’s clipboard is a Powershell command
that uses Windows Common Information Model (CIM) to spawn a malicious mshta.exe
process. The latter is used to parse and execute the code of an .hta file (Windows HTML
Application) located at hxxps[://]iankaxo[.]xyz/mikona-guba[.]m4a.

The file mikona-guba.mp4, which is in fact a malicious .hta file, is highly obfuscated. The file
begins with an alphanumeric string, followed by seemingly “junk” bytes. A part of the
alphanumeric string is displayed in the first of the following two images, while the second
one, a portion of which is depicted in the second image, contains seemingly “junk” bytes.

3/26

Analyzing the seemingly “junk” bytes, a couple <script> tags were identified. Some of them
contained invalid code (see below).

4/26

However, 4 of these <script> tags were correctly structured and when combined, they
provide the algorithm for decrypting the next stage payload.

The code depicted above, takes the html code of the page from indices 27 to 29295 (which
correspond to the characters of the alphanumeric string mentioned above and depicted
partially in image 3), applies a regular expression (/(..)./g) to the obtained characters , and
then returns the string from the hexadecimal numbers that matched the regular expression.
The returned string is again an obfuscated Javascript code snippet.

This time a function (fitWP) takes as argument an array of decimal numbers and is used to
decrypt the next stage by subtracting the number 814 from each number. The two variables,
which get “decrypted” in this way, are named YqIKx and RUYP.

RUYP decrypts to “WScript.Shell” and is used to create an ActiveXObject that will execute
the decrypted payload residing in YqlKx. This payload is an obfuscated powershell
command.

5/26

Image 8: Contents of the obfuscated Powershell command

The powershell command performs AES-CBC-128 decryption. The key for decryption is
obtained by converting the hexadecimal string “747174685470416C6C4C4D6E52767748”
into the ascii string “tqthTpAllLMnRvwH”. The IV corresponds to sixteen null bytes. The
decrypted payload is depicted below.

6/26

The decrypted payload is Powershell code, which creates a WebClient object and uses the
function DownloadString with the url hxxps[://]mapped01[.]sportsspot-
moviebuffs[.]com/gubaa01[.]png to download the next stage of the malicious campaign. After
downloading the file gubaa01.png, the command “Invoke-Expression” is used to execute the
payload.

The gubaa01.png file is of course not an image file, but actually an obfuscated powershell
script. The script consists of (a) an initial part of obfuscated powershell code with its main
purpose being the construction of an XOR-key and the deactivation of AMSI communication
and (b) a second part which converts a byte array to a base64 string, decodes it and uses
the generated XOR-key to decrypt the next stage.

The first part of the script consists of thousands of lines.

The function responsible for decrypting the next stage is depicted below.

7/26

The xor key is stored in the variable
$kWWdZHmACOtYIyNpcRcHGQOmyvOGTxFgFyNnpNvaDrmPwvPH.

Before the key obtains its value, the malicious powershell disables the AMSI communication
with the antimalware product running on the PC by setting the amsiInitFailed variable to
$true, a technique explained in an article by Mdsec.

The payload used to that end is (post performed deobfuscation) is depicted below.

Subsequently, in order to verify that the AMSI bypass executed successfully (AMSI
communication was disabled), function
System.Management.Automation.AmsiUtils.ScanContent is used on payload “Invoke-

https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-logging-evasion/

8/26

Mimikatz”. “Invoke-Mimikatz” usually triggers the signatures of antimalware products
resulting in detection of malicious content. The expected by the malicious payload return
value is AMSI_RESULT_NOT_DETECTED , which denotes that AMSI has been successfully
bypassed. This value is passed to the variable-
key$kWWdZHmACOtYIyNpcRcHGQOmyvOGTxFgFyNnpNvaDrmPwvPH to be used for
XOR-ing the payload of the next stage.

The full code, which is used to obtain the key (post performed deobfuscation), is depicted
below.

Finally, with the last part of code contained in the powershell script, the next stage is
executed.

This command corresponds, post deobfuscation, to the command depicted below.

9/26

If the AMSI bypass result is not the expected one, then the next stage will not be decrypted
correctly and the malware pipeline will crash.

The next stage uses an AMSI bypass script, by patching CLR.dll, a technique explained in a
relevant article.

The AMSI bypass script is the same as the one found in a public Github repository.

Following the AMSI Bypass payload, the malware to be loaded is assigned to a variable in
base64 encoding. This malware is a dotnet dropper which is decoded and then invoked.

Upon loading the dropper into iLSpy, two things can be observed:

1. The name of the assembly is Stddetwi

2. The executable is obfuscated by the software SmartAssembly (version 8.2.0.5183)

https://practicalsecurityanalytics.com/new-amsi-bypss-technique-modifying-clr-dll-in-memory/
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell?tab=readme-ov-file#Patching-Clr

10/26

A less obfuscated version of the assembly can be obtained by using the
deobfuscator/unpacker de4dot. After examining the decompiled code, a single function
stands out.

The actions performed at this stage, are downloading a file from the internet and then
decrypting it using AES-CBC-256. The key, IV and URL are obtained through the resources
of the assembly. The process of loading the resources however is still obfuscated by
SmartAssembly.

https://github.com/de4dot/de4dot

11/26

As the decompilation was not very enlightening in finding the required values , the original
assembly was loaded into a hex editor. Searching for strings, lead to the discovery of some
interesting base64 encoded values.

The strings (at least the printable ones), decode to the values listed in the table below.

12/26

Among the strings, 3 in particular stand out.

13/26

The dropper accesses a mediafire link to download the main malware and decrypts it via the
aes key and iv listed in the table above.

The decrypted malware constitutes once more a dotnet assembly, packed with .NET Reactor
(as deemed by Detect-it-Easy).

An overview of the executable is provided in the following image, taken directly from iLSpy.

https://github.com/horsicq/Detect-It-Easy

14/26

The malware contains some encrypted executables in its resources, that are decrypted on
runtime. It uses more sophisticated techniques than the previous stages.

Using .NET Reactor slayer a more readable version of the malware can be obtained. The
following screenshot is taken directly from DnSpy, which was opted for at this point, due to
the fact that it supports dynamic analysis and debugging of the executable (assembly).

Reverse engineering the partially deobfuscated program, allowed a greater understanding of
its functionalities.

The executable contains the main payloads and configurations in its resources in encrypted
form.

https://github.com/SychicBoy/NETReactorSlayer
https://github.com/dnSpy/dnSpy

15/26

It uses multiple methods to decrypt and load the resources. These include the use of Costura
library, AssemblyResolve and ResourceResolve callbacks.

The first resource, namely “BgL59yXUnWjxEyq3ut.MCbJbP2lE2ALpeSgJi” is decrypted into
the assembly “0b273fb4-1d7e-4bfa-b8d2-dabc722e4286”.

Afterwards, the resource “uAcug” of the obtained assembly is decrypted into the executable
“pcElkpeiJJPd” (whose assembly name is “res”).

16/26

The latter, contains a resource called “KLKx” which is decrypted and provides some strings
used by the .NET executable. These strings include entries related to:

· Anti-sandbox techniques, like cuckoomon.dll, VMware|VIRTUAL|A M I|Xen, select * from
Win32_ComputerSystem, select * from Win32_BIOS%;, SOFTWARE\Microsoft\Windows
NT\CurrentVersion, Software\Microsoft\Windows\CurrentVersion\Run, which could possibly
be used by the malware to fingerprint the machine it is running on in order to detect a
possible sandbox environment.

· Anti debugging techniques, like CheckRemoteDebuggerPresent, which corresponds to a
function related to debugger detection.

· AMSI tampering, like AmApdxiasiApdxiaScaApdxianBuApdxiaffeApdxiar,
aApdxiamsApdxiai.dApdxiallApdxia, which are obfuscated by inclusion of the string “Apdxia”
in some positions. When this string is removed, the strings are deobdfuscated into
AmsiScanBuffer and amsi.dll respectively, which could possibly be used in amsi disabling
procedures.

17/26

· Windows Defender bypass, like Add-MpPreference -ExclusionProcess, which is used to
exclude files opened by a process from scanning via Windows Defender.

· Wscript.Shell object, like CreateObject(“WScript.Shell”).Run, which is used for running an
application or command.

· Tampering with the IP address of the system, like /c ipconfig /release, /c ipconfig
/renew¸which are used to release and renew the IP address of the system respectively.

The strings decrypted are listed in the table below.

18/26

19/26

20/26

Two base64 strings that could possibly correspond to key and iv of AES algorithm are also
present in the previous table.

21/26

Upon decryption, the first 4 bytes of the decrypted stream are dropped and the remaining
ones become GZip Decompressed. The decompressed payload is identified as a PE x86
executable which is in fact the actual Lumma Stealer C2 binary.

22/26

In order to discover which domains the LummaC2 executable gets in contact with, the binary
was loaded into x64dbg.

The Lumma Stealer build is not crypted as evident from the warning message displayed:

The analyzed version of Lumma stealer utilizes ws_32.dll and winhttp.dll in order to
communicate with the URLs listed in the table below.

https://x64dbg.com/

23/26

The domains listed in the previous image were obtained via a software breakpoint that was
placed in the beginning of the function WinHttpConnect of winhttp.dll, in order to intercept
LummaC2 connection attempts.

24/26

Five additional URLs were found by performing a ROT15 decryption operation on the current
and previous usernames of the steamcommunity account accessed by LummaC2 via URL
hxxps[://]steamcommunity[.]com/profiles/76561199822375128.

The obtained URLs are depicted in the image below.

25/26

IOCs

A list of files dropped and websites/domains accessed by the the analyzed lumma stealer
campaign is provided in the following two tables.

26/26

