
1/28

M4lcode March 3, 2025

PureLogs Deep Analysis: Evasion, Data Theft, and
Encryption Mechanism

blog.dexpose.io/purelogger-deep-analysis-evasion-data-theft-and-encryption-mechanism/

Introduction

PureLogs is an advanced information stealer designed to extract credentials, session tokens,
and system details while employing strong anti-analysis techniques. It encrypts stolen data
using AES-256 before sending it to a remote Command & Control (C2) server.

Capabilities and Functionality

PureLogs is an advanced information stealer designed to exfiltrate a wide range of sensitive
data from infected devices. It specifically targets:

https://blog.dexpose.io/purelogger-deep-analysis-evasion-data-theft-and-encryption-mechanism/

2/28

System Information: The malware gathers detailed system information, including
CPU, GPU, RAM, operating system version, system architecture, and screen
resolution. This data helps attackers tailor their exploits based on the victim’s hardware
and software environment.

Antivirus Detection: PureLogs identifies installed antivirus software by querying the
system.

Browser Data Exfiltration: PureLogs targets web browsers, extracting saved login
credentials, cookies, and autofill data. This information can be used for identity theft,
session hijacking, and financial fraud.

Discord, Steam, and Telegram Token Theft: The malware steals authentication
tokens from these applications, allowing attackers to take control of user accounts
without needing passwords.

Screenshot Capture: PureLogs takes full-screen screenshots to capture sensitive
information displayed on the victim’s screen, including private messages, financial
details, and authentication codes.

Geolocation Tracking: The malware collects IP addresses, country, city, region, ZIP
code, and timezone information to track the victim’s location. This data can be used for
targeted attacks or further reconnaissance.

Command and Control (C2) Communication: The malware connects to a remote
server to exfiltrate stolen data after encryption.

Self-Deletion Mechanism: After execution, PureLogs deletes itself from the victim’s
system to avoid detection and forensic analysis.

Attack Chain Overview

The typical attack chain for PureLogs is as follows:

1. Initial Access: Delivered via malicious VBScript files, often through phishing emails or
compromised websites.

2. Execution: The VBScript executes and downloads the PureLogs payload from a
remote server, saving it as an executable in a temporary directory and then running it.

3. Privilege Escalation and Persistence: Attempts to bypass User Account Control
(UAC) for elevated privileges and establishes persistence through registry
modifications or scheduled tasks.

3/28

4. Data Collection: Collects system information, credentials, browser data,
cryptocurrency wallet information, screenshots, and geolocation data.

5. Data Exfiltration: Encrypts the collected data using AES-256-CBC and transmits it to
a command and control server.

6. Self-Deletion: Executes a self-deletion routine to remove traces from the infected
system.

Deobfuscating PureLogs

PureLogs is protected by Net Reactor protector

Obfuscated Code

To deobfuscate the sample, one can use .NET Reactor Slayer, a specialized deobfuscator
designed to bypass .NET Reactor protection.

4/28

Net Reactor Slayer succeed

Mutex Creation

PureLogs begins execution by creating a mutex to ensure only a single instance runs at a
time

5/28

	 	 	

	 	 	 	

Mutex: "FQBnanyetMxSRRO"

	 	 	

	 	

If the return value is true, the malware proceeds with execution.
If false, it indicates that another instance is already running, and terminate the process

Anti-Sandboxing Techniques

PureLogs performs multiple anti-analysis checks to determine if the malware should
execute or terminate. It checks for:
1. Common virtual/sandbox resolutions
It retrives the
screen resolution and compare it with {Width=1280, Height=1024}, {Width=1280,
Height=720}, {Width=1024, Height=768}.
These resolutions are common in virtual
machines and sandboxes.
2. Execution directory
It checks if it’s being executed in (C:\ or
Temp folder)
3. Unusual filename length
It checks if the malware’s filename (without
extension) is longer than 11 characters
4. Suspicious usernames and computer names
It checks if the current username or computer name matches any of these predefined
names.
If any of these conditions is true, the malware will terminate

It also checks if Sandboxie is running by checking for the SbieCtrl process and the
presence of SbieDll.dll

Check The Region of the Victim

6/28

Next it checks the user’s location and input language to determine if they are from Russia
or certain former Soviet states. If so, it prevents execution.

It fetches location data via http://ip-api.com/json/ and returns true if the country or language
matches a predefined list

Countries Excluded from infection:

RU – Russia
AZ – Azerbaijan
AM – Armenia
BY – Belarus
KZ – Kazakhstan
KG – Kyrgyzstan
MD – Moldova
TJ – Tajikistan
TM – Turkmenistan
UZ – Uzbekistan

Anti-Debugging Techniques

Checks If running in RDP

SystemInformation.TerminalServerSession is a built-in property in .NET that detects if
the current session is running on a Remote Desktop (RDP) or Terminal Services session

Check Remote Debugger

Then it checks if the process is being debugged remotely using the
CheckRemoteDebuggerPresent API.

7/28

Check Analysis Tools

Then, it detects and terminates processes related to debugging, reverse engineering,
packet sniffing, and HTTP interception tools.

8/28

9/28

	 	 	

	 	 	 	

x32dbg

x64dbg

windbg

ollydbg

dnspy

immunity debugger

hyperdbg

ida

ida64

cheatengine

cheat engine

procmon

wireshark

fiddler

processhacker

hxd

charles

burp

burpsuite

postman

telerik fiddler

mitmproxy

zap

owasp zap

proxyman

httpdebugger

	 	 	

	 	

Registry-Based Execution Prevention

It attempts to open a subkey under “HKEY_CURRENT_USER\Software” using the string
“IqswyHgVpagFHxu” as an indicator of prior execution. If the subkey exists, the malware
terminates itself to prevent reinfection.

10/28

Bypassing Anti-Analysis Checks

To bypass these anti-analysis checks you need to change the return value of each check

Original return value

Edited return value

Privilege Escalation and Process Masquerading

Check If Running As Administrator

Next, purelogs checks if the current process is running with administrator privileges.

1. It retrieves the current user’s identity using WindowsIdentity.GetCurrent and
creates a WindowsPrincipal object using this identity.

11/28

2. It checks if the user is in the Administrator role with
IsInRole(WindowsBuiltInRole.Administrator).

3. It returns true if the user has admin privileges, otherwise false.

Process Masquerading

Then it is performing process name and command-line modification, which is often used
for process masquerading. Purelogs do that to Hide itself under a legitimate process
name (explorer.exe).

Privilege Escalation via COM Elevation

PureLogs defines the following two GUIDs:

“3E5FC7F9-9A51-4367-9063-A120244FBEC7”
“6EDD6D74-C007-4E75-B76A-E5740995E24C”

These GUIDs are passed to a function that exploits COM elevation to instantiate a
privileged COM object.

The malware constructs "Elevation:Administrator!new:" + str to request an
administrator-elevated COM instance:

12/28

This triggers a User Account Control (UAC) bypass by requesting a high-privilege COM
object without user approval. The malware then calls Class13.CoGetObject that instantiates
the privileged COM object.

Once the elevated COM object is obtained, it invokes ShellExec to execute

Assembly.GetExecutingAssembly().Location

This function allows the malware to relaunch itself with elevated privileges. Once the

elevated instance is successfully started, the original process exits, ensuring that only the
privileged copy continues running.

Anti-VM Techniques

After that it defines a List of Virtualization-Related Strings

This list includes common VM-related terms, such as:

VM vendors: vmware, virtualbox, kvm, hyper-v, …

Artifacts found in VM environments: VMXh, innotek gmbh, vbox.

ThinApp and Hypervisor references: thinapp, hypervisor.

Then it calls function retrieves the system’s manufacturer and model.

13/28

The function retrieves these informations using WMI (Windows Management
Instrumentation) and returns them as a list of strings.

The function queries Win32_ComputerSystem using ManagementObjectSearcher.

It filters the results and retrieves the Manufacturer and Model properties.

These values are converted to lowercase and stored in a list.

If an exception occurs (e.g., query failure), the function returns an empty list without error
messages.

Then it Checks if Any Retrieved Value Matches the VM Detection List

If a match is found, returns true (indicating a virtualized environment).
If no match is found, returns false (indicating a real physical machine).

VM Detection List:

14/28

	 	 	

	 	 	 	

virtual

vmbox

vmware

virtualbox

box

thinapp

VMXh

innotek gmbh

tpvcgateway

tpautoconnsvc

vbox

kvm

red hat

xen

hyper-v

qemu

virtualpc

parallels

fusion

proxmox

esxi

vsphere

hypervisor

	 	 	

	 	

Then it retrieves the total physical memory and compares it to 4.0 GB.

Extracting Browsers Credentials

Chrome Sensitive Data Extraction

The malware extracts the following sensitive information:

Login Credentials: Extracted from Login Data SQLite database.

15/28

Cookies: Retrieved from Network\Cookies.

Web Autofill Data: Extracted from Web Data.

Chrome Master Key: Decrypted using Windows DPAPI.

It locates the Chrome user data directory: \Google\Chrome\User Data and iterates through
various profile directories to access stored credentials and cookies.

It attempts to read the Chrome version from Last Version or Local State files.

It uses regex to extract the stats_version field.

If the version is >=128, it proceeds with AppBound encryption key extraction; otherwise,
it directly extracts the master key.

Master Key Extraction

The malware first extracts the encrypted master key from the Local State file. The key is then

Base64-decoded, with the first five bytes stripped before attempting decryption using
Windows DPAPI (ProtectedData.Unprotect).

AppBound Encrypted Key Extraction

For Chrome’s AppBound master key, the malware locates the “app_bound_encrypted_key”

in the Local State file. It extracts the Base64-encoded key and decrypts it using custom AES
routines if the AppBound flag is set. If the key is not AppBound, the decrypted key is returned
directly.

Bypassing File Locks Using Process Memory Extraction

To identify locked files, the function mw_GetProcessesUsingFile(filePath) detects

processes that have locked Chrome’s database files. It leverages the Windows Restart
Manager API (RmStartSession, RmRegisterResources, RmGetList) to enumerate processes
holding the file.

For extracting data from process memory, the function
mw_ExtractFileFromProcessMemory(GStruct6 processStruct) attempts to retrieve locked
file contents by duplicating the file handle using DuplicateHandle(), mapping the file into
memory via MapViewOfFile(), and copying the mapped memory contents into a byte array.
This allows the malware to bypass file locks and directly read sensitive data from running
Chrome processes.

List of targeted browsers:

16/28

	 	 	

	 	 	 	

Google Chrome

Microsoft Edge

Brave

Opera

Yandex

Vivaldi

Chromium

Comodo Dragon

CryptoTab

Slimjet

Iridium

CentBrowser

Epic Privacy Browser

Blisk

Xvast

Sidekick

Aloha Browser

	 	 	

	 	

Extracting​ Desktop Files

Next, it attempts to extract desktop files while filtering by extension. However, in this sample,
the function is passed a false value, preventing execution.

Extracting Sensitive Data From Apps

FileZilla

Next, purelogs extracts data from FileZilla’s recentservers.xml file, which contains
information about recently accessed FTP servers, including credentials in some cases. It first
checks if the recentservers.xml file exists in FileZilla’s Application Data folder and, if found,
attempts to read its contents using mw_ReadFileWithProcessFallback.

17/28

This function tries to read the file normally, but if the file is locked by another process, it calls
mw_GetProcessesUsingFile to identify which processes are using it.

The malware then utilizes Windows Restart Manager APIs (RmStartSession,
RmRegisterResources, RmGetList) to enumerate these processes, analyze the results, and
identify a suitable target.

 If a valid process is found, it attempts to extract the file using
mw_ExtractFileFromProcessMemory. This function uses Windows API functions to:

Open the target process
Duplicate its file handle and map it to memory
Allow purelogs to extract the file’s contents from process memory

Steam

It extract Steam session tokens from the memory of a running Steam process.

It scans the memory of the Steam process for a session token that matches a specific regex
pattern: [A-Za-z0-9-_]{16,}\\.[A-Za-z0-9-_]{40,}\\.[A-Za-z0-9-_]{40,}

This pattern resembles a JWT (JSON Web Token) format, commonly used for authentication,
including Steam session tokens.

If found, it stores the token in Class5.byte_2 as a byte array.

18/28

Telegram

It extract Telegram session data from the victim’s machine.

It first attempts to get the Telegram data directory by checking the Windows Registry at:

HKEY_CURRENT_USER\Software\Classes\tdesktop.tg\DefaultIcon

HKEY_CURRENT_USER\Software\Classes\tg\DefaultIcon

If the registry entries are found, it extracts the directory path and appends tdata, which is
where Telegram stores session files.

19/28

If the registry keys are missing, it attempts to find the Telegram installation path by looking
for a running telegram process.

It retrieves the process’s main module path and appends \tdata to locate the session data
folder.

If the tdata directory exists, it:

Creates a ZIP archive in memory and iterates through all files in tdata, selecting specific files:

1. File ≤ 5120 bytes.
2. Files that start with “usertag”, “settings”, or “key_data”.
3. Files that do not end with “s” (excluding session-related files stored with “s” suffix).

The extracted data is compressed into a ZIP archive stored in Class5.byte_1

20/28

Discord

Finally it attempts to extract stored Discord authentication tokens from the victim’s machine.

It retrieves the path to Discord’s local storage directory in %AppData%\discord\Local
Storage\leveldb

If the directory exists, it scans all .ldb (LevelDB database) files inside the folder.

It reads each file’s content and searches for a pattern that matches Discord tokens using a
regular expression.

To bypass file locks and access sensitive data, it calls mw_ReadFileWithProcessFallback
that apply process memory access techniques. The stolen tokens are then decrypted
using a master key, which is retrieved from Discord’s "Local State" file.

21/28

Extracting System Information

Next it collects system information including:

Username & Domain

System Specs

installed antivirus software

screen resolution

IP address

country

city

region

ZIP code

timezone

Timestamp

Then it converts the collected data into JSON format before encoding it in UTF-8.

It base64 encodes the collected data of Browsers, DesktopFiles, Apps and Info

Then it capture a screenshot for the victim’s device

22/28

Then it generates a hardware-based identifier (HWID) to uniquely track each infected
system.

Finally, it appends “test120922139213” to the collected data as a variant ID, allowing the
attacker to track and distinguish infections originating from this specific malware build.

23/28

Encryption Routine

The encryption routine consists of two functions:

mw_EncryptWithSHA512DerivedKey(byte[] byte_0)

Generates a SHA-512 hash from a hardcoded UTF-8 string
(“lZl1wTrtsFc2ElgroUCsBHiSCgDJR10wV8SZ0IiP53cFzgsdKYIDGMdEHsogfICrEG6vsh”).

It uses the resulting SHA-512 hash as the encryption key.

Then it calls mw_EncryptWithAES256(byte_0, array) to encrypt the input data.

The encryption routine uses AES-256 in CBC mode, deriving the AES key and IV from the
SHA-512 hash through PBKDF2 (Rfc2898DeriveBytes) with a fixed salt {117, 45, 158,
253, 184, 172, 96, 158, 239, 125, 30, 70, 145, 225, 3, 161} and 1000 iterations.
Once the key and IV are generated, the function encrypts byte_0 (input data) using AES-256
in CBC mode.

To decrypt the collected data, I wrote a Python script that uses AES-256-CBC with a key and
IV derived from a hardcoded SHA-512 hash and salt via PBKDF2. The script reads the
encrypted file, decrypts it, removes padding, and saves the recovered data as
“decrypted_data.txt”

24/28

	 	 	

	 	 	 	

import hashlib

import binascii

from Crypto.Protocol.KDF import PBKDF2

from Crypto.Cipher import AES

from Crypto.Util.Padding import unpad

Given SHA-512 hash (converted from hex to bytes)

sha512_hash = bytes.fromhex("31af7967b6ad69f32ae82dcd32a6d1ca1029ecb9d2b881e29e04da0e

Salt used in the malware

salt = bytes([117, 45, 158, 253, 184, 172, 96, 158, 239, 125, 30, 70, 145, 225, 3, 16

Derive AES Key (32 bytes) and IV (16 bytes) using PBKDF2

derived_key_iv = PBKDF2(sha512_hash, salt, dkLen=32+16, count=1000)

Split into key and IV

aes_key = derived_key_iv[:32] # First 32 bytes -> AES-256 key

aes_iv = derived_key_iv[32:] # Next 16 bytes -> AES IV

Print derived key and IV

print("Derived AES Key:", binascii.hexlify(aes_key).decode())

print("Derived AES IV:", binascii.hexlify(aes_iv).decode())

Read the encrypted file

with open("stolen_data.enc", "rb") as f:

 encrypted_data = f.read()

Decrypt using AES-256-CBC

cipher = AES.new(aes_key, AES.MODE_CBC, aes_iv)

decrypted_data = unpad(cipher.decrypt(encrypted_data), AES.block_size)

Save or print the decrypted content

with open("decrypted_data.txt", "wb") as f:

 f.write(decrypted_data)

print("Decryption successful! Check decrypted_data.txt")

	 	 	

	 	

25/28

Output

The decrypted data:

Exfiltration

PureLogs establishes a persistent TCP connection to the remote server at IP address
65[.]21[.]119[.]48 on port 6561 using the TcpClient class.

If the initial connection attempt fails, the malware implements a retry mechanism, ensuring
multiple attempts to establish communication. The data is sent over a NetworkStream in a
structured format

26/28

Self-Deletion and Exit

Finally Purelogs starts a new process using Process.Start, invoking cmd.exe with specific
arguments.

Command Executed:

cmd.exe /C choice /C Y /N /D Y /T 3 & Del “C:\path\to\malware.exe”

/C → Executes the command and terminates cmd.exe.

choice /C Y /N /D Y /T 3 → Introduces a 3-second delay before deletion.

Del “C:\path\to\malware.exe” → Deletes the malware file
(Assembly.GetExecutingAssembly().Location resolves to the malware’s own path).

WindowStyle = ProcessWindowStyle.Hidden → Hides the command prompt window.

CreateNoWindow = true → Ensures no visible command prompt is shown.

Environment.Exit(0); ensures the malware exits immediately after starting the deletion
process.

IOCs

27/28

	 	 	

	 	 	 	

C2 Server:

IP: 65[.]21[.]119[.]48

Port: 6561

Hash: 7505e02f9e72ce781892c01ac7638a8fac011f39c020cda61e2eada9eee1c31d

Mutex: FQBnanyetMxSRRO

Variant ID: test120922139213

Registry Key: HKEY_CURRENT_USER\Software\IqswyHgVpagFHxu

	 	 	

	 	

MITRE ATT&CK Techniques

Tactic Technique
Sub-
Technique Description

Execution
(TA0002)

Windows
Management
Instrumentation
(T1047)

– file.exe tries to detect antivirus
software via WMI query: “SELECT
* FROM AntiVirusProduct”.

Native API (T1106) – Adversaries may interact with the
native OS API to execute
behaviors.

Shared Modules
(T1129)

– Attempts to dynamically load
malicious functions and detect
Sandboxie.

Persistence
(TA0003)

Hijack Execution Flow
(T1574)

DLL Side-
Loading
(T1574.002)

Tries to load missing DLLs.

Privilege
Escalation
(TA0004)

Process Injection
(T1055)

– Injects code into processes to
evade defenses and elevate
privileges.

Access Token
Manipulation (T1134)

– file.exe enables process privilege
“SeDebugPrivilege”.

Defense
Evasion
(TA0005)

Obfuscated Files or
Information (T1027)

– Encrypts data using DPAPI, AES,
and Base64 encoding.

Software Packing
(T1027.002)

– .NET source code dynamically
calls methods, often used by
packers.

28/28

Masquerading
(T1036)

– Creates files inside the user
directory.

Process Injection
(T1055)

– Injects code into processes to
evade defenses.

Indicator Removal
(T1070)

– file.exe deletes itself via cmd.

Timestomp
(T1070.006)

– Binary contains a suspicious
timestamp.

Deobfuscate/Decode
Files or Information
(T1140)

– Decodes data using Base64 and
encryption/decryption functions.

Virtualization/Sandbox
Evasion (T1497)

– Tries to detect “Sandboxie” and
implements evasion techniques.

Impair Defenses
(T1562)

Disable or
Modify Tools
(T1562.001)

Creates guard pages to prevent
reverse engineering.

Reflective Code
Loading (T1620)

– Invokes .NET assembly method.

Credential
Access
(TA0006)

Input Capture (T1056) – file.exe takes screenshots and
potentially exfiltrates data.

Discovery
(TA0007)

Query Registry
(T1012)

– Queries registry for system
information.

Collection
(TA0009)

Screen Capture
(T1113)

– Takes a screenshot using BitBlt
API.

Command
and Control
(TA0011)

Application Layer
Protocol (T1071)

– Detected anomalous HTTP
requests to non-white-listed
domains.

