
1/18

February 28, 2025

JavaGhost’s Persistent Phishing Attacks From the Cloud
unit42.paloaltonetworks.com/javaghost-cloud-phishing/

Executive Summary

Unit 42 researchers have observed phishing activity that we track as TGR-UNK-0011. We
assess with high confidence that this cluster overlaps with the threat actor group JavaGhost.
The threat actor group JavaGhost has been active for over five years and continues to target
cloud environments to send out phishing campaigns to unsuspecting targets.

According to website defacement lists such as DefacerID, the group focused historically on
defacing websites. However, according to our telemetry, in 2022, they pivoted to sending out
phishing emails for financial gain.

Between 2022-24, Unit 42 has performed multiple investigations relating to the group
JavaGhost, which targeted organizations’ AWS environments. The group focuses on sending
phishing campaigns and has not been seen stealing data for extortion during their time in
organizations’ AWS environments.

These attacks are not due to a vulnerability in AWS. This group takes advantage of
misconfigurations in the victim organizations' environments that expose AWS credentials in
the form of long-term access keys. They use these leaked keys to initiate all the actions
discussed in this report.‬

https://unit42.paloaltonetworks.com/javaghost-cloud-phishing/


2/18

This article covers common methodologies that JavaGhost uses to create their phishing
infrastructure. We also cover other tactics employed within compromised cloud environments
to establish long-term persistence.

We have recently observed JavaGhost using advanced evasion methods to cover their
tracks. These methods have typically only been used by Scattered Spider, which shows the
level of sophistication of this threat actor group.

All JavaGhost activities have resulted in a detectable logging footprint, which forms the basis
of the alerts at the end of the article.

Palo Alto Networks customers are better protected through Cortex Cloud and Cortex XSIAM.

If you think you might have been compromised or have an urgent matter, contact the Unit 42
Incident Response team.

Related Unit 42 Topics Cloud Cybersecurity Research, AWS

JavaGhost History

Historically, JavaGhost participated in the website defacement of numerous entities, starting
in 2019. Figure 1 shows some of the websites the group defaced.

Figure 1. Websites defaced by JavaGhost. Source: DefacerID.

https://www.paloaltonetworks.com/cortex/cloud
https://www.paloaltonetworks.com/cortex/cortex-xsiam
https://start.paloaltonetworks.com/contact-unit42.html
https://unit42.paloaltonetworks.com/category/cloud-cybersecurity-research
https://unit42.paloaltonetworks.com/tag/aws/
https://defacer.id/archive/team=javaghost/page=1


3/18

The JavaGhost group also had two websites (shown in Figures 2 and 3). One contains the
group’s slogan, “we are there but not visible.” The other contains text in Indonesian that
translates to “stop blaming everything,” which matches with the language used to name
some of the resources in their attacks. The site also lists the various group member handles
(shown in Figure 3).

Figure 2. Historic JavaGhost website. Source: Wayback Machine.

Figure 3. Historic JavaGhost website. Source: Wayback Machine.

Based on our investigations, the group shifted in 2022 from website defacement to sending
out phishing campaigns to unsuspecting targets. Datadog reported on this activity shift back
in 2023, but the group continues their work, which Unit 42 has seen as recently as December
2024.

Attack Overview

https://web.archive.org/web/20220615003428/http://cloud.endekab.go.id/
https://web.archive.org/web/20181109124556/http://www.javaghost.me/
https://securitylabs.datadoghq.com/articles/following-attackers-trail-in-aws-methodology-findings-in-the-wild/


4/18

Unit 42 has handled numerous cases in 2022-24 associated with JavaGhost. The attack
leveraged overly permissive IAM permissions allowing the victim’s Amazon Simple Email
Service (SES) and WorkMail services to send out phishing messages. JavaGhost benefits
from using other organizations’ AWS environments because they do not have to pay for any
of the created resources. They can also use preexisting SES infrastructure to send out
phishing emails.

Using preexisting SES infrastructure allows the threat actor’s phishing emails to bypass
email protections since the emails originate from a known entity from which the target
organization has previously received emails.

Initial Access with Defense Evasion

Between 2022-24, the group evolved their tactics to more advanced defense evasion
techniques that attempt to obfuscate identities in the CloudTrail logs. This tactic has
historically been exploited by Scattered Spider. AWS CloudTrail records all management
events occurring within an AWS account.

JavaGhost obtained exposed long-term access keys associated with identity and access
management (IAM) users that allowed them to gain initial access to an AWS environment via
the command-line interface (CLI). These long-term access keys come from various
exposures, as discussed in a prior Unit 42 research article.

Upon entry to an organization’s AWS environment with the compromised access key, the
threat actors do not perform the application programming interface (API) call
GetCallerIdentity. Other threat actors often use GetCallerIdentity as their first API call after
compromising AWS credentials to enumerate basic information about the compromised
account, such as the account ID and user ID.

Because defenders frequently anticipate attackers using GetCallerIdentity during initial
compromise, JavaGhost evades detection by not using this API call, thereby bypassing any
alerts configured to trigger on its execution. Instead, the group performs different first API
calls such as GetServiceQuota, GetSendQuota and GetAccount for their initial interaction
with a compromised AWS account.

GetServiceQuota returns the current quota limit for a specified AWS service while
GetSendQuota returns the max number of emails that can be sent in 24 hours for SES.
GetAccount returns information about the email-sending status of SES and other SES
attributes.

After confirming their access to an organization's AWS account with the long-term access
key from the CLI, the threat actors behind JavaGhost generate temporary credentials and a
login URL to allow themselves console access. Accessing the console via this methodology

https://docs.aws.amazon.com/ses/latest/dg/Welcome.html
https://docs.aws.amazon.com/workmail/latest/userguide/what_is.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://www.crowdstrike.com/en-us/blog/how-adversaries-persist-with-aws-user-federation/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://aws.amazon.com/cli/
https://unit42.paloaltonetworks.com/large-scale-cloud-extortion-operation/
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/servicequotas/2019-06-24/apireference/API_GetServiceQuota.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_GetSendQuota.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_GetAccount.html


5/18

obfuscates their identity and allows them easier visibility into the resources within an AWS
account.

Since attackers rarely create temporary credentials to access the AWS console URL, these
methods often bypass detection. The following section details these techniques,
emphasizing how using the console allows attackers to sidestep the restrictions IAM imposes
on temporary access keys generated through the CLI.

GetFederationToken and GetSigninToken

Generating an AWS console login page from long-term access keys takes multiple steps but
the entire process can be scripted. NetSPI has created a GitHub repo with an example of
how to perform this process and AWS has instructions as well.

The first step in this process requires the creation of temporary credentials from the
compromised long-term access key. Long-term access keys start with the four letters AKIA,
while temporary access keys begin with ASIA.

To acquire temporary AWS credentials, JavaGhost uses the GetFederationToken API within
the AWS Security Token Service (STS). This API call requires the following parameters:

A name for the federated user
An inline or managed session policy defining the desired permissions (as illustrated in
Figure 4). JavaGhost purposefully utilizes an “allow all” inline policy to take advantage
of the maximum permissions allowed to the underlying IAM user.
The duration for which the temporary credentials should be valid (specified in seconds)

Figure 4. Example of an inline policy from the GetFederationToken event.

While the AssumeRole API call can also retrieve temporary credentials for this process,
JavaGhost opts to use the GetFederationToken option instead. Of note, the inline policy
provided in the request does not override the permissions associated with the long-term
access key.

https://github.com/NetSPI/aws_consoler/tree/master
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_enable-console-custom-url.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html


6/18

The permissions granted to the short-term access key result in an intersection of the IAM
user permissions associated with the access key and the policies included in the
GetFederationToken request. If the GetFederationToken permissions contain broader
privileges than the IAM user, then the more limited permissions from the IAM user take
effect. Therefore, the provided policy can only reduce and never increase the permissions
already granted to the principal represented by the compromised access key and secret key.

Once the GetFederationToken request returns the temporary credentials (i.e., sessionId,
sessionKey and sessionToken), an encoded URL is required before generating the sign-in
token. To generate the encoded URL, the threat actor uses the Python urllib3 library.

Once the encoded URL is obtained, a GetSigninToken request returns the information
needed to create the URL that allows federated users to access the AWS console. Within the
CloudTrail logs associated with the GetSigninToken events, the user agent shows Python-
urllib/3.10, which is how Unit 42 inferred the Python library used by JavaGhost to perform
these operations.

The generated URL grants access to the console for a default of 15 minutes, which is what
the threat actor chose to do. After that, a threat actor must repeat this process to generate a
new URL or specify a longer session duration during the GetSigninToken request. The
temporary access key generated by the GetFederationToken actions does not need to be
regenerated unless the session duration has expired.

To revoke the session associated with the compromised credentials, an IAM policy has to be
attached directly to the user. The process discussed above does not require the usage of
any roles, so there is no built-in way to revoke the session like AWS provides with an IAM
role.

To stop an active threat actor using this console access method, attaching the AWS
managed AWSDenyAll policy invalidates all the permissions for the user. It does not stop an
active session in the console, but all attempted actions are blocked.

Setting Up the Phishing Infrastructure

Regarding the SES logging configuration, none of the customer AWS environments from our
engagements had SES data events enabled. Therefore, the following analysis focuses solely
on CloudTrail Management Events.

JavaGhost uses SES and WorkMail to configure their phishing infrastructure. The group
starts by creating various SES email identities, followed by updating DomainKeys Identified
Mail (DKIM) settings. DKIM uses public key cryptography to verify the authenticity of emails.

The threat actor group also modified the SES Virtual Delivery Manager (VDM) and Mail-from
attributes.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_getfederationtoken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_revoke-sessions.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSDenyAll.html
https://repost.aws/knowledge-center/cloudtrail-data-management-events
https://docs.aws.amazon.com/ses/latest/dg/vdm.html#:~:text=Virtual%20Deliverability%20Manager%20is%20an,affecting%20your%20delivery%20success%20rate


7/18

To send emails, an SES email or domain identity must exist. The creation of new SES
identities appears as CreateEmailIdentity events in the CloudTrail logs and the response
elements provide additional details around whether the identity type was a domain or an
email address.

JavaGhost creates multiple email and domain identities as well as modifying the following
attributes. The DKIM settings are configured during the user creation and generate the
PutEmailIdentityDkimAttributes event in CloudTrail logs.

While DKIM settings can be configured separately from the identity creation process, this
group usually updates them during the identity creation itself. The attackers also update the
custom Mail-From domain configuration for the email identities. This resulted in the
PutEmailIdentityMailFromAttributes event showing the attribute update in the request
parameters field within the CloudTrail logs.

The group makes various changes to the SES Virtual Delivery Manager (VDM) feature,
which also results in the PutAccountVdmAttributes event appearing in the CloudTrail logs.

In addition to setting up various email identities, JavaGhost configures an AWS WorkMail
Organization and adds WorkMail users. Creating a WorkMail Organization results in
numerous SES and AWS Directory Service (DS) events within the CloudTrail logs.

Upon the creation of the WorkMail Organization seen as CreateOrganization in the
CloudTrail logs, the following events appear in the CloudTrail logs associated with SES:

In the console, within the advanced configuration of the WorkMail Organization creation, user
directories can either be created from scratch or an existing directory can be used (shown in
Figure 5).

https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_CreateEmailIdentity.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_PutEmailIdentityDkimAttributes.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_PutEmailIdentityMailFromAttributes.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_PutAccountVdmAttributes.html
https://docs.aws.amazon.com/workmail/latest/adminguide/organizations_overview.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/what_is.html


8/18

Figure 5. Selecting Create Amazon WorkMail directory generates three Directory Services events
automatically in the CloudTrail logs.

Selecting the creation of a new WorkMail directory automatically generates the following DS
CloudTrail events:

AuthorizeApplication
CreateAlias
CreateIdentityPoolDirectory

After completing the WorkMail Organization creation, the threat actors create various
WorkMail users. Creating a WorkMail user generates a CreateUser event (with
workmail.amazonaws[.]com as the event source) and the user automatically gets registered
to WorkMail with the event RegisterToWorkMail appearing in the CloudTrail logs. The
WorkMail registration requires no input from the user when performed through the console.

Figure 6 shows how to create a new WorkMail user.

Figure 6. Creating a new WorkMail user.

Before sending out the phishing emails, JavaGhosts creates new SMTP credentials. When
creating the new SMTP credentials, the threat actors do not change the default username so
all the new SMTP usernames start with ses-smtp-user.* Figure 7 shows an example of this.

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/UsingWithDS_IAM_ResourcePermissions.html
https://docs.aws.amazon.com/directoryservice/latest/devguide/API_CreateAlias.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/UsingWithDS_IAM_ResourcePermissions.html
https://docs.aws.amazon.com/workmail/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/workmail/latest/APIReference/API_RegisterToWorkMail.html


9/18

Figure 7. Creation of default named SMTP user with default IAM group and permissions.

Creating new SMTP credentials results in the generation of a new IAM user with the user’s
name matching the SMTP username and not the SMTP display name. If the AWS account
has not used SES historically, the SMTP creator is prompted that a new IAM user group will
be created.

This new IAM user group is called AWSSESSendingGroupDoNotRename by default, which
also attaches an inline policy to the group allowing ses:SendRawEmail only. These
operations appear as CreateGroup and PutGroupPolicy in the CloudTrail logs.

If the AWS account has used SMTP credentials historically, the IAM group will most likely
already exist and appear in the Permissions list. Figure 8 shows an example of this.

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutGroupPolicy.html


10/18

Figure 8. IAM group details once IAM group already exists.

After finishing user creation, the system displays the new IAM username, along with the
SMTP username and SMTP password.

The SMTP username displays an access key ID. When reviewing the user in IAM, the SMTP
username appears as an access key there as well. Figure 9 shows an example of this.

Figure 9. Example retrieval of SMTP credentials.

The SMTP username still resolves to the AWS account ID if decrypted. All these events
appear in the CloudTrail logs as IAM CreateUser, CreateAccessKey and AddUserToGroup
events.

When organizations already have SES infrastructure in their AWS environment, JavaGhost
uses the preexisting resources to send phishing attacks. Unless dataplane logging is
enabled, there are few to no events to review in the CloudTrail logs. The cost for the
additional emails sent will appear in the Cost and Usage Reports, but otherwise, only various
reconnaissance events result in CloudTrail logs.

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AddUserToGroup.html


11/18

Identity and Access Management (IAM)

Throughout the time frame of the attacks, JavaGhost creates various IAM users, some they
use during their attacks and others that they never use. The unused IAM users seem to
serve as long-term persistence mechanisms.

After their creation, the threat actor only confirms access via console logins and performs no
other actions. The IAM users have a variety of names. Some are meant to blend in with other
IAM users that would be typical within an AWS account and others are more obviously
named. The IoC section provides a full list of IAM usernames.

All the new IAM users have the AWS managed AdministratorAccess policy attached as well
as access to the console. The AdministratorAccess policy allows any action against any
resource within an AWS account.

Figure 10 shows the permissions associated with this policy. All of these IAM events appear
in the CloudTrail logs as CreateUser, AttachUserPolicy and CreateLoginProfile.

Figure 10. AWS managed AdministratorAccess policy.

The creation of IAM users is a common cloud technique commonly seen within many of our
other investigations. JavaGhost sets themselves apart by evolving to use unique methods to
access an AWS account.

In the initial attacks, this group used the original compromised access key for most of their
activity. In 2024, they transitioned to using an IAM role to access the organization’s AWS
account from a threat actor-compromised AWS account before proceeding with the attack.

To accomplish this, the threat actors created a new IAM role with a trust policy attached,
allowing access from a threat actor-controlled AWS account. A trust policy specifies what
entities can assume the role.

This role creation appears in the CloudTrail logs as CreateRole with the trust policy written in
the request parameters field. Figure 11 shows an example of a trust policy.

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AdministratorAccess.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateRole.html


12/18

Figure 11. Example of an inline trust policy from the CreateRole CloudTrail event.

In the case of JavaGhost, the trusted entity belongs to an AWS account. The new role also
has unlimited permissions within the environment, with the attachment of the
AdministratorAccess policy as seen by the CloudTrail event AttachRolePolicy.

With the successful creation of the new administrative role, the threat actor can log into the
AWS account from the trusted threat actor-owned AWS account. When the threat actor
assumes their role that they created to access the compromised AWS account, CloudTrail
records this event as two separate events, AssumeRole and SwitchRole, which occur
simultaneously. Unlike the creation of new IAM users, the role creation does not appear
suspicious until the trust policy reveals the external access and the role is uncovered as a
backdoor.

Security Group

The group continues to leave the same calling card in the middle of their attack by creating
new Amazon Elastic Cloud Compute (EC2) security groups named Java_Ghost, with the
group description “We Are There But Not Visible.” These security groups do not contain any
security rules and the group typically makes no attempt to attach these security groups to
any resources. The creation of the security groups appear in the CloudTrail logs in the
CreateSecurityGroup events.

This group description matches the group’s slogan on their old website, shown in Figure 12.

https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateSecurityGroup.html


13/18

Figure 12. JavaGhost website. Source: Wayback Machine.

Additional Suspicious Activity

In addition to the main components of its phishing attacks, the group attempts two other
unique tactics within attacks:

The group attempts to leave an Organization Unit with the event LeaveOrganization.
AWS Organizations help with the management of multiple AWS accounts. They consist
of features such as Service Control Policies (SCPs), which help manage IAM
permissions at scale, and Organizational Units.

Organization Units help administrators manage multiple AWS accounts by
grouping them together, and they allow for the application of SCPs at the
Organization Unit level. Leaving an AWS Organization Unit removes any SCPs
that apply to the AWS account and changes the security guardrails that limit
activities within an AWS account.

The group enables all AWS regions not enabled by default.
After March 20, 2019, AWS no longer enables new regions by default and
JavaGhost enables those 13 disabled regions as part of their attacks to evade
security controls. Enabling regions results in the EnableRegion event in the
CloudTrail logs with the region name present in the request parameters field.

Conclusion

Unit 42 has investigated multiple JavaGhost cases over the past few years and has
observed the group continuously evolving its tactics. Initially, JavaGhost performed attacks
using only a compromised access key, but has now advanced to employing sophisticated
evasion techniques. Luckily, all of the group’s activity results in detectable events within the
CloudTrail logs that organizations can hunt for and create new alerts to detect.

https://web.archive.org/web/20181109124556/http://www.javaghost.me/
https://docs.aws.amazon.com/organizations/latest/APIReference/API_LeaveOrganization.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/controltower/latest/userguide/opt-in-region-considerations.html
https://docs.aws.amazon.com/accounts/latest/reference/API_EnableRegion.html


14/18

Palo Alto Networks Protection and Mitigation

Palo Alto Networks customers are better protected from the threats discussed above through
the following products:

Cortex Cloud and Cortex XSIAM alert on the following activities related to AWS resources:

IAM actions such as new user creations, attaching of AdministratorAccess Policy,
getfederatedtoken, and getsignintoken
Suspicious sending of emails through Simple Email Service (SES)
Use of getgroup and putgroup in CloudTrail

XSIAM also detects behavioral actions from cloud and on-premises endpoints that suggest
the collection of AWS IAM credentials.

To mitigate opportunities for attackers to use techniques discussed above, we recommend:

Limiting access to administrative rights
Rotating IAM credentials regularly
Using short term/just-in-time (JIT) access tokens
Enabling multi-factor authentication (MFA)

Cloud security posture management (CSPM) capabilities in Cortex Cloud can assist users
with creating appropriate rules.

If you think you may have been compromised or have an urgent matter, get in touch with the
Unit 42 Incident Response team or call:

North America: Toll Free: +1 (866) 486-4842 (866.4.UNIT42)
UK: +44.20.3743.3660
Europe and Middle East: +31.20.299.3130
Asia: +65.6983.8730
Japan: +81.50.1790.0200
Australia: +61.2.4062.7950
India: 00080005045107

Palo Alto Networks has shared these findings with our fellow Cyber Threat Alliance (CTA)
members. CTA members use this intelligence to rapidly deploy protections to their customers
and to systematically disrupt malicious cyber actors. Learn more about the Cyber Threat
Alliance.

Hunting, Investigation and Detection Queries

https://www.paloaltonetworks.com/cortex/cloud
https://www.paloaltonetworks.com/cortex/cortex-xsiam
https://start.paloaltonetworks.com/contact-unit42.html
https://www.cyberthreatalliance.org/


15/18

The following queries are intended to assist Palo Alto Networks customers in hunting,
investigating and detecting potentially malicious operations within their Cortex XDR. The
results of these queries should not be taken as malicious on face value. The queries require
careful examination of the resulting events before they can be found malicious.

Cortex XQL Queries

Authentication

1

2

3

4

5

6

7

dataset = amazon_aws_raw

 

| filter (eventSource = "sts.amazonaws.com" and eventName = "GetFederationToken")
or (eventSource = "signin.amazonaws.com" and eventName = "GetSigninToken")

 

dataset = amazon_aws_raw

 

| filter (eventSource = "sts.amazonaws.com" and eventName = "AssumeRole") or
(eventSource = "signin.amazonaws.com" and eventName = "SwitchRole")

SES

1

2

3

dataset = amazon_aws_raw

 

| filter (eventSource = "ses.amazonaws.com" and eventName = "CreateEmailIdentity")
or (eventSource = "iam.amazonaws.com" and eventName in ("CreateUser",
"CreateAccessKey", "AddUserToGroup"))

WorkMail

1

2

3

dataset = amazon_aws_raw

 

| filter eventSource = "workmail.amazonaws.com" and eventName in ("CreateUser",
"CreateOrganization")

EC2 Security Group



16/18

1

2

3

4

5

6

7

8

9

dataset = amazon_aws_raw

 

| alter groupName = json_extract_scalar(requestParameters, "$.groupName")

 

| alter groupDescription = json_extract_scalar(requestParameters,
"$.groupDescription")

 

| filter eventSource = "ec2.amazonaws.com" and eventName = "CreateSecurityGroup"

 

| filter groupName = "Java_Ghost" and groupDescription = "We Are There But Not
Visible"

IoCs

IP Addresses

Unit 42 has consolidated the IP addresses of the referenced group in this report and stored
them in our GitHub repository.

User Agents

aws-cli/1.18.69 Python/3.8.10 Linux/5.4.0-113-generic botocore/1.16.19
aws-cli/1.19.112 Python/2.7.18 Linux/5.4.0-42-generic botocore/1.20.112
aws-cli/1.22.23 Python/3.6.0 Windows/10 botocore/1.23.23
aws-cli/1.22.97 Python/3.6.0 Windows/10 botocore/1.24.42
aws-cli/1.25.62 Python/3.8.13 Linux/5.15.0-46-generic botocore/1.27.61
aws-cli/1.34.14 md/Botocore#1.35.14 ua/2.0 os/windows#10 md/arch#amd64
lang/python#3.10.8 md/pyimpl#CPython cfg/retry-mode#legacy botocore/1.35.14
aws-cli/1.34.28 md/Botocore#1.35.28 ua/2.0 os/linux#5.15.153.1-microsoft-standard-
WSL2 md/arch#x86_64 lang/python#3.12.3 md/pyimpl#CPython cfg/retry-mode#legacy
botocore/1.35.28
aws-cli/2.13.18 Python/3.11.5 Linux/5.4.0-163-generic exe/x86_64.ubuntu.20
prompt/off command/*
aws-cli/2.17.18 md/awscrt#0.20.11 ua/2.0 os/linux#6.8.0-36-generic md/arch#x86_64
lang/python#3.11.9 md/pyimpl#CPython cfg/retry-mode#standard md/installer#exe
md/distrib#ubuntu.24 md/prompt#off md/command#*

https://github.com/PaloAltoNetworks/Unit42-Threat-Intelligence-Article-Information/blob/main/List-of-IP-addresses-for-JavaGhost-activity-between-2022-and-2024.txt


17/18

aws-cli/2.22.2 md/awscrt#0.22.0 ua/2.0 os/windows#2019Server md/arch#amd64
lang/python#3.12.6 md/pyimpl#CPython cfg/retry-mode#standard md/installer#exe
md/prompt#off md/command#*
aws-cli/2.2.16 Python/3.8.8 Linux/3.10.0-1160.31.1.el7.x86_64 exe/x86_64.centos.7
prompt/off command/*
aws-internal/3 aws-sdk-java/1.12.769 Linux/5.10.224-190.876.amzn2int.x86_64
OpenJDK_64-Bit_Server_VM/17.0.12+8-LTS java/1.8.0_422 vendor/N/A cfg/retry-
mode/standard
aws-internal/3 aws-sdk-java/1.12.769 Linux/5.10.225-191.878.amzn2int.x86_64
OpenJDK_64-Bit_Server_VM/17.0.12+8-LTS java/1.8.0_422 vendor/N/A cfg/retry-
mode/standard
Boto3/1.24.61 Python/3.8.10 Linux/5.4.0-42-generic Botocore/1.27.61
Boto3/1.35.28 md/Botocore#1.35.28 ua/2.0 os/linux#5.15.153.1-microsoft-standard-
WSL2 md/arch#x86_64 lang/python#3.12.3 md/pyimpl#CPython cfg/retry-mode#legacy
Botocore/1.35.28
Boto3/1.35.3 md/Botocore#1.35.14 ua/2.0 os/windows#10 md/arch#amd64
lang/python#3.10.8 md/pyimpl#CPython cfg/retry-mode#legacy Botocore/1.35.14
Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:130.0) Gecko/20100101 Firefox/130.0
Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/128.0.0.0 Safari/537.36
Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/129.0.0.0 Safari/537.36
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/127.0.0.0 Safari/537.36 OPR/113.0.0.0
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/128.0.0.0 Safari/537.36
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/128.0.0.0 Safari/537.36 Edg/128.0.0.0
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/129.0.0.0 Safari/537.36
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/129.0.0.0 Safari/537.36 Edg/129.0.0.0
Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:130.0) Gecko/20100101 Firefox/130.0
Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:131.0) Gecko/20100101 Firefox/131.0
Python-urllib/3.10

IAM Usernames

adminuserdevs
develops
Gh0st_808
Gh0st_365



18/18

rootdev
ses2
warkopi

Additional Resources

Following attackers’ (Cloud)trail in AWS: Methodology and findings in the wild –
Datadog
How Adversaries Can Persist with AWS User Federation – CrowdStrike
Survive Access Key Deletion with sts:GetFederationToken – Hacking the Cloud
Tales from the cloud trenches: Unwanted visitor – Datadog

Enlarged Image

Copyright © 2025 Palo Alto Networks. All Rights Reserved

https://securitylabs.datadoghq.com/articles/following-attackers-trail-in-aws-methodology-findings-in-the-wild/
https://www.crowdstrike.com/en-us/blog/how-adversaries-persist-with-aws-user-federation/?srsltid=AfmBOooHp9sQ4E_H0XoedsfPZXocU7BiAZBjeC5Q_c1pADGl_RXIcxap
https://hackingthe.cloud/aws/post_exploitation/survive_access_key_deletion_with_sts_getfederationtoken/
https://securitylabs.datadoghq.com/articles/tales-from-the-cloud-trenches-unwanted-visitor/?utm_source=cloudseclist.com&utm_medium=referral&utm_campaign=CloudSecList-issue-268

