
1/20

M4lcode February 24, 2025

Six Months Undetected: Analysis of archive.org hosted
.NET PE Injector

blog.dexpose.io/analysis-of-archive-org-hosted-pe-injector

Introduction

On February 11, 2025, Filescan.io shared a troubling discovery: a 6-month-old .NET PE
injector had remained undetected on Archive.org, a platform widely used for archiving
web content. The file was flagged as clean, allowing it to remain accessible for months.

https://blog.dexpose.io/analysis-of-archive-org-hosted-pe-injector

2/20

Capabilities

This malware incorporates multiple techniques to evade detection and maintain persistence
on infected systems. It employs the following capabilities:

Reflective Loading: Executes payloads in memory, avoiding disk-based detection.
String Obfuscation: Uses encoding techniques and .NET Reactor obfuscation to
evade static analysis.
Persistence Mechanism: Can achieve persistence via registry modifications.
Process Injection: Injects payloads using Process Hollowing technique into trusted
processes to remain undetected.
C2 Communication: Uses a reversed URL to obscure C2 traffic.

These capabilities allow the malware to remain hidden, execute malicious code without
detection, and establish a foothold on compromised systems.

Attack Chain Overview

3/20

The attack begins with a VBScript file delivered via phishing emails.

The script executes PowerShell command in the background which retrieves an encoded
Base64-encoded Portable Executable (.PE) file.

After downloading the Base64-encoded PE file, the script decodes it in memory and
executes it using reflective loading techniques.

Finally, .NET-based PE injector is deployed, allowing attackers to inject additional malicious
payloads into system processes.

First Stage: VBScript

The injector’s first stage is a VBScript file, this VBScript file consists of 3 parts:

Junk code:

Junk code

These variables are non-used in this vbs code

4/20

Irrelevant code (Non malicious):

Irrelevant (Non-Malicious) Code

And malicious code, where the analysis will start from:

5/20

Malicious Code

The script is merging these base64 encoded strings

Base64 Encoded Strings

Finally, it merges base64 encoded strings with strings containing junk code and executes it

I will print the content and quit before executing to see what will be executed

6/20

Edited vbs file

Output

It will execute a powershell command with base64 encoded string.

Second Stage: PowerShell Script

The script is using + to dynamically build a PowerShell script by piecing together different
parts of strings, to make it harder to detect by security tools.

7/20

Also, the script uses string formatting (-f [Char]36, [Char]39) to replace {0} with $ and {1}
with ‘ (single quotes)

After cleaning:

It Downloads a Remote Payload, then it is decoded into a .NET assembly (DLL/EXE).

Reflective Loading

The payload is loaded directly into memory without being written to disk, allowing it to evade
traditional file-based detection.

Once loaded, the malware retrieves the RunPE.Home class from the loaded assembly and
invokes the VAI method, passing the following arguments:

[‘txt.ECDOL/002/03.322.3.291//:ptth’, ‘desativado’, ‘desativado’, ‘desativado’, ‘RegAsm’, ”]

The c2 server url is reversed

The real url: hxxp[://]192[.]3[.]223[.]30/200/LODCE[.]txt

8/20

Only 5/96 security vendors flagged this URL as malicious

Third Stage: .NET PE Injector

Let’s decode the remote payload

After dumping and loading to die, die indicates that the payload is protected with NetReactor
protection

9/20

I’ll use NetReactorSlayer to deobfuscate it

I’ll upload the deobfuscated (slayed) file to dnspy

10/20

It doesn’t have an entry point to make it harder for analysts that doesn’t have the powershell
script which contains both the entry point and the arguments for the initial method (VAI) to be
executed. Also if they tried to debug it or put it in a sandbox, it will not run as there is no entry
point.

But as we have the powershell script we know that method VAI from RunPE.Home class is
the real entry point of the dll

11/20

The parameters passed to VAI method are:

QBXtX: ‘txt.ECDOL/002/03.322.3.291//:ptth’ (reversed c2 server)

Startupreg: desativado (startup persistence disabled)

caminhovbs: desativado (directory path where the .vbs script is located)

namevbs: desativado (the name of the .vbs script)

netframework: RegAsm (executable name used for process injection)

nativo: “”

Persistence Mechanism

If startupreg is “1”, it calls Class6.Start(caminhovbs, namevbs).

But startupreg is desativado (Portuguese word meaning ‘disabled’) so it won’t execute
Class6.Start, but let’s look in it

12/20

The method takes two parameters: caminhovbs (the directory path where the .vbs script is
located) and namevbs (the name of the .vbs script).

The code checks whether the .vbs file already exists in the given path (caminhovbs). If the
file is not found, the script proceeds to copy this vbs file into the specified directory.

Process.Start(new ProcessStartInfo

{

 WindowStyle = ProcessWindowStyle.Hidden,

 FileName = "cmd.exe",

 Arguments = "/C copy *.vbs \"" + Path.Combine(caminhovbs, namevbs) + ".vbs\""

}).WaitForExit();

The script runs a hidden cmd.exe process to copy all .vbs files from the current working
directory to the specified caminhovbs directory with the given namevbs filename. This
command uses cmd.exe to execute the copy operation in a hidden window
(ProcessWindowStyle.Hidden).

Then the malware achieves persistence by adding the .vbs script to the Windows Registry in
the Run key.

using (RegistryKey registryKey =

Registry.CurrentUser.OpenSubKey("SOFTWARE\\Microsoft\\Windows\\CurrentVersion\

\Run", true))

{

13/20

 registryKey.SetValue("Path", Path.Combine(caminhovbs, namevbs + ".vbs"));

}

It opens the Run key under HKEY_CURRENT_USER, which contains programs that
automatically start when the user logs in.
The second argument (true) allows write access to the key.
Adds (or updates) a registry entry named "Path", setting its value to the full path of a
.vbs script.

The registry modification ensures the malicious script runs automatically at startup, giving it
persistence on the system

Let’s go back to VAI method

ServicePointManager.SecurityProtocol = SecurityProtocolType.Tls12;

Forces the malware to use TLS 1.2.

Many older systems may default to TLS 1.0 or TLS 1.1, which are deprecated.

Then it Creates a WebClient object to handle HTTP requests, converts QBXtX into a
downloadable URL using Home.smethod_0(QBXtX).

Home.smethod_0 uses Array.Reverse to reverse the url make it a downloadable one.

Then it downloads the payload as a string (text2) and reverse it using
Home.smethod_0(text2).

14/20

RunPEE.Ande() is a function that performs process injection that targets

“C:\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\” + netframework + .exe” process

The malware injects the payload into a .NET process inside
“C:\Windows\Microsoft.NET\Framework\v4.0.30319\RegAsm.exe” after Base64-decoding.

Dynamically Resolving APIs

The injector resolves the APIs used in process injection dynamically using smethod_0
function

smethod_0 uses GetProcAddress and LoadLibraryA to load the APIs

I will rename the function pointers with their corresponding API

15/20

After renaming

Process Hollowing

It uses RunPEE.CreateProcessA to create a suspended process (CREATE_SUSPENDED
flag: 4U).

startup_INFORMATION and process_INFORMATION store the startup info and process
information.

Next, it reads the PE header (at offset 0x3C) and gets the image base address

Then, it uses GetThreadContext (or Wow64GetThreadContext for 64-bit systems) to
obtain the context of the suspended process.

16/20

After that, it retrieves the EBX register value int num3 = array[41]; as array[41] holds
the value of EBX from the thread context.

The EBX register, in this context, usually points to the Process Environment Block (PEB) of
the newly created process. The PEB contains important information about the process,
including the base address of the loaded executable

if (!RunPEE.ReadProcessMemory(process_INFORMATION.ProcessHandle, num3 + 8, ref

num4, 4, ref num5)) reads 4 bytes (an integer) from num3 + 8, which corresponds to
PEB.ImageBaseAddress.

The value is stored in num4, which will now contain the actual base address where the
original executable was loaded inside the process.

Next, it unmaps the Original Executable’s Memory by calling ZwUnmapViewOfSection to
remove the original executable image if necessary. After that it allocates New Memory in the
Target Process by calling VirtualAllocEx

After that, it uses WriteProcessMemory to copy sections of object_0 (the new PE) into the
allocated memory.

17/20

Then it updates the PEB ImageBase, calculates the new entry point (num6 +
entryPointOffset) and updates the thread context to execute from the new entry point.

After that, it Calls ResumeThread to resume the process with the injected executable.

Finally, if any error occurs, the function kills the process to avoid detection.

18/20

MITRE ATT&CK Techniques

Tactic ID Technique ID Description

Execution TA0002 Command and
Scripting Interpreter

T1059 Decoded suspicious
Command

Execution TA0002 Shared Modules T1129 The process attempted to
dynamically load a malicious
function

Defense
Evasion

TA0005 Obfuscated Files or
Information

T1027 Detected the execution of a
powershell command with
one or more suspicious
parameters

Defense
Evasion

TA0005 Embedded Payloads T1027.009 Drops interesting files and
uses them

Defense
Evasion

TA0005 Deobfuscate/Decode
Files or Information

T1140 Decoded suspicious
Command

Discovery TA0007 Process Discovery T1057 The process has tried to
detect the debugger probing
the use of page guards.

Discovery TA0007 System Information
Discovery

T1082 Queries for the computer
name

Persistence TA0003 Hijack Execution
Flow

T1574 DLL Side-Loading

Privilege
Escalation

TA0004 Access Token
Manipulation

T1134 Token Impersonation/Theft

Credential
Access

TA0006 Input Capture T1056 Creates a DirectInput object
(often for capturing
keystrokes)

19/20

Command
and Control

TA0011 Application Layer
Protocol

T1071 Adversaries may
communicate using
application layer protocols to
avoid detection.

IOCs

Sha256:

da78b6a3b5c884402e96f23552ee698fa93eeb0f3f2d5000c4eacceb3e0e9200

d83b5e97ce07a91b3d3d0e1e57e52704e5de787b66d93ab9336b9703554d42c3

038c5d0c8353e6b05ca5a4f910e7ddad0040dbd895a487bdca8645a75e052d89

a621e26a3c5ef04e4c3bc384678d65d19d2f9d27c4d921babd437965c2eff1ff

c195324b440b2716c79524f8733c74ee73425873589d9d11dcba4e366c30fcc4

URL:

hxxps[://]ia600100[.]us[.]archive[.]org/24/items/detah-note-v/DetahNoteV[.]txt

hxxp[://]192[.]3[.]223[.]30/200/LODCE[.]txt

IP: 192[.]3[.]223[.]30

YARA Rule

20/20

import "pe"

rule Detect_NET_PE_Injector

{

 meta:

 author = "Tryaq"

 date = "2025-02-23"

 description = "Detects .NET PE Injector"

 reference = "https://x.com/filescan_itsec/status/1889411422943326444"

 version = "1.1"

 sharing = "TLP:CLEAR"

 strings:

 $hex1 = { 28 E7 06 00 0A 28 74 10 00 06 }

 // call bool RunPE.RunPEE::Ande(string, uint8[])

 $hex2 = { 72 F? 73 00 70 0E 04 72 5? 74 00 70 }

 // ldstr "C:\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\"

 // ldarg.s netframework

 // ldstr ".exe"

 $hex3 = { 28 A7 10 00 06 }

 // call string RunPE.Home::smethod_0(string)

 condition:

 pe.characteristics & pe.DLL and

 for any section in pe.sections : (

 section.name == ".text" and section.characteristics & 0x20000000

) and

 pe.imports("mscoree.dll") and

 all of them

}

