
1/13

February 24, 2025

Auto-Color: An Emerging and Evasive Linux Backdoor
unit42.paloaltonetworks.com/new-linux-backdoor-auto-color/

Executive Summary

Between early November and December 2024, Palo Alto Networks researchers discovered
new Linux malware called Auto-color. We chose this name based on the file name the initial
payload renames itself after installation.

The malware employs several methods to avoid detection, such as:

Using benign-looking file names for operating
Hiding remote command and control (C2) connections using an advanced technique
similar to the one used by the Symbiote malware family
Deploying proprietary encryption algorithms to hide communication and configuration
information

Once installed, Auto-color allows threat actors full remote access to compromised machines,
making it very difficult to remove without specialized software.

This article will cover aspects of this new Linux malware, including installation, obfuscation
and evasion features. We will also discuss its capabilities and indicators of compromise
(IoCs), to help others identify this threat on their systems too.

https://unit42.paloaltonetworks.com/new-linux-backdoor-auto-color/


2/13

Palo Alto Networks customers are better protected from the threats discussed in this article
through the following products or services: Advanced WildFire machine-learning models, as
well as Advanced URL Filtering and Advanced DNS Security, and Cortex XDR and XSIAM.

If you think you might have been compromised or have an urgent matter, contact the Unit 42
Incident Response team.

Related Unit 42 Topics Backdoor, Linux

Telemetry and Source Information

We received the first sample for this malware family on Nov. 5, 2024, and as of this writing,
the most recent sample on Dec. 5, 2024. Our metadata analysis revealed that the malware
family has primarily been used to target universities and government offices in North America
and Asia.

Each time the malware deploys on a different target, it uses a different file name. The file
name is usually a simple, ordinary word such as door or egg. We will discuss this feature
further in Malware Startup and Installation.

Although the file sizes are always the same, the hashes are different. This is because the
malware author statically compiled the encrypted C2 configuration payload into each
malware sample, as we discuss in Target C2 Payload Information.

We do not currently know how the initial malware executable reaches its targets, but the file
is intended to run explicitly by the victim on their Linux machine. Figure 1 shows the general
flow after the malware starts execution.

https://www.paloaltonetworks.com/network-security/advanced-wildfire
https://docs.paloaltonetworks.com/advanced-url-filtering/administration
https://docs.paloaltonetworks.com/dns-security
https://docs-cortex.paloaltonetworks.com/p/XDR
https://docs-cortex.paloaltonetworks.com/home
https://start.paloaltonetworks.com/contact-unit42.html
https://unit42.paloaltonetworks.com/tag/backdoor/
https://unit42.paloaltonetworks.com/tag/linux/


3/13

Figure 1. Flow diagram of Auto-color.

Malware Startup and Installation

Once the malware initially runs on the victim machine, it will check whether the executable
file name running is Auto-color. Initially, the original executables will all have different file
names such as door or egg, and they will perform different logic if the name differs from



4/13

Auto-color. If its executable file name is not Auto-color, the malware will run its installation
phase for an evasive library implant located within the executable itself.

If the current user lacks root privileges, the malware will not proceed with the installation of
the evasive library implant on the system. It will proceed to do as much as possible in its later
phases without this library.

If the current user has root privileges, the malware then installs a malicious library implant
called libcext.so.2. This is to mimic the legitimate C utility library libcext.so.0 to evade
detection.

The malware locates the base library directory path using the dladdr() function with a symbol
used from the C standard library (libc). In this case, it used strerr(). If the symbol does not
exist on the system, the malware will use the default base library path /lib instead.

After locating the library path, the executable copies and renames itself to
/var/log/cross/auto-color. It then installs the library implant from memory to the base library
path.

Finally, the malware writes the malicious library file name into /etc/ld.preload, which is a
standard file on Linux systems. The OS’ loader uses this file when loading executables on a
Linux system. This means that all libraries referenced in this file will be loaded into the
executable first by default, even if the loaded executable doesn’t need it.

Since libraries in ld.preload are loaded first, a malicious library can override core libraries.
This is accomplished by overwriting functions or other symbols (mainly libc functions),
effectively intercepting and modifying behavior. This is also known as “hooking” any
executable that tries to call libc functions.

Figure 2 below shows what happens whether or not the user has root privileges. The
malware deletes its original executable in both cases. However, with root privileges, it
preserves the Auto-color binary at /var/log/cross/auto-color.

https://packages.debian.org/sid/libcext0


5/13

Figure 2. Initial installation of Auto-color.

Malicious Library Implant Analysis

When the malicious library implant libcext.so.2 is installed, the actual library content is
located within the original executable’s memory, specifically the .rodata section.

This library has two main goals, for evasion and persistence:

Hiding network activity between the malware and the remote target configured inside a
global payload
Preventing uninstallation by protecting /etc/ld.preload against modification or removal

Hiding Network Activity

On traditional Linux systems, the kernel holds a special file system called the proc file
system, which contains information about the system as well as each running process. We
will focus on one part of this file system, /proc/net/tcp, which contains information on all
active network connections including source/destination IP addresses and port numbers.

As mentioned in the previous section, this library will hook functions used in libc for its own
special purposes. In this case the malicious library is mainly hooking the open() family of
functions.



6/13

For the most part, this hook will be passive in that it will just redirect the libc implementation
of the function. However, when /proc/net/tcp is specifically passed in the function as a file,
the malware’s behavior changes.

When /proc/net/tcp is passed into the malicious library’s open() function, it parses the file
contents. The library checks each line to see whether certain local ports or remote IP
addresses exist in a specific shared memory data structure. If so, the library will not write the
specific entry containing the remote IP address or local port to a special file with the file path
/tmp/cross/<user_id>/tcp. Otherwise, the line will be copied over as normal.

Finally, the malicious library’s open() function returns a file descriptor for the modified file,
concealing the manipulation from the victim.

Figure 3 shows what the /proc/net/tcp looks like before alteration.

Figure 3. Original contents of /proc/net/tcp.

Figure 4 shows the final result returned to the victim. The malware author did not format the
output correctly, so the row numbers highlighted in red in Figure 3 and Figure 4 do not
match.

Figure 4. Modified contents of /proc/net/tcp from the malicious library.

The Symbiote malware family employed a similar, albeit simpler, technique to hide network
connections. The Symbiote malware focused on concealment rather than manipulating or
attempting to read socket information.

Target C2 Payload Information

Before the core part of the malware executes, it must decrypt the global target payload to
find out which remote attacker servers it must connect to. It can obtain this global payload in
two ways.

The first method is to read a specific file, /tmp/cross/config-err-XXXXXXXX or
/var/log/cross/config-err-XXXXXXXX. The malware uses the first path if the user is non-root
and the second path will exist if the user is root. The XXXXXXX part of the filenames are in
hex and are generated dynamically.

https://intezer.com/blog/research/new-linux-threat-symbiote/


7/13

These “config” files exist all over the malware and many of their purposes are different.
However, the main config file manipulates the global payload information.

The threat actors can create the main config file and modify it to use later if they need to
change the servers the malware connects to through the API mentioned later in this article.
This file was not initially present on the system.

The second method will grab the payload data from the .data section if the file from the first
method does not exist. This means that the threat actor must pre-compile each malware for
each target if they want the remote target to be different.

The encryption in this target payload is the malware author’s own version of a stream cipher.
A stream cipher is an encryption scheme in which the key interacts with each byte of the
ciphertext.

The key, generated by a pseudorandom algorithm, continuously expands to match the
ciphertext length. This contrasts with block ciphers like AES and DES, which operate on
fixed-size blocks.

The format of the target payload we analyzed consists of three main parts: the size of the
encrypted block, the ciphertext and the key. The size and key are 4-byte values but are
originally in big-endian byte ordering, meaning that the most significant byte is ordered first
rather than last.

Figure 5 shows how this encrypted format originally looked. The size and key are
represented as arrays to emphasize their big-endian ordering. In this case, the ciphertext
size is 0x8E, and the key is 0x51AF015D.



8/13

Figure 5. Encrypted format of the target payload.

The custom encryption algorithm does not use preexisting cryptographic standards like AES
or DES. The key decrypts each byte of the ciphertext by performing a bitwise XOR and
subtraction operations between the 4-byte key and a single byte of ciphertext.

After decrypting each byte, a new key is generated using the old key to operate on the next
byte. This final payload contains the actual targets the malware will connect to when
operating the main API discussed in the next section.

Core C2 Protocol and API Structure

Upon connecting to the threat actor’s machine, the malware initiates a simple handshake
with the remote server, with a simple random 16-byte value check.

If the server adheres to the protocol, it will echo the 16 bytes. After the handshake, the
malware enters its main loop, awaiting commands from the remote target and following
according to the metadata given.

Each message from the infected machine or the remote server follows a specific protocol
structure unique to this malware family. One message consists of two main parts: a message
header and a payload. The message header is then split into four main parts listed below:

https://learn.microsoft.com/en-us/cpp/cpp/bitwise-exclusive-or-operator-hat?view=msvc-170


9/13

A 4-byte key that encrypts the rest of the metadata and payload
A command ID that tells which specific operation is happening
If the operation was successful, an error code value containing 0, or a value code
representing the reason the error occurred
A payload size

Keys in this protocol are dynamically generated using random values. Thus, the encryption in
this protocol relies on the fact that it is secret rather than keeping the key secret within the
program. Each message uses a unique, one-time key.

Once a message is given from the remote server to the infected machine, the malware will
decrypt and parse the header and payload contents. The malware then reads the command
ID value in the header to determine which functionality to execute based on a large switch
statement. The next section includes a table that highlights the categories of functionality the
malware can perform.

Each payload has a unique structure for the specific API command being run based on the
command ID value due to the different types of arguments used. The payload structure uses
a binary format rather than being sent in a human readable format like JSON or XML.

Before the arguments from the remote server can be used for an API command, the malware
will need to convert arguments from network byte ordering to host byte ordering. This is
needed because if the wrong byte ordering is used, a completely different value will be
interpreted by the malware. The types of values used for arguments include C-style strings
and integral values of potentially different byte lengths.

After a command has been received from the remote server, then parsed and executed, the
malware will send back the result in a header-only message (a zero-length payload). This
message gives the remote server information on what command was being executed as well
as the error code that caused the command to fail, if any.

After a command finishes executing, the loop begins again waiting for the remote server to
send another message to the infected machine. If the connection is broken, the malware will
sleep before reconnecting to the remote server.

Malware C2 API Functionality

This section briefly describes the entire API and its main categories of capabilities. Table 1
describes each command ID value grouped together and the main functionality of each
group of command IDs. Each command ID will be given in hex format, where XX is a
placeholder value used to group the items together.

Command
IDs

Category
Name

Description



10/13

0, 1, 2, 3,
0xF

General
options and
kill switch

Sends host information and includes a kill switch to uninstall
itself from the system

0x100 Reverse
shell

Creates a reverse shell for the remote server to interact with
the victim machine directly

0x2XX File
operations
and
manipulation

Create and/or modify files and execute programs locally

0x300 Network
proxy

The infected machine will act as a middleman proxy for any
connections between the remote target and the IP address
given in the argument

0x4XX Global
payload
manipulation

Sends and manipulates global configuration data mentioned
previously

Table 1. API of Auto-color.

Conclusion

Auto-color is an emerging threat that Palo Alto Networks researchers discovered that does
several things to avoid detection. The evasive actions range from trivial things such as
renaming the malware to a benign-looking name like Auto-color, to more sophisticated
methods such as hiding system network connections and preventing uninstallation through
hooking libc functionality.

Upon execution, the malware attempts to receive remote instructions from a command
server that can create reverse shell backdoors on the victim’s system. The threat actors
separately compile and encrypt each command server IP using a proprietary algorithm. IoCs
are listed at the end to help readers identify whether their systems have been compromised
by Auto-color.

Palo Alto Networks customers are better protected from the threats discussed in this article
through the following products or services:

The Advanced WildFire machine-learning models and analysis techniques have been
reviewed and updated in light of the IoCs shared in this research.
Cortex XDR and XSIAM block and alert on known behaviors and indicators associated
with Auto-color.
Advanced URL Filtering and Advanced DNS Security identify known URLs and
domains associated with this activity as malicious.

https://www.paloaltonetworks.com/network-security/advanced-wildfire
https://docs-cortex.paloaltonetworks.com/p/XDR
https://docs-cortex.paloaltonetworks.com/home
https://docs.paloaltonetworks.com/advanced-url-filtering/administration
https://docs.paloaltonetworks.com/dns-security


11/13

If you think you may have been compromised or have an urgent matter, get in touch with the
Unit 42 Incident Response team or call:

North America: Toll Free: +1 (866) 486-4842 (866.4.UNIT42)
UK: +44.20.3743.3660
Europe and Middle East: +31.20.299.3130
Asia: +65.6983.8730
Japan: +81.50.1790.0200
Australia: +61.2.4062.7950
India: 00080005045107

Palo Alto Networks has shared these findings with our fellow Cyber Threat Alliance (CTA)
members. CTA members use this intelligence to rapidly deploy protections to their customers
and to systematically disrupt malicious cyber actors. Learn more about the Cyber Threat
Alliance.

Indicators of Compromise

Malicious files from Auto-Color:

SHA256 hash: 270fc72074c697ba5921f7b61a6128b968ca6ccbf8906645e796cfc3072d4c43

File size: 229,160 bytes
File name: log
File type: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked
File description: Sample 1 malware from Auto-color

SHA256 hash: 65a84f6a9b4ccddcdae812ab8783938e3f4c12cfba670131b1a80395710c6fb4

File size: 229,160 bytes
File name: edus
File type: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked
File description: Sample 2 malware from Auto-color

SHA256 hash: 83d50fcf97b0c1ec3de25b11684ca8db6f159c212f7ff50c92083ec5fbd3a633

File size: 229,160 bytes
File name: egg
File type: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked
File description: Sample 3 malware from Auto-color

SHA256 hash:
a1b09720edcab4d396a53ec568fe6f4ab2851ad00c954255bf1a0c04a9d53d0a

File size: 229,160 bytes

https://start.paloaltonetworks.com/contact-unit42.html
https://www.cyberthreatalliance.org/


12/13

File name: edu
File type: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked
File description: Sample 4 malware from Auto-color

SHA256 hash: bace40f886aac1bab03bf26f2f463ac418616bacc956ed97045b7c3072f02d6b

File size: 229,160 bytes
File name: door
File type: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked
File description: Sample 5 malware from Auto-color

SHA256 hash:
e1c86a578e8d0b272e2df2d6dd9033c842c7ab5b09cda72c588e0410dc3048f7

File size: 229,160 bytes
File name: exup
File type: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked
File description: Sample 6 malware from Auto-color

SHA256 hash: 85a77f08fd66aeabc887cb7d4eb8362259afa9c3699a70e3b81efac9042bb255

File size: 229,160 bytes
File name: law
File type: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked
File description: Sample 7 malware from Auto-color

SHA256 hash: bf503b5eb456f74187a17bb8c08bccc9b3d91a7f0f6fd50110540b051510d1ca

File size: 35,160 bytes
File name: libcext.so.2
File type: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked
File description: Library Implant from Auto-color

Malicious C2 IP Addresses from Auto-Color:

146[.]70[.]41[.]178:443 - log sample
216[.]245[.]184[.]214:443 - edus/egg sample
146[.]70[.]87[.]67:443 - edu/door sample
65[.]38[.]121[.]64:443 - exup sample
206[.]189[.]149[.]191:443 - law sample

Additional Resources

Symbiote Deep-Dive: Analysis of a New, Nearly-Impossible-to-Detect Linux Threat –
Intezer

https://intezer.com/blog/research/new-linux-threat-symbiote/


13/13

Copyright © 2025 Palo Alto Networks. All Rights Reserved


