
1/28

DeceptiveDevelopment targets freelance developers
welivesecurity.com/en/eset-research/deceptivedevelopment-targets-freelance-developers/

ESET Research

ESET researchers analyzed a campaign delivering malware bundled with job interview challenges

Matěj Havránek

20 Feb 2025
, 28 min. read

Cybercriminals have been known to approach their targets under the guise of company recruiters,
enticing them with fake employment offers. After all, what better time to strike than when the potential
victim is distracted by the possibility of getting a job? Since early 2024, ESET researchers have observed
a series of malicious North Korea-aligned activities, where the operators, posing as headhunters, try to
serve their targets with software projects that conceal infostealing malware. We call this activity cluster
DeceptiveDevelopment.

As part of a fake job interview process, the DeceptiveDevelopment operators ask their targets to do a
coding test, such as adding a feature to an existing project, with the files necessary for the task usually
hosted on private repositories on GitHub or other similar platforms. Unfortunately for the eager work
candidate, these files are trojanized: once they download and execute the project, the victim’s computer
gets compromised with the operation’s first-stage malware, BeaverTail.

https://www.welivesecurity.com/en/eset-research/deceptivedevelopment-targets-freelance-developers/
https://www.welivesecurity.com/en/our-experts/matej-harvanek/
https://www.welivesecurity.com/en/our-experts/matej-harvanek/

2/28

DeceptiveDevelopment was first publicly described by Phylum and Unit 42 in 2023, and has already
been partially documented under the names Contagious Interview and DEV#POPPER. We have
conducted further analysis of this activity cluster and its operator’s initial access methods, network
infrastructure, and toolset, including new versions of the two malware families used by
DeceptiveDevelopment – InvisibleFerret, and the aforementioned BeaverTail.

Key points of this blogpost:

DeceptiveDevelopment targets freelance software developers through spearphishing on job-
hunting and freelancing sites, aiming to steal cryptocurrency wallets and login information
from browsers and password managers.
Active since at least November 2023, this operation primarily uses two malware families –
BeaverTail (infostealer, downloader) and InvisibleFerret (infostealer, RAT).
DeceptiveDevelopment’s tactics, techniques, and procedures (TTPs) are similar to several
other known North Korea-aligned operations.

We first observed this DeceptiveDevelopment campaign in early 2024, when we discovered trojanized
projects hosted on GitHub with malicious code hidden at the end of long comments, effectively moving
the code off-screen. These projects delivered the BeaverTail and InvisibleFerret malware. In addition to
analyzing the two malware families, we also started investigating the C&C infrastructure behind the
campaign. Since then, we have been tracking this cluster and its advances in strategy and tooling used
in these ongoing attacks. This blogpost describes the TTPs of this campaign, as well as the malware it
uses.

DeceptiveDevelopment profile

DeceptiveDevelopment is a North Korea-aligned activity cluster that we currently do not attribute to any
known threat actor. Operators behind DeceptiveDevelopment target software developers on Windows,
Linux, and macOS. They primarily steal cryptocurrency for financial gain, with a possible secondary
objective of cyberespionage.

To approach their targets, these operators use fake recruiter profiles on social media, not unlike the
Lazarus group in Operation DreamJob (as described in this WeLiveSecurity blogpost). However, while
Operation DreamJob targeted defense and aerospace engineers, DeceptiveDevelopment reaches out to
freelance software developers, often those involved in cryptocurrency projects. To compromise its
victims’ computers, DeceptiveDevelopment provides its targets with trojanized codebases that deploy
backdoors as part of a faux job interview process.

Victimology

The primary targets of this DeceptiveDevelopment campaign are software developers, mainly those
involved in cryptocurrency and decentralized finance projects. The attackers don’t distinguish based on
geographical location and aim to compromise as many victims as possible to increase the likelihood of
successfully extracting funds and information.

We have observed hundreds of different victims around the world, using all three major operating
systems – Windows, Linux, and macOS. They ranged from junior developers just starting their freelance
careers to highly experienced professionals in the field. We only observed attacker–victim conversations

https://blog.phylum.io/smuggling-malware-in-test-code/
https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/
https://www.welivesecurity.com/en/eset-research/lazarus-luring-employees-trojanized-coding-challenges-case-spanish-aerospace-company/

3/28

in English, but cannot say with certainty that the attackers will not use translation tools to communicate
with victims who don’t speak that language. A map showing the global distribution of victims can be seen
in Figure 1.

Figure 1. Heatmap of different victims of DeceptiveDevelopment

Attribution

We consider DeceptiveDevelopment to be a North Korea-aligned activity cluster with high confidence
based on several elements:

We observed connections between GitHub accounts controlled by the attackers and accounts
containing fake CVs used by North Korean IT workers. These people apply for jobs in foreign
companies under false identities in order to collect salaries to help fund the regime. The observed
connections were mutual follows between GitHub profiles where one side was associated with
DeceptiveDevelopment, and the other contained fake CVs and other material related to North
Korean IT worker activity. Similar connections were also observed by Unit42. Unfortunately, the
GitHub pages were taken down before we were able to record all the evidence.
The TTPs (use of fake recruiters, trojanized job challenges, and software used during interviews)
are similar to other North Korea-aligned activity (Moonstone Sleet, and Lazarus’s DreamJob and
DangerousPassword campaigns).

In addition to the connections between the GitHub profiles, the malware used in DeceptiveDevelopment
is rather simple. This tracks with the reporting done by Mandiant claiming that the IT workers’ work is
usually of poor quality.

While monitoring DeceptiveDevelopment activity, we saw numerous cases showing a lack of attention to
detail on the part of the threat actors. In some of them, the authors failed to remove development notes
or commented-out local IP addresses used for development and testing. We also saw samples where
they seem to have forgotten to obfuscate the C&C address after changing it; this can be seen in Figure
2. Furthermore, the malware uses freely available obfuscation tools with links to them sometimes left in
code comments.

https://cloud.google.com/blog/topics/threat-intelligence/mitigating-dprk-it-worker-threat
https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/
https://www.microsoft.com/en-us/security/blog/2024/05/28/moonstone-sleet-emerges-as-new-north-korean-threat-actor-with-new-bag-of-tricks/
https://web.archive.org/web/20230523021517/https:/threatbook.cn/ppt/The%20Nightmare%20of%20Global%20Cryptocurrency%20Companies%20-%20Demystifying%20the%20%E2%80%9CDangerousPassword%E2%80%9D%20of%20the%20APT%20Organization.pdf
https://cloud.google.com/blog/topics/threat-intelligence/mitigating-dprk-it-worker-threat

4/28

Figure 2. Examples of comments and obfuscation forgotten in the code

Technical analysis

Initial access

In order to pose as recruiters, the attackers copy profiles of existing people or even construct new
personas. They then either directly approach their potential victims on job-hunting and freelancing
platforms or post fake job listings there. At first, the threat actors used brand new profiles and would
simply send links to malicious GitHub projects via LinkedIn to their intended targets. Later, they started
using profiles that appear established, with many followers and connections, to look more trustworthy,
and branched out to more job-hunting and code-hosting websites. While some of these profiles are set
up by the attackers themselves, others are potentially compromised profiles of real people on the
platform, modified by the attackers.

Some of the platforms where these interactions occur are generic job-hunting ones, while others focus
primarily on cryptocurrency and blockchain projects and are thus more in line with the attackers’ goals.
The platforms include:

LinkedIn,
Upwork,
Freelancer.com,
We Work Remotely,
Moonlight, and
Crypto Jobs List.

The most commonly observed compromise vector consists of the fake recruiter providing the victim with
a trojanized project under the guise of a hiring challenge or helping the “recruiter” fix a bug for a financial
reward.

5/28

Victims receive the project files either directly via file transfer on the site or through a link to a repository
like GitHub, GitLab, or Bitbucket. They are asked to download the files, add features or fix bugs, and
report back to the recruiter. Additionally, they are instructed to build and execute the project in order to
test it, which is where the initial compromise happens. The repositories used are usually private, so the
victim is first asked to provide their account ID or email address to be granted access to them, most likely
to conceal the malicious activity from researchers.

Despite that, we observed many cases where these repositories were publicly available, but realized that
these belong mostly to victims who, after completing their tasks, uploaded them to their own repositories.
Figure 3 shows an example of a trojanized project hosted on GitHub. We have reported all observed
malicious code to the affected services.

6/28

Figure 3. README of a trojanized GitHub project

The trojanized projects fall into one of four categories:

hiring challenges,
cryptocurrency projects,
games (usually with blockchain functionality), and
gambling with blockchain/cryptocurrency features.

7/28

These repositories are often duplicates of existing open-source projects or demos, with little to no
change aside from adding the malicious code and changing the README file. Some of the malicious
project names and names of attacker-controlled accounts operating them (where we could assess them)
are listed in Table 1.

Table 1. Observed project names and repository/commit authors

Project Author Project Author

Website-Test Hiring-Main-Support casino-template-paid bmstore

guru-challenge Chiliz-Guru casino-demo casinogamedev

baseswap_ver_4 artemreinv point freebling-v3

metaverse-backend metaverse-ritech Blockchain-game N/A

lisk-parknetwork MariaMar1809 3DWorld-tectera-beta N/A

We also observed the attackers impersonating existing projects and companies by using similar names
or appending LLC, Ag, or Inc (abbreviations of legal company types) to the names, as seen in Table 2.

Table 2. Observed project names and repository/commit authors impersonating legitimate projects

Project Author

Lumanagi-Dex LUMANAGI-LLC

DARKROOM-NFT DarkRoomAg

DarkRoom WonderKiln-Inc

The attackers often use a clever trick to hide their malicious code: they place it in an otherwise benign
component of the project, usually within backend code unrelated to the task given to the developer,
where they append it as a single line behind a long comment. This way, it is moved off-screen and stays
hidden unless the victim scrolls to it or has the word wrap feature of their code editor enabled.
Interestingly, GitHub’s own code editor does not enable word wrap, so the malicious code is easy to miss
even when looking at code in the repository, as shown in Figure 4.

8/28

Figure 4. Malicious code appended after a long comment pushing it off-screen in GitHub’s code editor (top) and
the page source of just line #1 as seen in a code editor with word wrapping enabled (bottom)

Another compromise vector we observed consisted of the fake recruiter inviting the victim to a job
interview using an online conferencing platform and providing a link to a website from which the
necessary conferencing software can be downloaded. The website is usually a clone of an existing
conferencing platform’s website, as seen in Figure 5, and the downloaded software contains the first
stage of the malware.

9/28

Figure 5. Malicious website at mirotalk[.]net, a copy of the legitimate MiroTalk site (sfu.mirotalk.com), serving
malware disguised as conferencing software via a click of the Join Room button

Toolset

DeceptiveDevelopment primarily uses two malware families as part of its activities, delivered in two
stages. The first stage, BeaverTail, has both a JavaScript and a native variant (written in C++ using the
Qt platform), and is delivered to the victim, disguised as a part of a project the victim is asked to work on,
a hiring challenge, or inside trojanized remote conferencing software such as MiroTalk or
FreeConference.

BeaverTail acts as a simple login stealer, extracting browser databases containing saved logins, and as a
downloader for the second stage, InvisibleFerret. This is modular Python-based malware that includes
spyware and backdoor components, and is also capable of downloading the legitimate AnyDesk remote
management and monitoring software for post-compromise activities. Figure 6 shows the full
compromise chain from initial compromise, through data exfiltration, to the deployment of AnyDesk.

https://meet.no42.org/
https://freeconference.com/
https://anydesk.com/en

10/28

Figure 6. DeceptiveDevelopment compromise chain

Both BeaverTail and InvisibleFerret have been previously documented by Unit 42, Group-IB, and
Objective-See. A parallel investigation was also published by Zscaler, whose findings we can
independently confirm. Our analysis contains details that have not been publicly reported before and
presents a comprehensive overview of the malicious activity.

BeaverTail

BeaverTail is the name for the infostealer and downloader malware used by DeceptiveDevelopment.
There are two different versions – one written in JavaScript and placed directly into the trojanized
projects with simple obfuscation, and native versions, built using the Qt platform, that are disguised as
conferencing software and were initially described by Objective-See. Both versions have strong
similarities in their functionalities.

This malware targets Windows, Linux, and macOS systems, with the aim of collecting saved login
information and cryptocurrency wallet data.

It starts by getting the C&C IP address and port. While the IP addresses vary, the ports used are usually
either 1224 or 1244, making the malicious network activity easily identifiable. In the JavaScript version,
the IP address and port are obfuscated using base64 encoding, split into three parts, and swapped
around to prevent automatic decoding. Other strings are also encoded with base64, often with one
dummy character prepended to the resulting string to thwart simple decoding attempts. The native
version has the IP, port, and other strings all stored in plaintext. The obfuscated JavaScript code can be
seen in Figure 7, and the deobfuscated code in Figure 8.

https://unit42.paloaltonetworks.com/north-korean-threat-actors-lure-tech-job-seekers-as-fake-recruiters/
https://www.group-ib.com/blog/apt-lazarus-python-scripts/
https://objective-see.org/blog/blog_0x7D.html
https://www.zscaler.com/blogs/security-research/pyongyang-your-payroll-rise-north-korean-remote-workers-west
https://objective-see.org/blog/blog_0x7D.html

11/28

Figure 7. Obfuscated BeaverTail code

Figure 8. Deobfuscated BeaverTail code

BeaverTail then looks for browser extensions installed in the Google Chrome, Microsoft Edge, Opera,
and Brave browsers and checks whether any of them match extension names from a hardcoded list from
Chrome Web Store or Microsoft Edge Add-ons, shown below. The browser listed in parentheses is the
source of the extension; note that both Opera and Brave also use extensions from Chrome Web Store,
as they are Chromium-based.

nkbihfbeogaeaoehlefnkodbefgpgknn – MetaMask (Chrome)
ejbalbakoplchlghecdalmeeeajnimhm – MetaMask (Edge)
fhbohimaelbohpjbbldcngcnapndodjp – BNB Chain Wallet (Chrome)
hnfanknocfeofbddgcijnmhnfnkdnaad – Coinbase Wallet (Chrome)
ibnejdfjmmkpcnlpebklmnkoeoihofec – TronLink (Chrome)
bfnaelmomeimhlpmgjnjophhpkkoljpa – Phantom (Chrome)
fnjhmkhhmkbjkkabndcnnogagogbneec – Ronin Wallet (Chrome)
aeachknmefphepccionboohckonoeemg – Coin98 Wallet (Chrome)
hifafgmccdpekplomjjkcfgodnhcellj – Crypto.com Wallet (Chrome)

If they are found, any .ldb and .log files from the extensions’ directories are collected and exfiltrated.

Apart from these files, the malware also targets a file containing the Solana keys stored in the user’s
home directory in .config/solana/id.json. BeaverTail then looks for saved login information in
/Library/Keychains/‌login.keychain (for macOS) or /.local/share/keyrings/ (for Linux). If they exist, the
Firefox login databases key3.db, key4.db, and logins.json from /.mozilla/firefox/ are also exfiltrated during
this time.

https://solana.com/

12/28

Each BeaverTail sample contains a victim ID used for identification. These IDs are used throughout the
whole compromise chain as identifiers in all downloads and uploads. We suspect that these IDs are
unique to each victim and are used to connect the stolen information to the victim’s public profile.

The collected data along with the computer hostname and current timestamp is uploaded to the /uploads
API endpoint on the C&C server. Then, a standalone Python environment is downloaded in an archive
called p2.zip, hosted on the C&C server, to enable execution of the next stage. Finally, the next stage is
downloaded from the C&C server (API endpoint /client/<campaign_ID>) into the user’s home directory
under the name .npl and executed using the downloaded Python environment.

In August 2024, we observed a new version of the JavaScript BeaverTail, where the code placed in the
trojanized project acted only as a loader and downloaded and executed the actual payload code from a
remote server. This version also used a different obfuscation technique and added four new
cryptocurrency wallet extensions to the list of targets:

jblndlipeogpafnldhgmapagcccfchpi – Kaia Wallet (Chrome)
acmacodkjbdgmoleebolmdjonilkdbch – Rabby Wallet (Chrome)
dlcobpjiigpikoobohmabehhmhfoodbb – Argent X - Starknet Wallet (Chrome)
aholpfdialjgjfhomihkjbmgjidlcdno – Exodus Web3 Wallet (Chrome)

When investigating the ipcheck[.]cloud website, we noticed that the homepage is a mirror of the
malicious mirotalk[.]net website, serving native BeaverTail malware disguised as remote conferencing
software, indicating a direct connection between the new JavaScript and the native versions of
BeaverTail.

InvisibleFerret

InvisibleFerret is modular Python malware with capabilities for information theft and remote attacker
control. It consists of four modules – main (the .npl file), payload (pay), browser (bow), and AnyDesk
(adc). The malware has no persistence mechanism in place aside from the AnyDesk client deployed at
the end of the compromise chain. After gaining persistence via AnyDesk, the attackers can execute
InvisibleFerret at will.

Interestingly, most of its backdoor functionality requires an operator (or scripted behavior) at the other
side sending commands, deciding what data to exfiltrate and how to propagate the attack. In all versions
of InvisibleFerret that we observed, the backdoor components are activated upon operator command.
The only functionality not executed by the operator is the initial fingerprinting, which is done
automatically.

Main module

The main module, originally named main, is the .npl file that BeaverTail downloaded from the C&C server
and saved into the home directory. It is responsible for downloading and executing individual payload
modules. All modules contain an XOR-encrypted and base64-encoded payload, preceded by four bytes
representing the XOR key, followed by code to decrypt and execute it via exec, as seen in Figure 9. Each
module also contains the sType variable, containing the current victim ID. This ID is a copy of the ID
specified in the download request. When a request is made to download the script file, the given ID is
placed as the sType value into the final script file by the C&C server’s API.

13/28

Figure 9. Decrypting and executing the InvisibleFerret payload

This module contains a hardcoded C&C address encoded with base64 and split into two halves that
have been swapped to make decoding harder. In most cases that we observed, this address was
identical to the one used in the preceding BeaverTail sample. The main module downloads the payload
module from /payload/<campaign_ID> to .n2/pay in the user’s home directory and executes it.
Afterwards, if running on macOS (determined by checking whether a call to the platform.system function
returns Darwin), it exits. On other operating systems it also downloads the browser module from
/brow/<campaign_ID> to .n2/bow in the user’s home directory and executes that in a separate Python
instance.

Payload module

The pay module consists of two parts – one collects information and the other serves as a backdoor. The
first part contains a hardcoded C&C URL, usually similar to the previously used ones, and collects the
following:

the user’s UUID,
OS type,
PC name,
username,
system version (release),
local IP address, and
public IP address and geolocation information (region name, country, city, ZIP code, ISP, latitude
and longitude) parsed from http://ip-api.com/json.

This information, illustrated in Figure 10, is then uploaded to the /keys API endpoint using HTTP POST.

Figure 10. System information submitted by the payload module to the C&C server

The second part acts as a TCP backdoor, and a TCP reverse shell, accepting remote commands from
the C&C server and communicating via a socket connection. It usually uses port 1245, but we also
observed ports 80, 2245, 3001, and 5000. Notably, the C&C IP address hardcoded in this part was
different from the previous ones sometimes, probably to separate the more suspicious final network
activity from the initial deployment.

14/28

The second payload checks whether it is executing under Windows – if it is, it enables a keylogger
implemented using pyWinHook and a clipboard stealer using pyperclip, shown in Figure 11. These
collect and store any keypresses and clipboard changes in a global buffer and run in a dedicated thread
for as long as the script itself is running.

Figure 11. Clipboard stealer and keylogger code

Afterwards, it executes the backdoor functionality, which consists of eight commands, described in Table
3.

Table 3. Commands implemented in InvisibleFerret

ID Command Function Description

1 ssh_cmd Removes
the
compromise

· Only supports the delete argument.

· Terminates operation and removes the compromise.

2 ssh_obj Executes
shell
commands

· Executes the given argument[s] using the system shell via Python’s
subprocess module and returns any output generated by the
command.

15/28

ID Command Function Description

3 ssh_clip Exfiltrates
keylogger
and
clipboard
stealer data

· Sends the contents of the keylogger and clipboard stealer buffer to
the C&C server and clears the buffer.

· On operating systems other than Windows, an empty response is
sent, as the keylogging functionality is not enabled.

4 ssh_run Installs the
browser
module

· Downloads the browser module to .n2/bow in the user’s home
directory and executes it in a new Python instance (with the
CREATE_NO_WINDOW and CREATE_NEW_PROCESS_GROUP
flags set on Windows)

· Replies to the server with the OS name and get browse.

5 ssh_upload Exfiltrates
files or
directories,
using FTP

· Uploads files to a given FTP server with server address and
credentials specified in arguments.
· Has six subcommands: · sdira, sdir, sfile, sfinda, sfindr, and sfind.

· sdira – uploads everything in a directory specified in args, skipping
directories matching the first five elements in the ex_dirs array (listed
below). Sends >> upload all start: followed by the directory name to
the server when the upload starts, ‑counts: followed by the number
of files selected for upload when directory traversal finishes, and
uploaded success once everything is uploaded.

· sdir – similar to sdira, but exfiltrates only files smaller than
104,857,600 bytes (100 MB) with extensions not excluded by
ex_files and directories not excluded by ex_dirs. The initial message
to the server is >> upload start: followed by the directory name.

· sfile – similar to sdir, but exfiltrates only a single file. If the
extension is .zip, .rar, .pdf, or is in the ex_files list (in this case not
being used to exclude files for upload, but from encryption), it gets
directly uploaded. Otherwise the file is encrypted using XOR with the
hardcoded key G01d*8@(before uploading.

· sfinda – searches the given directory and all its subdirectories
(excluding those in the ex_dirs list) for files matching a provided
pattern, and uploads those not matching items in the ex_files list.
When starting, sends >> ufind start: followed by the starting directory
to the server, followed by ufind success after it finishes.

· sfindr – similar to sfinda, but without the recursive search.
Searches only the specified directory.

· sfind – similar to sfinda, but starts the search in the current
directory.

6 ssh_kill Terminates
the Chrome
and Brave
browsers

· Termination is done via the taskkill command on Windows or killall
on other systems, as shown in Figure 12.

· Replies to the server with Chrome & Browser are terminated.

7 ssh_any Installs the
AnyDesk
module

· This works identically to the ssh_run command, downloading the
AnyDesk module to and executing it from the .n2 folder in the user’s
home directory.

· Replies to the server with the OS name and get anydesk.

16/28

ID Command Function Description

8 ssh_env Uploads
data from
the user’s
home
directory
and
mounted
drives,
using FTP

· Sends --- uenv start to the server.

· Establishes an FTP connection using the server address and

credentials provided in the arguments.

· On Windows, uploads the directory structure and contents of the

Documents and Downloads folders, as well as the contents of drives
D to I.

· On other systems, uploads the entirety of the user’s home directory
and the /Volumes directory containing all mounted drives.

· Only uploads files smaller than 20,971,520 bytes (20 MB) and
excludes directories matching the ex_dir list and files matching the
ex_files, ex_files1, and ex_files2 lists described in Figure 13.

· Finishes by sending --- uenv success to the server.

Figure 12. Implementation of the ssh_kill command

Each command is named with the prefix ssh_ and assigned a numerical value to be used when
communicating with the server. For each command received, a new thread is spawned to execute it and
the client immediately starts listening for the next command. Replies to commands are sent
asynchronously as the commands finish executing. The two-way communication is done over sockets, in
JSON format, with two fields:

command – denoting the numerical command ID.
args – containing any additional data sent between the server and client.

The script also contains lists of excluded file and directory names (such as cache and temporary
directories for software projects and repositories) to be skipped when exfiltrating data, and a list of
interesting name patterns to exfiltrate (environment and configuration files; documents, spreadsheets,
and other files containing the words secret, wallet, private, password, etc.)

Browser module

The bow module is responsible for stealing login data, autofill data, and payment information saved by
web browsers. The targeted browsers are Chrome, Brave, Opera, Yandex, and Edge, all Chromium-
based, with multiple versions listed for each of the three major operating systems (Windows, Linux,
macOS) as shown in Figure 13.

17/28

Figure 13. Targeted browsers and their versions

It searches through the browser’s local storage folders (an example is shown in Figure 14) and copies
the databases containing login and payment information to the %Temp% folder on Windows or the /tmp
folder on other systems, into two files:

LoginData.db containing user login information, and
webdata.db containing saved payment information (credit cards).

Figure 14. Hardcoded local browser paths on Windows

Because the saved passwords and credit card numbers are stored in an encrypted format using AES,
they need to be decrypted before exfiltration. The encryption keys used for this are obtained based on
the operating system in use. On Windows, they are extracted from the browser’s Local State file, on
Linux they are obtained through the secretstorage package, and on macOS they are obtained through
the security utility, as illustrated in Figure 15.

https://github.com/mitya57/secretstorage
https://ss64.com/mac/security-password-mgt.html

18/28

Figure 15. Extracting the encryption keys for browser databases on Windows, Linux, and macOS

The collected information (see Figure 16) is then sent to the C&C server via an HTTP POST request to
the /keys API endpoint.

Figure 16. Information submitted by the browser module to the C&C server

AnyDesk module

The adc module is the only persistence mechanism found in this compromise chain, setting up AnyDesk
access to the victim’s computer using a configuration file containing hardcoded login credentials.

19/28

On Windows, it checks whether the C:/Program Files (x86)/AnyDesk/AnyDesk.exe exists. If not, it
downloads anydesk.exe from the C&C server (http://<C&C_IP>:<C&C_port>/anydesk.exe) into the
user’s home directory.

Then it attempts to set up AnyDesk for access by the attacker by entering hardcoded password hash,
password salt, and token salt values into the configuration files. If the configuration files don’t exist or
don’t contain a given attacker-specified password salt value, the module attempts to modify them to add
the hardcoded login information. If that fails, it creates a PowerShell script in the user’s home directory
named conf.ps1, containing code to modify the configuration files (shown in Figure 17) and attempts to
launch it.

Figure 17. PowerShell script to modify AnyDesk configuration, adding hardcoded password hash and salt, and
token salt

After these actions complete, the AnyDesk process is killed and then started again to load the new
configuration. Lastly, the adc module attempts to delete itself by calling the os.remove function on itself.

InvisibleFerret update

We later discovered an updated version of InvisibleFerret with major changes, used since at least August
2024. It is no longer separated into individual modules, but rather exists as a single large script file (but
still retaining the backdoor commands to selectively install the browser and AnyDesk modules). There
are also slight code modifications for increased support of macOS, for example collecting the username
along with the hostname of the computer.

Another modification we observed is the addition of an identifier named gType, in addition to sType. It
acts as a secondary victim/campaign identifier in addition to sType when downloading modules from the
C&C server (e.g., <C&C_IP>:<port>/<module>/<sType>/<gType>). We haven’t seen it used to label the
exfiltrated data.

https://docs.python.org/3/library/os.html#os.remove

20/28

This new version of InvisibleFerret has also implemented an additional backdoor command, ssh_zcp,
capable of exfiltrating data from browser extensions and password managers via Telegram and FTP.

With the new command, InvisibleFerret first looks for and, if present, collects data from 88 browser
extensions for the Chrome, Brave, and Edge browsers and then places it into a staging folder in the
system’s temporary directory. The complete list of extensions can be found in the Appendix and the code
for collecting the data is shown in Figure 18.

Figure 18. Collection of data from browser extensions in the new version of InvisibleFerret

Apart from the extension data, the command can also exfiltrate information from the Atomic and Exodus
cryptocurrency wallets on all systems, in addition to 1Password, Electrum, WinAuth, Proxifier4, and
Dashlane on Windows. This is illustrated in Figure 19.

Figure 19. Collection of data from various applications in the new version of InvisibleFerret

The data is then archived and uploaded to a Telegram chat using the Telegram API with a bot token, as
well as to an FTP server. Once the upload is done, InvisibleFerret removes both the staging folder and
the archive.

Clipboard stealer module

In December 2024 we discovered yet another version of InvisibleFerret, containing an additional module
named mlip, downloaded from the C&C endpoint /mclip/<campaign_ID> to .n2/mlip. This module
contains the keylogging and clipboard-stealing functionality that was separated from the rest of the
payload module.

Showing an advancement in technical capabilities of the operators, the keylogging and clipboard stealing
functionality of this module has been limited to two processes only, chrome.exe and brave.exe, while the
earlier versions of InvisibleFerret logged any and all keystrokes. The collected data is uploaded to a new
API endpoint, /api/clip.

21/28

Network infrastructure

DeceptiveDevelopment’s network infrastructure is composed of dedicated servers hosted by commercial
hosting providers, with the three most commonly used providers being RouterHosting (now known as
Cloudzy), Stark Industries Solutions, and Pier7ASN. The server API is written in Node.js and consists of
nine endpoints, listed in Table 4.

Table 4. DeceptiveDevelopment C&C API endpoints

API endpoint Description

/pdown Downloading the Python environment.

/uploads BeaverTail data upload.

/client/<campaign_ID> InvisibleFerret loader.

/payload/<campaign_ID> InvisibleFerret payload module.

/brow/<campaign_ID> InvisibleFerret browser module.

/adc/<campaign_ID> InvisibleFerret AnyDesk module.

/mclip/<campaign_ID> InvisibleFerret keylogger module.

/keys InvisibleFerret data upload.

/api/clip InvisibleFerret keylogger module data upload.

Most C&C communication we observed was done over ports 1224 or 1244 (occasionally 80 or 3000) for
C&C communication over HTTP, and 1245 (occasionally 80, 2245, 3001, 5000, or 5001) for backdoor
C&C communication over TCP sockets. All communication from the client to the C&C server, except
downloading the Python environment, contains the campaign ID. For InvisibleFerret downloads, the ID is
added to the end of the URL in the GET request. For data exfiltration, the ID is sent as part of the POST
request in the type field. This is useful for identifying network traffic and determining what specific sample
and campaign it belongs to.

The campaign IDs (sType and gType values) we observed are alphanumeric and don’t seem to bear any
direct relation to the campaign. Before the introduction of gType, some of the sType values were base64
strings containing variants of the word team and numbers, such as 5Team9 and 7tEaM;. After gType was
introduced, most observed values for both values were purely numeric, without the use of base64.

Conclusion

The DeceptiveDevelopment cluster is an addition to an already large collection of money-making
schemes employed by North Korea-aligned actors and conforms to an ongoing trend of shifting focus
from traditional money to cryptocurrencies. During our research, we observed it go from primitive tools
and techniques to more advanced and capable malware, as well as more polished techniques to lure in
victims and deploy the malware. Any online job-hunting and freelancing platform can be at risk of being
abused for malware distribution by fake recruiters. We continue to observe significant activity related to
this campaign and expect DeceptiveDevelopment to continue innovating and searching for more ways to
target cryptocurrency users.

22/28

For any inquiries about our research published on WeLiveSecurity, please contact us at
threatintel@eset.com.
ESET Research offers private APT intelligence reports and data feeds. For any inquiries about this
service, visit the ESET Threat Intelligence page.

IoCs

A comprehensive list of indicators of compromise (IoCs) and samples can be found in our GitHub
repository.

Files

SHA-1 Filename Detection Description

48E75D6E2BDB2B00ECBF
4801A98F96732E397858

FCCCall.exe Win64/DeceptiveDevelopment.A Trojanized
conferencing
app – native
BeaverTail.

EC8B6A0A7A7407CA3CD1
8DE5F93489166996116C

pay.py Python/DeceptiveDevelopment.B InvisibleFerret
payload
module.

3F8EF8649E6B9162CFB0
C739F01043A19E9538E7

bow.py Python/DeceptiveDevelopment.C InvisibleFerret
browser
module.

F6517B68F8317504FDCD
415653CF46530E19D94A

pay_u2GgOA8.py Python/DeceptiveDevelopment.B InvisibleFerret
new payload
module.

01C0D61BFB4C8269CA56
E0F1F666CBF36ABE69AD

setupTest.js JS/Spy.DeceptiveDevelopment.A BeaverTail.

2E3E1B95E22E4A8F4C75
334BA5FC30D6A54C34C1

tailwind.config.js JS/Spy.DeceptiveDevelopment.A BeaverTail.

7C8724B75BF7A9B8F27F
5E86AAC9445AAFCCB6AC

conf.ps1 PowerShell/DeceptiveDevelopment.A AnyDesk
configuration
PowerShell
script.

5F5D3A86437082FA512B
5C93A6B4E39397E1ADC8

adc.py Python/DeceptiveDevelopment.A InvisibleFerret
AnyDesk
module.

7C5B2CAFAEABBCEB9765
D20C6A323A07FA928624

bow.py Python/DeceptiveDevelopment.A InvisibleFerret
browser
module.

BA1A54F4FFA42765232B
A094AAAFAEE5D3BB2B8C

pay.py Python/DeceptiveDevelopment.A InvisibleFerret
payload
module.

mailto:threatintel@eset.com?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=autotagging&utm_content=eset-research&utm_term=en
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=deceptivedevelopment-targets-freelance-developers/&sfdccampaignid=7011n0000017htTAAQ
https://github.com/eset/malware-ioc/tree/master/deceptivedevelopment

23/28

SHA-1 Filename Detection Description

6F049D8A0723DF10144C
B51A43CE15147634FAFE

.npl Python/DeceptiveDevelopment.A InvisibleFerret
loader
module.

8FECA3F5143D15437025
777285D8E2E3AA9D6CAA

admin.model.js JS/Spy.DeceptiveDevelopment.A BeaverTail.

380BD7EDA453487CF115
09D548EF5E5A666ACD95

run.js JS/Spy.DeceptiveDevelopment.A BeaverTail.

Network

IP Domain Hosting provider First seen Details

95.164.17[.]24 N/A STARK INDUSTRIES
SOLUTIONS LTD

2024‑06‑06 BeaverTail/InvisibleFerret
C&C and staging server.

185.235.241[.]208 N/A STARK INDUSTRIES
SOLUTIONS LTD

2021‑04‑12 BeaverTail/InvisibleFerret
C&C and staging server.

147.124.214[.]129 N/A Majestic Hosting
Solutions, LLC

2024‑03‑22 BeaverTail/InvisibleFerret
C&C and staging server.

23.106.253[.]194 N/A LEASEWEB
SINGAPORE PTE. LTD.

2024‑05‑28 BeaverTail/InvisibleFerret
C&C and staging server.

147.124.214[.]237 N/A Majestic Hosting
Solutions, LLC

2023‑01‑28 BeaverTail/InvisibleFerret
C&C and staging server.

67.203.7[.]171 N/A Amaze Internet Services 2024‑02‑14 BeaverTail/InvisibleFerret
C&C and staging server.

45.61.131[.]218 N/A RouterHosting LLC 2024‑01‑22 BeaverTail/InvisibleFerret
C&C and staging server.

135.125.248[.]56 N/A OVH SAS 2023‑06‑30 BeaverTail/InvisibleFerret
C&C and staging server.

MITRE ATT&CK techniques

This table was built using version 16 of the MITRE ATT&CK framework.

Tactic ID Name Description

Resource
Development

T1583.003 Acquire
Infrastructure: Virtual
Private Server

The attackers rent out infrastructure for C&C and
staging servers.

T1587.001 Develop
Capabilities:
Malware

The attackers develop the BeaverTail and
InvisibleFerret malware.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v16/techniques/T1583/003
https://attack.mitre.org/versions/v16/techniques/T1587/001

24/28

Tactic ID Name Description

T1585.001 Establish Accounts:
Social Media
Accounts

The attackers create fake social media
accounts, pretending to be recruiters.

T1608.001 Stage Capabilities:
Upload Malware

InvisibleFerret modules are uploaded to staging
servers, from where they are downloaded to
victimized systems.

Initial
Access

T1566.003 Phishing:
Spearphishing via
Service

Spearphishing via job-hunting and freelancing
platforms.

Execution T1059.006 Command-Line
Interface: Python

InvisibleFerret is written in Python.

T1059.007 Command-Line
Interface:
JavaScript/JScript

BeaverTail has a variant written in JavaScript.

T1204.002 User Execution:
Malicious File

Initial compromise is triggered by the victim
executing a trojanized project containing the
BeaverTail malware.

T1059.003 Command-Line
Interface: Windows
Command Shell

InvisibleFerret’s remote shell functionality allows
access to the Windows Command Shell.

Persistence T1133 External Remote
Services

Persistence is achieved by installing and
configuring the AnyDesk remote access tool.

Defense
Evasion

T1140 Deobfuscate/Decode
Files or Information

The JavaScript variant of BeaverTail uses code
obfuscation. C&C server addresses and other
configuration data are also encrypted/encoded.

T1564.001 Hide Artifacts:
Hidden Files and
Directories

InvisibleFerret files are dropped to disk with the
hidden attribute.

T1564.003 Hide Artifacts:
Hidden Window

InvisibleFerret creates new processes with their
windows hidden.

T1027.013 Obfuscated Files or
Information:
Encrypted/Encoded
File

InvisibleFerret payloads are encrypted and have
to be decrypted before execution.

Credential
Access

T1555.001 Credentials from
Password Stores:
Keychain

Keychain data is exfiltrated by both BeaverTail
and InvisibleFerret.

T1555.003 Credentials from
Password Stores:
Credentials from
Web Browsers

Credentials stored in web browsers are
exfiltrated by InvisibleFerret.

https://attack.mitre.org/versions/v16/techniques/T1585/001
https://attack.mitre.org/versions/v16/techniques/T1608/001
https://attack.mitre.org/versions/v16/techniques/T1566/003
https://attack.mitre.org/versions/v16/techniques/T1059/006
https://attack.mitre.org/versions/v16/techniques/T1059/007
https://attack.mitre.org/versions/v16/techniques/T1204/002
https://attack.mitre.org/versions/v16/techniques/T1059/003
https://attack.mitre.org/versions/v16/techniques/T1133
https://attack.mitre.org/versions/v16/techniques/T1140
https://attack.mitre.org/versions/v16/techniques/T1564/001
https://attack.mitre.org/versions/v16/techniques/T1564/003
https://attack.mitre.org/versions/v16/techniques/T1027/013
https://attack.mitre.org/versions/v16/techniques/T1555/001
https://attack.mitre.org/versions/v16/techniques/T1555/003

25/28

Tactic ID Name Description

T1552.001 Unsecured
Credentials:
Credentials In Files

Plaintext credentials/keys in certain files are
exfiltrated by both BeaverTail and InvisibleFerret.

Discovery T1010 Application Window
Discovery

The InvisibleFerret keylogger collects the name
of the currently active window.

T1217 Browser Bookmark
Discovery

Credentials and other data stored by browsers
are exfiltrated by InvisibleFerret.

T1083 File and Directory
Discovery

The InvisibleFerret backdoor can browse the
filesystem and exfiltrate files.

T1082 System Information
Discovery

System information is collected by both
BeaverTail and InvisibleFerret.

T1614 System Location
Discovery

InvisibleFerret geolocates the campaign by
querying the IP address location.

T1016 System Network
Configuration
Discovery

InvisibleFerret collects network information, such
as private and public IP addresses.

T1124 System Time
Discovery

InvisibleFerret collects the system time.

Lateral
Movement

T1021.001 Remote Services:
Remote Desktop
Protocol

AnyDesk is used by InvisibleFerret to achieve
persistence and allow remote attacker access.

Collection T1056.001 Input Capture:
Keylogging

InvisibleFerret contains keylogger functionality.

T1560.002 Archive Collected
Data: Archive via
Library

Data exfiltrated using InvisibleFerret can be
archived using the py7zr and pyzipper Python
packages.

T1119 Automated
Collection

Both BeaverTail and InvisibleFerret exfiltrate
some data automatically.

T1005 Data from Local
System

Both BeaverTail and InvisibleFerret exfiltrate
data from the local system.

T1025 Data from
Removable Media

InvisibleFerret scans removable media for files
to exfiltrate.

T1074.001 Data Staged: Local
Data Staging

InvisibleFerret copies browser databases to the
temp folder prior to credential extraction. When
exfiltrating via a ZIP/7z archive, the file is
created locally before being uploaded.

T1115 Clipboard Data InvisibleFerret contains clipboard stealer
functionality.

Command
and Control

T1071.001 Standard Application
Layer Protocol: Web
Protocols

C&C communication is done over HTTP.

https://attack.mitre.org/versions/v16/techniques/T1552/001
https://attack.mitre.org/versions/v16/techniques/T1010
https://attack.mitre.org/versions/v16/techniques/T1217
https://attack.mitre.org/versions/v16/techniques/T1083
https://attack.mitre.org/versions/v16/techniques/T1082
https://attack.mitre.org/versions/v16/techniques/T1614
https://attack.mitre.org/versions/v16/techniques/T1016
https://attack.mitre.org/versions/v16/techniques/T1124
https://attack.mitre.org/versions/v16/techniques/T1021/001
https://attack.mitre.org/versions/v16/techniques/T1056/001
https://attack.mitre.org/versions/v16/techniques/T1560/002
https://attack.mitre.org/versions/v16/techniques/T1119
https://attack.mitre.org/versions/v16/techniques/T1005
https://attack.mitre.org/versions/v16/techniques/T1025
https://attack.mitre.org/versions/v16/techniques/T1074/001
https://attack.mitre.org/versions/v16/techniques/T1115
https://attack.mitre.org/versions/v16/techniques/T1071/001

26/28

Tactic ID Name Description

T1071.002 Standard Application
Layer Protocol: File
Transfer Protocols

Files are exfiltrated over FTP by InvisibleFerret.

T1571 Non-Standard Port Nonstandard ports 1224, 1244, and 1245 are
used by BeaverTail and InvisibleFerret.

T1219 Remote Access
Tools

InvisibleFerret can install AnyDesk as a
persistence mechanism.

T1095 Non-Application
Layer Protocol

TCP is used for command and control
communication.

Exfiltration T1030 Data Transfer Size
Limits

In some cases, InvisibleFerret exfiltrates only
files below a certain file size.

T1041 Exfiltration Over
Command and
Control Channel

Some data is exfiltrated to the C&C server over
HTTP.

T1567.004 Exfiltration Over
Web Service:
Exfiltration Over
Webhook

Exfiltrating ZIP/7z files can be done over a
Telegram webhook (InvisibleFerret’s ssh_zcp
command).

Impact T1657 Financial Theft This campaign’s goal is cryptocurrency theft and
InvisibleFerret has also been seen exfiltrating
saved credit card information.

Appendix

Following is a list of browser extensions targeted by the new InvisibleFerret:

https://attack.mitre.org/versions/v16/techniques/T1071/002
https://attack.mitre.org/versions/v16/techniques/T1571
https://attack.mitre.org/versions/v16/techniques/T1219
https://attack.mitre.org/versions/v16/techniques/T1095
https://attack.mitre.org/versions/v16/techniques/T1030
https://attack.mitre.org/versions/v16/techniques/T1041
https://attack.mitre.org/versions/v16/techniques/T1567/004
https://attack.mitre.org/versions/v16/techniques/T1657

27/28

ArgentX

Aurox

Backpack

Binance

Bitget

Blade

Block

Braavos

ByBit
Casper

Cirus

Coin98

CoinBase

Compass-Sei

Core-Crypto

Cosmostation

Crypto.com

Dashalane

Enkrypt

Eternl

Exodus

Fewcha-Move

Fluent

Frontier

GoogleAuth

Hashpack

HAVAH

HBAR

Initia

Keplr

Koala

LastPass

LeapCosmos

Leather

Libonomy

MagicEden

Manta

Martian

Math

MetaMask

MetaMask-Edge

MOBOX

Moso

MyTon

Nami

OKX

OneKey

OpenMask

Orange

OrdPay

OsmWallet

Paragon

PetraAptos

Phantom

Pontem

Rabby

Rainbow

Ramper

Rise

Ronin

Safepal

Sender

SenSui

Shell

Solflare

Stargazer

Station

Sub-Polkadot

Sui

Suiet

Suku

Taho

Talisman

Termux

Tomo

Ton

Tonkeeper

TronLink

Trust

Twetch

UniSat

Virgo

Wigwam

Wombat

XDEFI

Xverse

Zapit

Zerion

Let us keep you

up to date

Sign up for our newsletters

https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=deceptivedevelopment-targets-freelance-developers&sfdccampaignid=7011n0000017htTAAQ

28/28

Copyright © ESET, All Rights Reserved

