Unpacking Pyarmor v8+ scripts

. cyber.wtf/2025/02/12/unpacking-pyarmor-v8-scripts/

Feb 12, 2025 -
Leonard Rapp,

Leonard Rapp



https://cyber.wtf/2025/02/12/unpacking-pyarmor-v8-scripts/

harryr
Active since: 2022

Hendrik Eckardt

Hendrik Eckardt

Active since: 2019

Passionate about reverse engineering, loves deep dives into low-level affairs.




* python,pyarmor,unpacking,malware,packer

Intro

On a rainy Friday around lunchtime, we received a phishing email saying we had an unpaid
invoice, with an attached SVG file. We chose to analyze it as an exercise, with the goal to
burn the attackers’ C2 IP addresses and malware samples. But what was planned as a
Friday afternoon exercise turned into a journey deep down the rabbit hole...

Create
malware
campaign

target
everyone

Malware dropper

also
target
Infosec
people

also
target
Infosec

When opening the .SVG file in a web browser, the contained JavaScript code is executed,
which extracts a .HTM file from a base64 blob and “downloads” it. The .HTM file shows the
user a blurred document, roughly looking like an invoice, overlaid with a message telling the
user that the browser does not support the correct display of the message and the user
should click the “Open” button to display the file locally, as you can see in figure 1:


https://cyber.wtf/category/#python
https://cyber.wtf/category/#pyarmor
https://cyber.wtf/category/#unpacking
https://cyber.wtf/category/#malware
https://cyber.wtf/category/#packer

l-2Logo
Create, edit and share pdf. Work with others on
shared projects, in real-time.

Your browser does not support correct online display of
this document. Use the "Open™ button to open the
document locally.

Figure 1: Screenshot of the downloaded .HTM file

The “Open” button is linked to a JavaScript function that opens the Windows Search with a
WebDAV path to the attackers’ server, as one can see in the code below.

4/21



function reloadPage()
location.reload

function openSearch()

const searchQuery

window. 1

window.onload = function () {
document.getElementById( "myModal"”).style.display = "flex";
document.getElementById("openButton").addEventListener("click",

openSearch();

Figure 2: JavaScript code abusing Windows Search

Thus, we have found the first domain used by the attackers: binary-acceptance-hotel-
difficult[.]trycloudflare[.]com.

Following the WebDAV path, we found a simple file listing, showing a folder called ge, as well
as the files lamoor.vbs and wSJ25F . bat. Unfortunately, we did not investigate the content of
ge further at this point, and it was not available anymore when revisiting the server later.
lamoor.vbs is a simple VBScript that downloads and executes a file also called wsJ25F . bat
from the URL msc4dflied7eb485ad6ahelixpflanzen[.]de@5029\DavWwWwwRoot\WSJ25F .bat
which has the same content as the WwSJ25F . bat on the server investigated here.

So inside lamoor .vbs we have found a second domain used by the attackers:
msc4dflled7eb485ad6ahelixpflanzen]. ]de.

WSJ25F . bat is an obfuscated batch script, which begins as follows:

5/21



I'l Obfuscated By Batchsield !!

@%R1reyKGxSD%e%KDuXrBAYVA%C%Cr%h%f0G%o%dXTcycKBB%
%jenTylt%o%svFuxrt%fawIQUX%T%urSNrd%
SHMEVT%e%HU j F%t%q%1%BFWPZ0%0%b0t HT%Cc%I%a%GAUPbqqJAU%1%I%

Function to search for and open a PDF file in the Downloads folder
1%PxD%:%U% %iXXMVGT%F%Y1MX%u%dJuIOerMzwkbn%Vyn%crgZAwW%bt%ueGJI%i%DoAK%O0%EMX%BN%0QeP%
%sYsxINv1z%t%jsTSI%0%Ys% %0FjxCobCGv%s%dCChe%ELVWRgh%a%VaTX%r%jdAfelLwikc%SrJ1tK%h%Qp%
%QV%TUHYr FzTfVu%o%ZZFKiUBU%r%URNZhmKY% %Nuatq%a%qiwUtK%n%I%d%ekA%

As one can see, the obfuscation mainly consists of inserting multiple non-defined variables
into the code (and yes, they can’t even spell their own obfuscator’s name properly).
Interestingly, the comments inside the script are not obfuscated at all. When searching for
“Batchshield deobfuscator” on the internet, one can easily find tools that can deobfuscate
this script. However, some of those tools remove all the variables, including the legitimate
ones!

The content of the deobfuscated script is only briefly described, as the focus of this blog post
is on the later stages of the malware.

e Open all PDF files inside the bownloads folder

e Download JAAPW. zip and MSVP.zip from hxxp://qed245t3kreiscryoz-
gueterslohewr33w[.]de[:]7719

o Extract the ZIP files to the paths \Downloads\Support and \Downloads\OneDrive

6/21



e echo Running Python scripts...
cd /d "\Downloads\OneDrive\Python\Python312"
python.exe BArown.py
python.exe CASrest.py
python.exe DXreame.py
python.exe ASTRILNOV1.py

e Download NFcC.bat from the same URL and move it to the user’s startup folder
o Delete temporary ZIP files

The startup file changes the directory to %Userprofile%\Downloads\Support\Python312
and executes the Python scripts EAdate. py, FAScis.py, GXrop.py and HPUope. py, which
probably contain the actual payload (?), using the custom python interpreter.

And here is a third domain used by the attackers: qed245t3kreiscryoz-
gueterslohewr33w([ . ]de. All the domains and download URLs were reported to URLhaus.
This led to malware dropper domains landing on several block lists within only a few hours
after the malware distribution campaign started.

But what about the Python scripts, the actual payload of the malware campaign? Upon
opening one of the scripts, we were greeted by this monstrosity:

# Pyarmor 9.0.7 (pro), 007106, non-profit, 2025-01-08T19:48:44.467478

from pyarmor_runtime_007106 import __pyarmor__

__pyarmor__(__name__, _ file_,
b'PYBO7106\X00\XO3\XOC\XOO\XCh\r\r\n\x80\x00\x01\Xx00\X08\X00\X00\X00\X04\Xx00\Xx00\x00@
AXO0\X00\X00\Xxdd\Xx91\x07\x00\x12\t\x06\x00, \xfe5\xb2\x830\x1ci\x1d?

\Xxabs\ '"\Xxc3\x10f\x00\Xx00\x00\X00\X00\X00\Xx00\x00\xb7\xd1X\xea\x17\xd4\xc4\xb20\x9c<\x
b3n\xe2\x00\xf0_1:\xa2\x11\x10Pv\Xx04 ]\xf1t\xc3\xd6\x0e\x8b\xf9
\xa3\x84X\xcd\xbaB\x94\x94D\x9b\x90Q\xfd\x93f <snip>

The bytes string goes on like that for the rest of the file.

This successfully nerd-sniped our malware analysis team ;)

Pyarmor

Pyarmor is a product for protecting Python scripts from reverse engineering. It also offers
licensing features, such as binding scripts to specific hardware or outfitting scripts with a Kill
date. Sadly, as is often the case with such products, it is also occasionally abused by
malware in order to hide malicious code.

There are a couple tools out there for unpacking Pyarmor, such as PyArmor-Unpacker, but
they’re not compatible with the latest v8/v9 versions. Other tooling that does claim to be
compatible with v8+ uses a rather simplistic memory dumping technique, where it's not
guaranteed that all code (or any bytecode at all) will actually be decrypted. The reason will
become clear later in this post.

7/21


https://urlhaus.abuse.ch/
https://xkcd.com/356/
https://github.com/Svenskithesource/PyArmor-Unpacker
https://github.com/vxnetrip/pyarmor-8-decrypt

In the following we are going to provide insights into how Pyarmor works and offer some
scripts that help make the original code visible via static unpacking. It should also be noted
that Pyarmor supports multiple protection modes, including one called bcc mode where
Python code is compiled into native code. This poses additional challenges that are not
covered here, but the same basic principles and crypto primitives should be used.

Please note that we will explicitly not provide an all-in-one unpacking solution - if that’'s why
you’'ve come here, you might as well stop reading right now.

Basic functionality

As can be seen in the snippet shown earlier, all the script does is importing a function called
__pyarmor__ and calling it. pyarmor_runtime 007106 is a directory in the Python interpreter
directory that was shipped with the malware. It contains a native module written in C called
pyarmor_runtime.pyd (essentially a 64-bit DLL) and a simple __init__ script that again
imports __pyarmor__ from .pyarmor_runtime. This is so that the main script can import the
function from pyarmor_runtime_ 007106 without a further indirection.

The native module exports a single function that is called by the Python interpreter for
initialization purposes. It creates a PyModule object by passing the following structure to
PyModule_Create2:

|-

g_pyarmor_method dq offset aPyarmor ; DATA XREF: .data:@0002008649451880

|-

B

(X e s R v |

7 3 __pyarmor__
dgq offset _ pyarmor__
dg 1
dq offset alLoadPyarmorObf ; "Load pyarmor cbfuscated module”
align 4eh
g_PyarmorModule dg 1 ; DATA XREF: PyInit_pyarmor_runtime+F4to

|-

R I e o s

|-

-

e B I s I s i

P e e
1
[ I I Y

|-

ooy o

B

|-

dq offset aPyarmorRuntime ; "pyarmor_runtime”

dq offset aPyarmorVBRunti ; "PyArmor v+ runtime module™
dq @ceh

dg offset g_pyarmor_method

dg @

dg &

&

Figure 3: Pyarmor PyModule struct, complete with helpful doc strings

|-

P
[~ -]

B

s =] T n rm rt

|-
X 00 00 00 00 00 00 00 00 OO 00 0 00 C0 00 00 00 CO

oo o I B R w J o-

|-
=
I
I
=
[«
0

From this, we can glean several pieces of information:

1. The user data portion of the module spans 0xCO bytes
2. The module exposes just a single method
3. We get the function pointer for the native _ pyarmor__ implementation

A bit further down in the Pylnit export function, the following code can be found:

8/21



*(_DWORD *)(v21 + 48)
*(_QWORD *)(v21 + 56)
*(_QWORD *)(v21 + 32) = "C_ASSERT_ARMORED_INDEX";
*(_QWORD *)(v21 + 40) c_assert_armored; // func
v23 = PyCMethod_New(v21 + 32, module, module, OLL);
if ( 'v23 )

goto LABEL_58;

8;
OLL;

md_state->pMethods[1] v23;
*(_DWORD *)(v21 + 80) = 8;
*(_QWORD *)(v21 + 88) oLL;

*(_QWORD *)(v21 + 64) "C_ENTER_CO_OBJECT_INDEX";
*(_QWORD *)(v21 + 72) c_enter_co_object; // func
v24 = PyCMethod_New(v21 + 64, module, module, OLL);
if ( 'v24
|| (md_state->pMethods[2] = v24,
*(_DWORD *)(v21 + 112) = 8,
*(_QWORD *)(v21 + 120) = OLL,
*(_QWORD *)(v21 + 96) = "C_LEAVE_CO_OBJECT_INDEX",
*(_QWORD *)(v21 + 104) = c_leave_co_object, // func
(v25 = PyCMethod_New(v21 + 96, module, module, OLL)) == 0) )

This registers three additional C functions that apparently work on code (co) objects. Code
objects are low-level representations of compiled Python bytecode, encompassing all details
required for code execution. For example, the main body of a script is a code object, as well
as each respective function defined within the body. The enter and leave functions will
become important later on.

In terms of strings, the library contains quite a few cryptography-related strings, including
source file paths. A quick search revealed that we’re dealing with libtomcrypt, which was
statically linked into the library. We created a signature file for this library so that we can
automatically name most functions belonging to libtomcrypt in the Pyarmor module. For good
results, it's important to match the library version and compiler as good as possible when
creating the signatures. According to strings in the . rdata section, both GCC 6.4.0 and 7.4.0
were used for compilation. After some trial and error, we got a good match with libtomcrypt
v1.18.2 and GCC 6.4.0. The resulting FLIRT signature is part of the GitHub repo we
published as part of this work.

Quick recap of what we have so far:

e We know where calls to __pyarmor___ land in the native module

o We found functions that deal with entering/leaving code objects

o We can see all places where libtomcrypt is used for cryptographic operations in the
module

Cryptography

Pyarmor uses libtomcrypt for the following purposes:

9/21


https://github.com/GDATAAdvancedAnalytics/Pyarmor-Tooling

» Verifying some RSA signature (this is nothing we really care about)
¢ Deriving a key with MD5
o Ciphering data with AES-GCM (Galois Counter Mode)

Key derivation

The key derivation function is called towards the end of the PyInit export, after the RSA
verification and some more checks on the module filename.

void get_key_via md5(__int64 signature, __int64 digest)
{

_ ml128i si128; // xmm@

char v6[456]; // [rsp+20h] [rbp-1C8h] BYREF

md5_init(v6);
md5_process(v6, aPyarmorVax, 20LL); // "pyarmor-vax-007106\x00\x00"
md5_process(
V6,
(char *)&unk_64944060 + g_dword_64944050_0x20_rsaoffset,
(unsigned int)g_dword_64944054_0x10E_rsakeylen); // rsa key
md5_process(v6, signature + 32, *(unsigned int *)(signature + 4));
$1128 = _mm_load_si128((const _ m128i *)&xmmword_649499C0); // vector with all
bytes set to OxF1
xmmword_64948140 = (__int128)_mm_xor_si128(_mm_load_sil28((const _ m128i
*)&xmmword_64948140), sil28);
/* <snip> - more XORs with OxF1 */
byte_6494824A A= OxF1lu;
byte_6494824B "= OxF1lu;
LOBYTE(word_6494824C) = word_6494824C N OxF1;
HIBYTE(word_6494824C) A= OxF1lu;
md5_process(v6, &xmmword_64948140, OX10ELL);
memset (&xmmword_64948140, 0, Ox108uLL);
*((_DWORD *)&xmmword_64948140 + 66) = 0;
word_6494824C = 0;
md5_done(v6, digest);
}

Essentially all data that goes into this key computation is static. The only slightly “dynamic”
part is the region of 0x10E bytes that is XOR-decoded at runtime, and then cleared after
being processed by MD5 - it seems to be yet another RSA key, apart from the plain RSA key
that is being hashed in the second call to md5_process. The signature parameter, passed
from the caller, is located in the same general unk_ 64944060 memory region in the .data
section.

So to obtain the key specific to your Pyarmor runtime, you can either attach a debugger to a
Python interpreter and break after the derivation function has been called, or you can
compute it statically. We wrote an IDAPython script that follows the latter route. With some
tinkering, the same could be achieved using pefile or similar libraries.

10/21



The resulting digest is then directly used as AES-128 key.

GCM

The use of GCM in the native module is somewhat bizarre for multiple reasons.

datasize = *(_DWORD *)(pData + 32);
v5 = *(_DWORD *)(pData + 36);
cipherdata = (int *)(pData + *(unsigned int *)(pData + 28));
if ( (*(_BYTE *)(pData + 37) & 7) !'= 0 )
{

codecrypto = al->codecrypto;

*(_DWORD *)(pData + 40) = v5;

gcmobj = (gcm *)(codecrypto + 24);

cryptres = gcm_reset((gcm *)(codecrypto + 24));

if ( cryptres

|| (cryptres = gcm_add_iv(gcmobj, pData + 40, 12u)) !'= 0

|| (cryptres = gcm_add_aad_0(gcmobj, OLL, 0)) !'= 0

|| (cryptres gcm_process(gcmobj, (__int64)cipherdata, datasize,
(__int64)cipherdata, 1)) !'= 0 )
{
// handle error and return or exit process
}

}

You can see multiple GCM functions being used here that look like they should be from
libtomcrypt, however that is not directly the case. These stem from a different compilation
unit using a smaller gcm state structure than libtomcrypt. The struct contains keys for different
cipher types at its beginning, and some of them were omitted in this variant. In the case of
gcm_add_aad, the “normal” libtomcrypt function is in fact also present in the binary, which is
why we have a _0 suffix here. The special functions do, however, make direct use of various
primitives from the normal libtomcrypt, such as gcm_mult_h.

Another thing to note is the absence of authentication tag handling.

11/21



AUTHENTICATED ENCRYPTION

= WITHOUT AUTHENTICATION

"I heard GCMis a good C|pher mode to use"

The point of using GCM is to prevent manipulation of the ciphertext, i.e., to ensure that
decryption returns the exact data that was encrypted. Otherwise, it's possible for someone to
flip a couple bits in the ciphertext in the hopes of achieving interesting changes in the
plaintext. Without storing and comparing the authentication tag, no guarantees about the

output data are made, and one might as well have used any other cipher mode such as
CTR.

It's not entirely clear why Pyarmor chose GCM, although their choices do have a noteworthy
consequence: Some tools and libraries outright refuse to decrypt anything in GCM mode if
you don’t have an authentication tag. For example, it's not possible to use Cyberchef in this
particular case.

Lastly, the nonce (or initialization vector) handling is slightly weird. While the size is the GCM
default of 12 bytes, it is not stored in one contiguous piece. You can see that the dword at +
40 is replaced with the dword at + 36.

The decryption snippet shown in this section is used in various places by the native module
whenever it needs to decrypt any amount of data, for example the huge bytes string we saw
in the beginning is largely comprised of GCM-ciphertext.

Now we can decrypt everything, right?

You can think of the huge bytes string passed to __pyarmor__ as an encrypted .pyc file with
a custom header. The header has the following structure:

12/21



Offset Description Example
0:8 Module magic (must match native module identifier) PY007106
9 Python major version 3
10 Python minor version 12
12:16 .pyc magic for specific Python version CB 0D 0D OA
20 Protection type? 9 for bcc mode, otherwise 8 8
28:32 Ciphertext offset 64
32:36 Ciphertext size 496093
36:40 IV bytes [0:4]; individual bytes contain flags; also used 12 09 06 00
as “validation” dword for decrypted data
37 Any of the first 3 bits in this byte must be 1 for GCM to 9
be applied
40:44 Fake IV bytes [0:4] 2C FE 35 B2
44:52 IV bytes [4:12] 83 6F 1C 69
1D 3F AB 73

dynamic Ciphertext, at offset given above

Figure 4: Structure of bytes string passed to __pyarmor__ ()

Applying GCM decryption yields the following:

13/21



ZkMp» P . D&
.(E® .d.

..d.d. o= W
.E.Uu.A ABR? |P+FIqg
E 1 . A : | = AL

Lh ba ™y =~ ©

ry Imo&

.-E—|4l$a -J:-_
\{ | C1U% " clEk
(K'a"? '

9A 31 76 (05

Figure 5: First decryption result

Now this doesn’t look too shabby, we can see some strings and further down (outside the
range shown here), we even get interesting ones like key and rc4_decrypt. One thing that
immediately caught our eye is that there is still some data that seems to have pretty high
entropy, especially at the ranges 0x60..0x90 and after 0x140. Thus, the next goal is going to
be understanding what context the still-encrypted data appears in.

The decrypted data has another Pyarmor-specific header, which helpfully comes with a
length prefix (0x20). We can see a repetition of 12 09 06 00, which is compared with the
value from the outer header. Afterwards (starting from 0x20), we have data that is passed
into PyMarshal_ReadObjectFromString().

Python marshaling

14/21



The Python interpreter uses the built-in marshal module whenever it needs to serialize or
deserialize compiled scripts. It essentially implements a Python-specific binary format for
basic types like integers, strings, floats, tuples, lists, and most importantly, code objects. The
format is not stable and tends to vary with each Python interpreter version. Thus, to have any
chance at all, the data must be loaded with the exact Python version it was written with.
When we tried this with python3.12, it failed with a “bad marshal data (unknown type code)’
error. Uh oh....

In the previous section, we mentioned a PyMarshal function that is used. We omitted the fact
that this function is not imported from the main Python library. Instead, the entire marshaling
code was vendored into the Pyarmor runtime, and we identified it by searching for some of
the error strings on GitHub. There’s pretty much only one reason one would do such a thing:
in order to customize some logic in the code.

So we accepted our fate, built python3.12 from source, and stepped through the
deserialization logic side by side to find the point of divergence. Somewhat unsurprisingly,
the difference turned out to be in code objects, specifically at the end of the object data.
Pyarmor contains the following additional logic:

if ( !rf->readable )
{
v265 = getc((FILE *)rf->fp);
if ( v265 !'= -1 )
goto LABEL_546;
goto LABEL_479;

}

v320 = (unsigned __int8 *)r_byte(1LL, (__int64)rf);
if ( !'v320 )

{

PyErr_SetString(PyExc_EOFError, "EOF read where object expected");
goto code_error;

}
V265 = *v320;
LABEL_546:
v304 = (_BYTE *)r_string(v265, (__int64)rf);

v305 = (__int64 *)v304;
if ( 'v304 )
goto error;

This logic reads an additional bytes string prefixed with a length byte. Its purpose is unknown
- it didn’t seem to be relevant for static analysis.

Since we already had the Python source at hand anyway, we simply inserted similar logic
into the marshal module. When doing so, you must take care not to disturb the normal
loading activities of the Python runtime, since of course it also runs the unmarshaling code
when loading built-in/standard modules. The patch we came up with for python3.12 is part of
our GitHub repo, along with a docker image building a patched Python.

15/21


https://github.com/GDATAAdvancedAnalytics/Pyarmor-Tooling

With the customized Python build, we were now able to successfully parse the binary data
we decrypted!

>>> marshal.load(BytesIO(data[0x20:]))

Got extra data of length 12

Got extra data of length 12

Got extra data of length 12

<code object <module> at 0x7f9a3a6cel00, file "<frozen JAN-X1>", line 1>

The module we parsed contains three code objects in total, so we got three debug prints
about the additional bytes that were found. It appears the malware’s source file was originally
called JAN-X1.py.

Side note: There is one other reason that it is in Pyarmor’s interest to vendor the
unmarshaling code. The official variant of the code offers auditing hooks that allow you to be
informed whenever the interpreter unmarshals data. This was utilized by unpackers for older
Pyarmor versions. In the vendored code, any auditing logic is conveniently missing.

Analyzing the actual bytecode

With our code object instance at the ready, we can finally disassemble some bytecode!

>>> dis.dis(thecode)
0 0 NOP

1 2 NOP
PUSH_NULL
6 LOAD_CONST 1 ('__pyarmor_enter_60307__")

N

2 8 LOAD_CONST 2

(b "\X00\X00\X00\X00\X00\XO00\X00\X00\X01\X00\X00\Xx1a@\Xx00\Xx00\X00\X00\X00\X00\Xx00 ")
10 BUILD_TUPLE 1
12 CALL_FUNCTION_EX (C]
14 POP_TOP
16 RESUME 0
18 NOP
20 NOP
22 NOP
24 NOP

Traceback (most recent call last):

File "/python312/Lib/dis.py", line 401, in _get_name_info
argval = get_name(name_index, **extrainfo)
ANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
IndexError: tuple index out of range

Well... it's a start? There are a couple of things to note here:

16/21



« Remember the code enter/leave functions we noted in C earlier in the post? Here,
they’re calling enter

* When looking at where the bytecode is defined in the decrypted binary data, the high
entropy (encrypted) area happens to start directly after the chain of NOPs at the end

o The first encrypted offset (26/0x1a) is also present in the conspicuous bytes string that
is loaded at offset 8. Furthermore, the byte after \x1a (@ aka 0x40) is a good match for
the size of the encrypted area

Looking at the code for c_enter_co_object, we see the following:

iv_func = (__int64 (__fastcall *)(char *, _QWORD))ret_zero;
if ( (*(_BYTE *)(args + 40) & 4) !'= 0 )
iv_func = *(__int64 (__fastcall **)(char *, _QWORD))(args + 52);// some sort of

iv mutator? not used in our case
iv_offset = *(unsigned __int8 *)(args + 41);
v1l3 = (char *)codeptr + iv_offset;
if ( (*(_BYTE *)(args + 40) & 2) == 0 )

vl3 = (char *)codeptr + *(unsigned int *)(args + 44) + iv_offset + *(unsigned
int8 *)(args + 43);
*(_QWORD *)iv = *(_QWORD *)v13;
*(_DWORD *)&iv[8] = *((_DWORD *)v13 + 2);
if ( !iv_func(iv, OLL) )
{

codecrypto = v2->codecrypto;

cryptsize = *(_DWORD *)(args + 44);

cryptstart = *(_BYTE *)(args + 43);

gcm = (gcm *)(codecrypto + 24);

assumel2 = *(_BYTE *)(codecrypto + 1);

v1l9 = gcm_reset((gcm *)(codecrypto + 24));

if ( tv19 )
{
vl9 = gcm_add_iv(gcm, (__int64)iv, assumel2);
if ( !'vl9 )
{
v1l9 = gcm_add_aad_0(gcm, OLL, 0);
if ( !'v19 )
{

v1l9 = gcm_process(gcm, (__int64)codeptr + cryptstart, cryptsize,
(__int64)codeptr + cryptstart, 0);
if ( !'v1i9 )

Looks similar enough to what we’ve seen before, right? It's AES-GCM again with the same
key.

Based on how the parameters are used in the GCM functions and what we deduced earlier,
we can tell that the bytes string we saw in the bytecode starts at args + 32. The GCM IV
location is obtained through a series of offsets computations. In our case, it was always

17/21



located right after the ciphertext. Unlike earlier, the 1V bytes are not split up. However, there
seems to be some capability to run the IV through an additional function for unknown
purposes (possibly to mutate it?).

Essentially, what we’re dealing with here is just-in-time decryption. The code is decrypted,
executed, and then re-encrypted. This means that functions that are not currently being
executed are not available in plaintext even if you dump the process memory.

We decided to write a script that parses the code objects, extracts the bytes string to find the
ciphertext and IV, and generates a file that basically describes where and how to apply GCM
in the raw decrypted script. This description can then be used by a normal Python installation
in order to do the decryption (it seemed prudent to use our modified Python as little as
possible - in particular, we didn’t feel like attempting to run Pycryptodome on it).

Finally decrypted

Here’s the decrypted continuation of the bytecode we had earlier:

18/21



1 26 NOP

2 28 LOAD_CONST 3 (0)
30 LOAD_CONST 4 (None)
32 IMPORT_NAME 1 (ctypes)
34 STORE_NAME 1 (ctypes)
3 36 LOAD_CONST 3 (0)
38 LOAD_CONST 4 (None)
40 IMPORT_NAME 2 (baseb64)
42 STORE_NAME 2 (baseb64)
5 44 LOAD_CONST 5 (<code object rc4_decrypt at
0x5e6298eb3bd0, file "<frozen JAN-X1>", line 5>)
46 MAKE_FUNCTION (C]
48 STORE_NAME 3 (rcd_decrypt)
27 50 LOAD_CONST 6 (<code object execute_shellcode at
0x5e6298ec0560, file "<frozen JAN-X1>", line 27>)
52 MAKE_FUNCTION (C]
54 STORE_NAME 4 (execute_shellcode)
45 56 PUSH_NULL
58 LOAD_NAME 4 (execute_shellcode)
60 CALL 0
68 POP_TOP
70 LOAD_CONST 4 (None)
72 NOP
74 NOP
76 NOP
78 JUMP_FORWARD 19 (to 118)

. followed by pyarmor leave code ...

The function references that can be seen here do exactly what they say. The
execute_shellcode function contains a huge base64-encoded string, which is decrypted
using RC4, allocated as executable memory using Windows APlIs, and then jumped into.

So in the end, we don’t have “real” Python malware here, just a somewhat unusual malware
packer.

The actual malware

The question remains - what malware did they try to infect us with?

One thing is for certain: the amount of layers the malware is packed in is slightly ridiculous.
Whenever we unpacked one stage, we’'d be faced with another packer and the payload got
smaller and smaller, to a point where we wondered if anything would actually be left. In the
end, the chain turned out to be this:

19/21



1. Pyarmor

2. Shellcode (packer)

3. Injector generated by laZzzy, injects into notepad.exe

4. Shellcode (same packer as before)

5. .NET malware (sometimes also packed with additional .NET packer).

If you count the initial dropper stages, the list is even longer.

A comprehensive malware analysis would be out of scope here, and frankly, not that
interesting, so we’re just going to leave you with some screenshots for code impressions.

(array[1],
(array[1],
(text, "PCShutdown”,

("shutdown.exe /f /s /t @

» AppWinStyle.

[: "shutdown.exe -L", _.'l'-_ppp.-_'j_r|';_1t::l.']_|3 .
(text, "RunShell®,

{array[1], AppWins

rators. (text, "StartDDos",

Figre 6: This specimen is a variant of the XWorm RAT

20/21


https://github.com/capt-meelo/laZzzy

dictionar

diction
diction
dictionar
dictionary I{"Tencent , W5
Figure 7: PureHVNC RAT, steallng crypto wallets and browser data. It also collects basic info

about your system, including whether a camera is plugged in

Filename Malware family

EAdate.py DcRat

FAScis.py AsyncRAT

GXrop.py  XWorm RAT

HPUope.py PureHVNC

Figure 8: Types of malware used in the campaign

The other set of files (BArown. py, etc.) contains the same malware - the Python files have
different hashes, but the final unpacked binaries are identical.

In one of the next installments on this blog, we’re going to talk about .NET obfuscation, so
stay tuned!

GitHub repo with scripts developed for Pyarmor:
https://github.com/GDATAAdvancedAnalytics/Pyarmor-Tooling

Updated on April 4: We've identified the previously denoted as unknown sample HPUope . py
to be PureHVNC.

21/21


https://github.com/GDATAAdvancedAnalytics/Pyarmor-Tooling

