
1/17

Technical Analysis
zscaler.com/blogs/security-research/technical-analysis-xloader-versions-6-and-7-part-1

A glowing blue light weaving through a maze.

Zscaler Blog

Get the latest Zscaler blog updates in your inbox

Subscribe

Security Research

Technical Analysis of Xloader Versions 6 and 7 | Part 1

image

THREATLABZ
January 27, 2025 - 16 min read

Introduction

Xloader is a malware family that is the successor to Formbook with information stealing capabilities targeting web
browsers, email clients, and File Transfer Protocol (FTP) applications. The malware is also able to deploy second-
stage payloads to an infected system. The author of Xloader regularly adds new functionality to target more
applications and features to increase the volume of data collection that can be sold or used in further attacks. With
each update, Xloader’s code includes increasingly complex layers of encryption and obfuscation to complicate
analysis. Previously, Zscaler ThreatLabz examined version 4.3 of Xloader, which introduced multi-layer code
encryption to conceal its key components.

This blog is a two-part series that provides a technical analysis on updates to Xloader in versions 6 and 7. The first part
of this series covers the malware’s latest obfuscation techniques to evade detection and hinder analysis. The second
part of this blog series will examine the command-and-control (C2) communication.

Key Takeaways

Formbook, introduced in 2016, was rebranded as Xloader in early 2020. After that, Xloader adopted a Malware-
as-a-Service (MaaS) model, renting command-and-control (C2) infrastructure to cybercriminals.
Xloader is a malware family that steals data from a variety of targeted applications such as web browsers, email
clients, and File Transfer Protocol (FTP) applications.
Xloader can be leveraged to download and execute second-stage payloads.
Xloader versions 6 and 7 include additional obfuscation and encryption layers meant to protect critical code and
information to defeat signature-based detection and complicate reverse engineering efforts.
Xloader has introduced techniques that were previously observed in SmokeLoader, including encrypting parts of
code at runtime and NTDLL hook evasion.

In the following sections, we provide a detailed analysis of Xloader, focusing on the malware’s behavior, obfuscation,
and anti-analysis techniques.

Behavior

https://www.zscaler.com/blogs/security-research/technical-analysis-xloader-versions-6-and-7-part-1
https://www.zscaler.com/blogs?type=security-research
https://www.zscaler.com/author/threatlabz
https://www.zscaler.com/blogs/security-research/technical-analysis-xloader-s-code-obfuscation-version-4-3
https://www.zscaler.com/blogs/security-research/technical-analysis-xloader-versions-6-and-7-part-2

2/17

Persistence

Xloader establishes persistence by making a copy of itself in a subdirectory under %APPDATA% (or %PROGRAMFILES% if the
user has sufficient privileges) with the following format:

%APPDATA%\\.exe

Xloader then adds an entry in the Windows registry, either under the Run key or, if that fails, under the Policies key as
follows:

\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\

\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

Xloader’s entry is placed in either the HKCU (HKEY_CURRENT_USER) or HKLM (HKEY_LOCAL_MACHINE) registry hive, based
on the user's privileges. The name of the entry is randomly generated with 5-12 uppercase alphanumeric characters.
The registry value will then be set to the path of the Xloader executable in the %APPDATA% or %PROGRAMFILES% directory.

Process injection

The figure below is a high-level view of how Xloader injects into multiple processes to evade antivirus and endpoint
security software.

Figure 1: A high-level view of how Xloader injects malicious code into target processes.

Xloader first creates a new instance of its own executable through process hollowing. Next, Xloader injects the next
stage into the explorer.exe process to establish network communication. In this case, Xloader uses the asynchronous
procedure call (APC) queue technique to inject an x64 shellcode. Xloader uses the native API NtQueueApcThread
instead of higher-level APIs, likely to evade antivirus hooks. The original and hollowed Xloader processes will then
terminate.

Finally, Xloader launches an executable file in the SysWOW64 Windows directory that will also be targeted for code
injection. Xloader uses a combination of the Windows API functions
including CreateProcessInternal, NtCreateSection, NtMapViewOfSection, and NtResumeThread to inject code into
the remote target process. The code injected into explorer.exe and the code injected in the SysWOW64 process run
concurrently and use shared memory sections to communicate.

The list of target executable filenames in the SysWOW64 directory varies across different samples and versions. In one
sample of Xloader version 6.2, the list of executables included the following:

3/17

SearchFilterHost.exe

Isv.exe

UserAccountControlSettings.exe

systeminfo.exe

SyncHost.exe

print.exe

sdiagnhost.exe

fixmapi.exe

msiexec.exe

takeown.exe

systray.exe

net1.exe

In a sample from Xloader 7.5, the following target executable filenames were identified:

nslookup.exe

srdelayed.exe

makecab.exe

setx.exe

runonce.exe

auditpol.exe

notepad.exe

setupugc.exe

AtBroker.exe

RMActivate_isv.exe

mountvol.exe

dfrgui.exe

Xloader will choose the first entry in the executable filename list. However, if the executable is not found in the
Windows SysWOW64 directory, it will then proceed to the next entry in the list until one of the executables is located.

Code obfuscation

In the following sections, we examine Xloader’s custom encryption and obfuscation layers.

Previous versions of Xloader had two types of encrypted functions that we refer to as the following:

NOPUSHEBP: The function’s entire code is encrypted.
PUSHEBP: These functions start with the well-known push ebp prologue followed by encrypted code.

Many of Xloader’s encryption layers continue to use an encryption algorithm that uses a combination of RC4 and two
rounds of adjacent byte subtraction. However, in Xloader versions 6 and 7, an additional encryption layer has been
added to the NOPUSHEBP functions as shown in the figure below.

https://www.zscaler.com/blogs/security-research/technical-analysis-xloader-s-code-obfuscation-version-4-3
https://github.com/ThreatLabz/tools/blob/main/xloader/custom_rc4.py

4/17

Figure 2: A high-level diagram for Xloader versions 6 and 7, which leverage three main functions to decrypt and
execute critical parts of code.

Xloader executes three main functions: Main Function 1, Main Function 2, and Main Function 3. Each function
implements a decryption routine for subsequent encrypted functions. The most noteworthy of these is Main Function 3,
which itself is dynamically decrypted through multiple layers, and responsible for decrypting a new additional
encryption layer on top of the NOPUSHEBP encrypted functions.

Main Function 1

Main Function 1 is responsible for establishing persistence on the victim’s computer by copying itself to the appropriate
directories and modifying the necessary registry keys explained in the previous section. In addition, Main Function 1
decrypts and calls Main Function 2 as explained below.

5/17

Main Function 1 uses an egg-hunting technique that searches for two DWORD ID values to locate the memory address
range of the encrypted Main Function 2. Note that all of these DWORD values in Xloader are calculated dynamically at
runtime by performing an XOR operation with hardcoded values to evade static signature-based detection. The first
layer of the code is decrypted using Xloader’s RC4 and subtraction algorithm using a 20-byte key stored in the
malware’s global configuration. Once the first layer is decrypted, another DWORD value is used to delineate the end of
the second encryption layer. The key to decrypt the second layer is the same DWORD value used to mark the
beginning of the first encryption layer (padded with zeros until the length is 20).

Once the code is decrypted, the function prologue bytes 55 8B EC are written at the beginning of the decrypted code
and 4 no-op (NOP) opcodes are written at the end.

A Python implementation of the Main Function 1 decryption code is shown below:

The malware keeps a common 0x14 len key at configobj + 0x410

This offset could change from one sample to another

id_find_encode = get_hardcoded_id_find_encode(binary)

key_layer1 = keys['keys_0x14_stored_in_configobj'][0x410]

id_end_layer1 = get_hardcoded_id_end_layer1(binary)

id_end_layer2 = get_hardcoded_id_end_layer2(binary)

key_layer2 = padding(id_find_encode)

if id_find_encode in binary:

 encode_base = binary.index(id_find_encode) + 4

 if id_end_layer1 in binary and id_end_layer2 in binary:

 # Decrypt layer 1

 end_layer1 = binary[encode_base:].index(id_end_layer1) + encode_base

 decode_layer1 = rc4_sub(binary[encode_base:end_layer1], key_layer1)

 # Add layer 1 decrypted code

 binary = binary[:encode_base] + decode_layer1 + binary[end_layer1:]

 # Decrypt layer 2

 end_layer2 = binary[encode_base:].index(id_end_layer2) + encode_base

 decode_layer2 = rc4_sub(binary[encode_base:end_layer2], key_layer2)

 # Add layer 2 decrypted code

 binary = binary[:encode_base] + decode_layer2 + binary[end_layer2:]

 # Add the function prologue and NOPs

 start = encode_base

 end = end_layer1

 if end_layer2 > end_layer1:

 end = end_layer2

 decrypted_code = binary[start:end]

 decrypted_function = b"\x55\x8B\xEC" + decrypted_code + b"\x90\x90\x90\x90"

 return decrypted_function

Main Function 2

Main Function 2 executes Xloader’s main loop that calls the functions that communicate with the C2 server and steal
data from the victim’s computer. The function also decrypts and calls Main Function 3.

The decryption code in Main Function 2 is similar to Main Function 1 with two layers decrypted by Xloader’s RC4 and
subtraction algorithm. The first layer is decrypted using the key stored in the global configuration and the second layer
is decrypted using a 20-byte key that is constructed dynamically (rather than using the DWORD ID value used to mark
the beginning of the first encryption layer).

Main Function 3

As mentioned previously, Main Function 3 is primarily responsible for decrypting a new encryption layer on top of
NOPUSHEBP functions. Main Function 3 uses another egg-hunting technique to search for these encrypted blocks. For
example, in the sample 66ebf028ab0f226b6e4c6b17cec00102b1255a4e59b6ae7b32b062a903135cc9, Xloader
leverages 7 DWORD IDs used to find the beginning of the encrypted blocks, and another 7 IDs used to locate the end

6/17

of the encrypted blocks. Each block is decrypted using Xloader’s RC4 and subtraction algorithm with a key obtained
from the malware’s global configuration. Note that after each block is decrypted, the code is still encrypted in
the NOPUSHEBP functions.

Encrypted NOPUSHEBP functions

The decryption process of NOPUSHEBP functions remains the same as previous versions with the only exception being
how the IDs and decryption keys are dynamically calculated.

The following code shows a Python implementation of Xloader’s NOPUSHEBP function decryption:

Find the required seeds and xor keys from the binary

nopushebp_tag1_seed = get_nopushebp_tag1_seed(binary)

nopushebp_tag2_seed = get_nopushebp_tag2_seed(binary)

xor_key_tags = get_xor_key_tags(binary)

nopushebp_key_seed = get_nopushebp_key_seed(binary)

nopushebp_key_xor = get_nopushebp_key_xor(binary)

Calculate the limit tags and key

nopushebp_tag1 = xor(nopushebp_tag1_seed, xor_key_tags)

nopushebp_tag2 = xor(nopushebp_tag2_seed, xor_key_tags)

nopushebp_key = xor(nopushebp_key_seed, nopushebp_key_xor)

Decrypt the function

if nopushebp_tag1 in binary and nopushebp_tag2 in binary:

 enc = binary.split(nopushebp_tag1)[1].split(nopushebp_tag2)[0]

 decrypted_function = b"\x55\x8B\xEC" + \

 rc4_sub(enc, nopushebp_key) + \

 b"\x90\x90\x90\x90"

Version 7.5 of Xloader introduced a slight modification to decrypt NOPUSHEBP functions with the construction of the RC4
keys and some functions contain multiple layers of encryption.

Encrypted PUSHEBP functions

Xloader’s PUSHEBP functions are very similar to prior versions, with additional complexities added in version 7.5 that
leverage XOR operations to derive the RC4 key.

Code encryption on API calls

Xloader now encrypts its own code before calling critical APIs, like ZwSetThreadContext, involved in process injection,
as shown in the figure below.

Figure 3: Code protection technique prior to calling ZwSetThreadContext in Xloader 6.2.

https://www.zscaler.com/blogs/security-research/technical-analysis-xloader-s-code-obfuscation-version-4-3

7/17

Once the API returns, the original code is decrypted again. This is likely a mechanism designed to thwart analysis
platforms that generate memory dumps when specific system calls are executed (for example, memory allocation,
process creation, etc.), since the important parts of the code will remain encrypted. A similar technique is implemented
in modern versions of SmokeLoader's stager component, which decrypts code blocks when needed and re-encrypts
them after use.

Data obfuscation

Previous versions of Xloader stored all critical information (for example, the encrypted strings and the encryption keys)
in a set of static encrypted data blocks that we called PUSHEBP data blocks because the encrypted data was preceded
by a push ebp prologue.

In Xloader versions 6 and 7, encrypted PUSHEBP data blocks no longer exist. When the malware requires a string, key,
seed, or constant, the value is constructed dynamically. As a result, there are no hardcoded keys in the malware code.

String obfuscation

In previous versions of Xloader, the malware’s encrypted strings were contained in an encrypted PUSHEBP data block. In
the new versions, there are dedicated functions that build, decrypt, and return each string, as shown in the figure
below.

Figure 4: Function to decrypt the COMPUTERNAME string in Xloader 6.2.

https://www.zscaler.com/blogs/security-research/brief-history-smokeloader-part-1

8/17

All of these functions operate by pushing the encrypted string on the stack. Xloader then calls a function that initializes
a 20-byte key. The key is then used to decrypt the string using Xloader’s RC4 and subtraction algorithm.

Stack strings

In addition to the encrypted strings described above, Xloader builds some plaintext strings on the stack
through NOPUSHEBP functions. Since the code itself in these functions is encrypted and protected, the strings are too.

API obfuscation

Earlier versions of Xloader used two encrypted PUSHEBP data blocks that contained tables of 32-bit cyclic redundancy
check (CRC32) values for Windows API function names. In versions 6 and 7, these PUSHEBP data blocks have been
removed. Now, each CRC32 value is created by its own specific code block.

There are two main types of functions that calculate the CRC32 values for Windows API function names. One function
requires a seed and an encrypted CRC32, while the other function only requires an encrypted CRC32 value. These
functions are described below.

The first API resolution function dynamically builds each API CRC32 value from two parameters. The functions
maintain a consistent code structure with two parameters consisting of a 1-byte XOR key and an encrypted
CRC32 DWORD value as shown in the figure below.

Figure 5: Algorithm to derive the API hash using a seed and an encrypted CRC32 value in Xloader 6.2.

In the example above, an XOR operation is performed with a 20-byte seed (15 2B 13 8F 74 EB 03 60 8E 08 48 EA
8F 61 89 7D 9E A4 A6 C1) and a hardcoded byte (0x48). Another XOR operation is performed using the result and
the 1-byte XOR key provided to the function. This generates the decryption key, which is then used by Xloader’s RC4
and subtraction algorithm to decrypt the API function name's CRC32 value.

In other cases, the API CRC32 value is calculated with inline code (instead of a dedicated function). In these cases,
only the RC4 encrypted CRC32 value is provided as an argument to a function that builds a 20-byte RC4 key
dynamically (with 5 DWORDs encoded by a single XOR key). Xloader’s RC4 with subtraction algorithm is then used to
decrypt the final API CRC32 value.

Xloader then computes the CRC32 value for each export function name (converted to lowercase) and the previously
calculated CRC32 to locate the address of each required API function.

NTDLL hook evasion

Xloader versions 6 and 7 load a copy of ntdll and call the library’s API functions through the copy instead of the original
library. This ensures that if breakpoints are set on the exported functions of the library or if a monitoring tool attempts to
perform hooks, they will be unable to properly trace Xloader’s behavior. This technique is used by other malware

9/17

families including SmokeLoader.

Xloader obfuscation evolution

The table below outlines the obfuscation techniques used in Formbook and various versions of Xloader.

Technique
V2 V4 V6/V7

Yes Yes Yes

Yes Yes No

Yes Yes No

Yes No No

No Yes Yes

No No No/Yes

No Yes No

No No Yes

No No Yes

No No No/Yes

Yes Yes No

No No Yes

Yes Yes Yes

Yes Yes Yes

Yes Yes No

No No Yes

Yes Yes No

No No Yes

RC4 with subtraction encryption

Custom lookup table decryption algorithm

PUSHEBP data blocks

PUSHEBP code blocks with
plaintext limit IDs

PUSHEBP. code blocks with
encrypted limit IDs

PUSHEBP decryption with
XOR key passed by caller

NOPUSHEBP code blocks
Key from PUSHEBP data blocks

NOPUSHEBP code blocks
with egg-hunting

NOPUSHEBP code blocks
with dynamic key

NOPUSHEBP code blocks
Two RC4 with subtraction layers
Key 1 built dynamically
Key 2 from global config

Strings in PUSHEBP data blocks

Stack-based string obfuscation

Decoy C2s stored as encrypted strings

Decoy C2s encrypted with additional layers

Real C2 in PUSHEBP data blocks

Real C2 among the encrypted strings

C2 keys in data blocks

C2 keys built dynamically

https://www.zscaler.com/blogs/security-research/brief-history-smokeloader-part-2

10/17

Technique
V2 V4 V6/V7

Yes Yes No

No No Yes

Table 1: Comparison of Xloader obfuscation techniques by version.

As the table above demonstrates, Xloader continues to add new layers of encryption and obfuscation with each new
release to complicate manual and automated analysis. Xloader now contains multiple layers of encryption for code,
strings, constants, and API hashes. Furthermore, the Xloader author has implemented additional measures over time
to decrypt critical information only when necessary, and scattered code and data across multiple sections. Xloader’s
encryption algorithms have also been changed significantly over time from a custom encryption algorithm that used a
lookup table to an algorithm that leverages RC4 and subtraction. These modifications are designed to better evade
detection by endpoint security software and stay one step ahead.

To Be Continued

In Part 1 of this series, we explored the obfuscation techniques used in the latest versions of Xloader 6 and 7, focusing
on how the malware conceals its code and data. In Part 2, we will shift our attention to the encryption mechanisms of
its network protocol and the parameters that facilitate Xloader’s communication.

Zscaler Coverage

Zscaler's multilayered cloud security platform detects Xloader and Formbook, as well as various other types of
cyberthreats, at multiple levels, as shown below:

Win32.PWS.Xloader
Win32.PWS.Formbook

Figure 6: Zscaler Cloud Sandbox report for Xloader 6 and 7.

Indicators Of Compromise (IOCs)

API CRC values in PUSHEBP data blocks

API CRCs encrypted with RC4 and subtraction

https://github.com/ThreatLabz/tools/blob/main/xloader/custom_buffer_decryption_algorithm.py
https://www.zscaler.com/blogs/security-research/technical-analysis-xloader-versions-6-and-7-part-2
https://threatlibrary.zscaler.com/threats/4bdc7e2c-137d-4c74-8a2c-14fb9eef5d4d?_gl=1*13ej4d0*_gcl_au*MTk4MjU3OTA4MC4xNzI5MjExNDIy*_ga*MTk4OTY2OTA4Ny4xNzI5MjExNDIy*_ga_10SPJ4YJL9*MTcyOTUyODU0MS45LjAuMTcyOTUyODYzMi42MC4wLjE2NjgxMjUzOTI.
https://threatlibrary.zscaler.com/threats/1af3f6cb-f1bc-48af-ad97-e29c83d109fe?_gl=1*13ej4d0*_gcl_au*MTk4MjU3OTA4MC4xNzI5MjExNDIy*_ga*MTk4OTY2OTA4Ny4xNzI5MjExNDIy*_ga_10SPJ4YJL9*MTcyOTUyODU0MS45LjAuMTcyOTUyODYzMi42MC4wLjE2NjgxMjUzOTI.

11/17

Sample Variant Version

66ebf028ab0f226b6e4c6b17cec00102b1255a4e59b6ae7b32b062a903135cc9 Xloader 6.2

88909cd27a422da91a651e87f493d16beff1f0e03adcc035f2835a2a25e871e7 Xloader 6.2

4ad101eef336dc2467ffaf584b272aa82f26711bfba4e2e29e8ad7c6d62bc6ae Xloader 7.5

362207c53645346df6f36cf3f7792e5fc4655895b35a6e3477e218e0e0007be9 Xloader 7.5

b1fb20d5857d1ca65dbacd6cb100dc2d7da8eb7ce54d4faeebafb2bbb212beca Xloader 7.5

Network indicators

Sample C2

66ebf028ab0f226b6e4c6b17cec00102b1255a4e59b6ae7b32b062a903135cc9 www.iwin[.]exposed/ir6g/

www.ok2yu[.]us/ir6g/

www.zwetststuren[.]cfd/ir6g/

www.fraternize[.]org/ir6g/

www.mc9uh8d70[.]site/ir6g/

www.scwspark[.]com/ir6g/

www.royalkredit[.]online/ir6g/

www.bkexclusivecars[.]net/ir6g/

www.moncoop[.]coop/ir6g/

www.tehranrizcomputer[.]com/ir6g/

www.sazekents[.]cfd/ir6g/

www.xediedie[.]icu/ir6g/

www.eeja[.]uk/ir6g/

www.mscfoundation[.]info/ir6g/

12/17

Sample C2

www.brighterhomesdecor[.]com/ir6g/

www.efidence[.]com/ir6g/

www.tk254kr6rwr7mjtru[.]com/ir6g/

www.haycoches[.]com/ir6g/

www.electra-airways[.]info/ir6g/

www.happiluv[.]com/ir6g/

www.goog1evip15[.]com/ir6g/

www.womenscalshion[.]com/ir6g/

www.lenaguillemette[.]com/ir6g/

www.jamesgadzikmd[.]com/ir6g/

www.kavanzi[.]com/ir6g/

www.tupinkeept[.]cfd/ir6g/

www.portfutures[.]asia/ir6g/

www.cgm-logistics[.]org/ir6g/

www.dutch-wildlife[.]shop/ir6g/

www.dsisarl[.]com/ir6g/

www.haftplicht[.]com/ir6g/

www.roundhaygardenscene[.]com/ir6g/

www.alace5[.]com/ir6g/

www.sathyfe[.]com/ir6g/

www.electronicraw[.]com/ir6g/

www.earn50k[.]com/ir6g/

13/17

Sample C2

www.arasymimbi[.]com/ir6g/

www.lriz[.]site/ir6g/

www.pinnaclebyte[.]info/ir6g/

www.avolci[.]com/ir6g/

www.am8pw[.]us/ir6g/

www.projectimprov[.]com/ir6g/

www.energeticfranchise[.]top/ir6g/

www.devocionmusic[.]com/ir6g/

www.markthing[.]site/ir6g/

www.myhosting[.]co[.]in/ir6g/

www.solar-windturbine[.]life/ir6g/

www.flusznwrldwide[.]com/ir6g/

www.lifedrawingbristol[.]co[.]uk/ir6g/

www.weberze[.]com/ir6g/

www.getmylinks[.]cc/ir6g/

www.aspasskeoffice[.]homes/ir6g/

www.uxzl[.]site/ir6g/

www.carpmaxxbait[.]online/ir6g/

www.dumpstedoctorca[.]com/ir6g/

www.revelationfithub[.]com/ir6g/

www.cuffbow[.]com/ir6g/

www.hk9[.]xyz/ir6g/

14/17

Sample C2

www.lollybowly[.]com/ir6g/

www.aarunifoodcrafters[.]com/ir6g/

www.jarvisandbrown[.]com/ir6g/

www.gattosat[.]icu/ir6g/

www.xfgqbh[.]site/ir6g/

www.mag-flex[.]com/ir6g/

4ad101eef336dc2467ffaf584b272aa82f26711bfba4e2e29e8ad7c6d62bc6ae www.trisixnine[.]net/0057/

www.softillery[.]info/cyhg/

www.easestore[.]shop/qflp/

www.yu35n[.]top/kejj/

www.yourhomecopilot[.]online/gctn/

www.fastr[.]live/gsjn/

www.dto20[.]shop/efvy/

www.aromavida[.]net/4rlw/

www.crochetpets[.]online/vand/

www.queima[.]shop/mdoj/

www.nojamaica[.]net/g7eq/

www.komart[.]shop/b2t1/

www.livemarkat[.]live/8h0p/

www.d27dm[.]top/ptbb/

www.rtpgaruda888resmi[.]xyz/u8o7/

www.chalet-tofane[.]net/3bhs/

15/17

Sample C2

www.platinumkitchens[.]info/dquo/

www.eslameldaramlly[.]site/nlx0/

www.theproselytizer[.]net/od1n/

www.amitayush[.]digital/93j5/

www.030002304[.]xyz/d7z8/

www.aaavvejibej[.]bond/lh0g/

www.useanecdotenow[.]tech/vera/

www.bayarcepat19[.]click/q1x3/

www.bluegirls[.]blog/g1ze/

www.wdeb18[.]top/kv48/

www.weatherbook[.]live/tfj4/

www.pachuco[.]supply/7gdu/

www.childlesscatlady[.]today/2kmz/

www.kabaribukota[.]press/nr90/

www.federall[.]store/afqz/

www.inf30027group23[.]xyz/xzfm/

www.allthingsjasmin[.]com/pbmf/

www.ntn[.]solar/fcmy/

www.torex33[.]online/pvct/

www.resumeyourway[.]info/vn92/

www.kx507981[.]shop/q3r9/

www.ohio-adr[.]net/j0y4/

16/17

Sample C2

www.serverplay[.]live/6b8s/

www.meg21c[.]top/3jg0/

www.rockbull[.]pro/0tt2/

www.trapkitten[.]website/y6hh/

www.44ddw[.]top/3e3b/

www.ngmr[.]xyz/4muf/

www.sansensors[.]info/ip84/

www.allsolar[.]xyz/cph9/

www.bismarckrecovery[.]com/kp5k/

www.vegastinyhomes[.]net/f2tm/

www.airbatchnow[.]online/ekgk/

www.huemanstudio[.]today/0ob6/

www.rtpngk[.]xyz/yd3l/

www.mechecker[.]life/b6h1/

www.lojashelp[.]video/ao78/

www.tracy[.]club/rwcg/

www.limitlesssky[.]org/50p5/

www.luismoreno[.]monster/06xo/

www.dhkatp[.]vip/4qrw/

www.hentaistgma[.]net/j6o1/

www.promasterev[.]shop/zjp0/

www.pethut[.]shop/wrhe/

17/17

Sample C2

www.polarmuseum[.]info/m8hf/

www.greekhause[.]org/tn42/

www.wdcb30[.]top/s7v2/

www.everycreation[.]shop/nsev/

Thank you for reading

Was this post useful?

Yes, very!Not really

Disclaimer: This blog post has been created by Zscaler for informational purposes only and is provided "as is" without
any guarantees of accuracy, completeness or reliability. Zscaler assumes no responsibility for any errors or omissions
or for any actions taken based on the information provided. Any third-party websites or resources linked in this blog
post are provided for convenience only, and Zscaler is not responsible for their content or practices. All content is
subject to change without notice. By accessing this blog, you agree to these terms and acknowledge your sole
responsibility to verify and use the information as appropriate for your needs.

Explore more Zscaler blogs

Get the latest Zscaler blog updates in your inbox

By submitting the form, you are agreeing to our privacy policy.

https://www.zscaler.com/privacy/company-privacy-policy

