
1/8

January 21, 2025

Sophos MDR tracks two ransomware campaigns using “email bombing,” Microsoft
Teams “vishing”

news.sophos.com/en-us/2025/01/21/sophos-mdr-tracks-two-ransomware-campaigns-using-email-bombing-microsoft-teams-vishing/

Sophos X-Ops’ Managed Detection and Response (MDR) is actively responding to incidents tied to two separate groups of threat actors, each
of which have used the functionality of Microsoft’s Office 365 platform to gain access to targeted organizations with the likely goal of stealing
data and deploying ransomware.

Sophos MDR began investigating these two separate clusters of activity in response to customer incidents in November and December 2024.
Sophos is tracking these threats as STAC5143 and STAC5777. Both threat actors operated their own Microsoft Office 365 service tenants as
part of their attacks and took advantage of a default Microsoft Teams configuration that permits users on external domains to initiate chats or
meetings with internal users.

STAC5777 overlaps with a threat group previously identified by Microsoft as Storm-1811. STAC5143 is a previously unreported threat cluster
copying the Storm-1811 playbook, with possible connections to the threat actor known variously as FIN7, Sangria Tempest, or Carbon Spider.

We are publishing this in-depth report on both threat clusters to aid defenders in detecting and blocking these continuing threats, and to raise
awareness of the spread of these tactics among organizations using the Office 365 platform. Sophos MDR has observed more than 15
incidents involving these tactics in the past three months, with half of them in the past two weeks.

Common tactics include:

Email-bombing— targeted high volumes of spam email messages (as many as 3,000 in less than an hour) to overwhelm the Outlook
mailboxes of a few individuals within the organization and create a sense of urgency
Sending Teams messages and making Teams voice and video calls from an adversary-controlled Office 365 instance to targeted
employees, posing as tech support for their organization
Using Microsoft remote control tools—either Quick Assist or directly through Teams screen sharing—to take control of the targeted
individual’s computer and install malware

STAC5143:

https://news.sophos.com/en-us/2025/01/21/sophos-mdr-tracks-two-ransomware-campaigns-using-email-bombing-microsoft-teams-vishing/
https://www.microsoft.com/en-us/security/blog/2024/05/15/threat-actors-misusing-quick-assist-in-social-engineering-attacks-leading-to-ransomware/

2/8

Teams built-in remote control
A Java Archive (JAR) and Java runtime that automate the exploitation of the victim’s computer
JAR extracts Python-based backdoors from a .zip file downloaded from a remote SharePoint link.
Uses techniques and tools connected to FIN7

STAC5777:

Microsoft Quick Assist
Hands-on-keyboard configuration changes and malware deployment
Deployment of a legitimate Microsoft updater with a malicious side-loading DLL that provides persistence, steals credentials, and allows
for discovery of network resources
Uses RDP and Windows Remote Management to access other computers on the targeted network
In one case, deployed Black Basta Ransomware
Techniques, tools, and procedures overlap with Microsoft-identified threat actor Storm-1811
Highly active

This report details the tactics of the two threat clusters, which both follow versions of the same attack pattern: email bombing and fake tech
support social engineering with the delivery of malware, the exploitation of legitimate services through Microsoft’s Office 365 platform, and
efforts to deploy command and control and data exfiltration tools.

We believe with high confidence that both sets of adversarial activity are parts of ransomware and data theft extortion efforts.

STAC5143

While some of the malware seen from this threat cluster in the two attacks Sophos observed were similar to attacks by FIN7 observed by
eSentire and Sekoia , there were several things that diverged from the usual FIN7-type attack. FIN7 has been known to primarily target victims
through phishing and (more recently) malicious sponsored Google Ads to deliver malware. This attack chain was different, and targeted
organizations smaller and in different business sectors than FIN7’s usual victims.

Attack chain

Initial access

In early November, an employee at a Sophos MDR customer organization reported to her internal IT contact that they had received an
exceptionally large volume of spam messages—over 3,000 in a 45-minute period. Shortly after that, they received a Teams call from outside
their organization, from an account named “Help Desk Manager.” As the organization used a managed service provider for IT services, this did
not set off red flags with the employee who accepted the video call.

During the call, the threat actor instructed the employee to allow a remote screen control session through Teams. Through this remote-control
session that the attacker was able to open a command shell and drop files and execute malware, deploying them from an external SharePoint
file store. The files included Java archive (JAR) files and a .zip archive containing Python code and other components.

First Stage Execution

The threat actor executed the JAR file from a command shell opened during the remote session with a copy of the legitimate javaw.exe, a Java
“headless” runtime that interprets and executes Java code with no console output.

Process Command Line RESULT / MITRE ATT&CK
TTP

cmd.exe “C:\Windows\system32\cmd.exe”

►
javaw.exe

C:\Users\Public\Documents\MailQueue-Handler\jdk-23.0.1\bin\javaw.exe -jar
C:\Users\Public\Documents\MailQueue-Handler\MailQueue-Handler.jar

TA0011: Command and
Control – T1090: Proxy

Via the Java-based proxy in MailQueue-Handler.jar, the attacker identified the process ID for javaw.exe using the Windows Management
Instrumentation command line utility (WMIC.exe). The attacker then changed the code page for the active console window to “65001” to allow
UTF-8 encoding for multilingual input and output support. This was likely used along with PowerShell execution policy bypass to allow encoded
commands to be executed and evade AMSI detection.

Process Command Line RESULT/ MITRE ATT&CK TTP

►►
WMIC.exe

wmic process where “name=’java.exe'” Returns the ID for any running process of the
Java runtime

►►
WMIC.exe

wmic process where “name=’javaw.exe'” Returns the ID for any running process of the
headless Java runtime

https://www.microsoft.com/en-us/security/blog/2024/05/15/threat-actors-misusing-quick-assist-in-social-engineering-attacks-leading-to-ransomware/
https://www.esentire.com/blog/fin7-uses-trusted-brands-and-sponsored-google-ads-to-distribute-msix-payloads
https://blog.sekoia.io/unveiling-the-intricacies-of-diceloader/
https://attack.mitre.org/groups/G0046/
https://www.esentire.com/blog/fin7-uses-trusted-brands-and-sponsored-google-ads-to-distribute-msix-payloads

3/8

►► cmd.exe cmd.exe /c chcp 65001 > NUL & powershell.exe -ExecutionPolicy
Bypass -NoExit -NoProfile -Command –

TA0002: Execution- T1059.001: PowerShell

►►►
chcp.com

chcp 65001 UTF-8 encoding on

►►►
powershell.exe

powershell.exe -ExecutionPolicy Bypass -NoExit -NoProfile -Command
–

The Java code then ran a series of PowerShell commands that downloaded a 7zip archive and the 7zip archiving utility. The utility was then
used to extract the archive’s contents— a ProtonVPN executable and a malicious DLL (nethost.dll) side-loaded by the Proton executable.

Process Command Line MITRE ATT&CK TTP

►►►
powershell.exe

powershell.exe -ExecutionPolicy Bypass -NoExit -NoProfile -
Command –

Downloads na.7z, a 7zip archive

►►►
powershell.exe

powershell.exe -ExecutionPolicy Bypass -NoExit -NoProfile -
Command –

Downloads 7za.dll, a 7zip utility dynamic link
library

►►►
powershell.exe

powershell.exe -ExecutionPolicy Bypass -NoExit -NoProfile -
Command –

Downloads 7za.exe, the 7zip utility executable

Discovery

The attacker then obtained the target’s username using whoami.exe, and discovered network resources the user has access to via the net
user command.

Process Command Line MITRE ATT&CK TTP

►►►►
whoami.exe

“C:\Windows\system32\whoami.exe”

►►►► net.exe “C:\Windows\system32\net.exe” user [username]
/domain

TA0002: Execution – T1059.001: PowerShell

TA0007: Discovery – T1049: System Network Connections

Discovery

►►►►►
net1.exe

C:\Windows\system32\net1 user [username]
/domain

Sideload / Command and Control

The Java code then launched the ProtonVPN executable to side-load nethost.dll, which created sessions connecting to virtual private servers
hosted in Russia, Netherlands and the US. This behavior triggered Sophos endpoint protection behavioral detections for an unsigned DLL
sideload.

Process Command Line RESULT/ MITRE ATT&CK TTP

►►►► ProtonVPN.exe “C:\users\public\downloads\ProtonVPN.exe” Connects to 207.90.238[.]99
TA0002: Execution – T1059.001: PowerShell

TA0011: Command and Control – T1071.001: Web Protocols

TA0011: Command and Control – T1105: Ingress Tool Transfer

►►►► ProtonVPN.exe “C:\users\public\downloads\ProtonVPN.exe” Connects to 206.206.123.75
TA0002: Execution – T1059.001: PowerShell

TA0011: Command and Control – T1071.001: Web Protocols

TA0011: Command and Control – T1105: Ingress Tool Transfer

►►►► ProtonVPN.exe “C:\users\public\downloads\ProtonVPN.exe” Connects to 109.107.170[.]2
TA0002: Execution – T1059.001: PowerShell

TA0011: Command and Control – T1071.001: Web Protocols

TA0011: Command and Control – T1105: Ingress Tool Transfer

►►►► ProtonVPN.exe “C:\users\public\downloads\ProtonVPN.exe” Connects to 195.133.1[.]117
TA0002: Execution – T1059.001: PowerShell

TA0011: Command and Control – T1071.001: Web Protocols

TA0011: Command and Control – T1105: Ingress Tool Transfer

The code from the JAR next opens another cmd.exe session, again configuring it for UTF-8, and executes a second Java .jar file (identity.jar)
with javaw.exe , passing the target user’s username and Active Directory domain as parameters to the second-stage Java code.

4/8

Process Command Line RESULT/ MITRE
ATT&CK TTP

►► cmd.exe cmd.exe /c chcp 65001 > NUL & powershell.exe -ExecutionPolicy Bypass -NoExit -NoProfile -
Command –

►►►
chcp.com

chcp 65001

►►►
powershell.exe

powershell.exe -ExecutionPolicy Bypass -NoExit -NoProfile -Command –

►►►►
whoami.exe

“C:\Windows\system32\whoami.exe”

►►►►
whoami.exe

“C:\Windows\system32\whoami.exe”

►►►►
javaw.exe

“C:\Users\Public\Documents\MailQueue-Handler\jdk-23.0.1\bin\javaw.exe” -jar
C:\Users\Public\Documents\MailQueue-Handler\identity.jar [domain]\[username]

An hour later, the tar.exe archive utility was used by the second-stage Java payload to extract files from the dropped file winter.zip to
C:\ProgramData\. This was the Python malware payload being deployed. In addition, a series of commands were run to perform local user and
network discovery—obtaining the name of network domain servers and their IP address.

Process Command Line RESULT/ MITRE ATT&CK TTP

►►►► tar.exe “C:\Windows\system32\tar.exe” -xf C:\ProgramData\winter.zip -C
:\ProgramData\

Extracts Python payload and supporting files

►►►► net.exe “C:\Windows\system32\net.exe” time

►►►►►
net1.exe

C:\Windows\system32\net1 time Displays the time and date on the target device

►►►►
nltest.exe

“C:\Windows\system32\nltest.exe” /dclist:[domain].local Returns a list of domain controllers
TA0007: Discovery – T1018: Remote System
Discovery

TA0007: Discovery – T1482: Domain Trust
Discovery

►►►►
nltest.exe

“C:\Windows\system32\nltest.exe” /dclist:[domain].local TA0007: Discovery – T1018: Remote System
Discovery

TA0007: Discovery – T1482: Domain Trust
Discovery

►►►►
PING.EXE

“C:\Windows\system32\PING.EXE” [domain controller hostname].
[domain].local

Getting IP address of domain controller
TA0007: Discovery – T1018: Remote System
Discovery

►►►►
PING.EXE

“C:\Windows\system32\PING.EXE” [domain controller hostname].
[domain].local

Getting IP address of second domain controller
TA0007: Discovery – T1018: Remote System
Discovery

►►►►
ipconfig.exe

“C:\Windows\system32\ipconfig.exe” /all Getting local network configuration information
TA0007: Discovery – T1018: Remote System
Discovery

Finally, the Java second stage code executed the malicious Python payload, using a Python interpreter included in the dropped files renamed
to debug.exe. The Python scripts launched were a set of backdoors.

Process Command Line RESULT/ MITRE ATT&CK TTP

►►►►
debug.exe

“C:\ProgramData\winter\debug.exe”
C:\ProgramData\winter\45_237_80.py

TA0002: Execution – sT1059.001: PowerShell

TA0011: Command and Control – T1071.001: Web

Protocols

TA0011: Command and Control – T1105: Ingress Tool

Transfer

Malware analysis

5/8

Figure 1: A screenshot of Python code from an obfuscated copy of RPivot in the winter.zip archive deployed by the STAC5143 attackers.

The Python code in the winter.zip payload used a lambda function (a short, anonymous throwaway function used in line with code) to
obfuscate the rest of its script. That obfuscating lambda function matched those previously seen in FIN7-related Python malware loaders.

Two of the Python components (166_65.py and 45_237_80.py) were copies of a publicly-available reverse SOCKS proxy called RPivot.
Designed as a legitimate too for use by penetration testers, RPivot Each of these Python scripts used different IP addresses for their remote .
These backdoors received commands from the remote connection over port 80. Another script (37_44.py) was an RPivot script used to
connect to a Tor relay.

Attribution

Sophos assesses with medium confidence that the Python malware used in this attack is connected to the threat actors behind FIN7/Sangria
Tempest. The obfuscation method is identical to previous and FIN7 has been known to use the RPivot tool in attacks. However, we note that
the obfuscation methods used are based on publicly available code, RPivot is also publicly available, and FIN7 has previously sold its tools to
other cybercriminals.

STAC5777

As with STAC5143, a few individuals at targeted organizations have been bombarded with a massive amount of spam emails, followed by an
inbound Microsoft Teams message from someone claiming to be with their internal IT team.

The Teams message—from the adversaries responsible for the spam messages— requested a Teams call to resolve the spam issues. But
unlike the STAC5143 incidents we’ve observed, STAC5777 activity relied much more on “hands-on-keyboard” actions and scripted commands
launched by the threat actors directly than STAC5143.

Initial access

In each of the incidents Sophos MDR documented, the adversary walked the user through the process of installing Microsoft Quick Assist over
the Teams call. This was used to establish a remote session that gave the threat actor control over the targeted individual’s device.

One of the customer estates had Sophos Office 365 integration configured, which allowed MDR to confirm the actor used an Office365
account ‘helpdesk@llladminhlpll.onmicrosoft.com’ from the IP address 78.46.67[.]201 to initiate these messages.

Figure 2:Sophos Central investigation screen of threat actor’s incoming activity captured by Microsoft Office 365 integration

https://news.sophos.com/wp-content/uploads/2025/01/Rpivot-obfuscated.png
https://www.esentire.com/blog/fin7-uses-trusted-brands-and-sponsored-google-ads-to-distribute-msix-payloads
https://github.com/klsecservices/rpivot
https://therecord.media/fin7-selling-avneutralizer-tool-darknet-cybercrime
https://news.sophos.com/wp-content/uploads/2025/01/Fig2Vishing.png

6/8

The threat actor walked the user through installing and executing the Microsoft remote access tool Quick Assist. The user was told to search
for the application on the web, download it from the legitimate Microsoft website, and then launch it. They were then guided through granting
the threat actor access to control the device remotely.

Figure 3: Microsoft Teams activity initiated by threat actor controlling an external M365 tenant

Once in control of the device the actor leveraged a web browser to download the malicious payload. In one case, the payload was downloaded
directly from the threat actor-controlled host. In the others, it was split into two payloads: kb641812-filter-pack-2024-1.dat and kb641812-filter-
pack-2024-2.dat, subdomains of blob.core.windows[.]net (hosts associated with Microsoft Azure file storage services). They then combined the
two .dat files into a named pack.zip and then decompressed that archive using the tar.exe archive utility.

This resulted in the creation of another archive file in the users’ AppData directory at OneDriveUpdate\upd2836a.bkt The threat actor then
decompressed that file with writing files into the same \OneDriveUpdate folder:

The legitimate, Microsoft-signed executable OneDriveStandaloneUpdater.exe
Unsigned DLLs from the OpenSSL Toolkit (libcrypto-3-x64.dll and libssl-3-x64.dll), loaded by the OneDriveStandaloneUpdater executable
A legitimate, signed copy of vcruntime140.dll, a Microsoft library required by OneDriveStandaloneUpdater.exe
An unknown DLL, winhttp.dll
A file named settingsbackup.dat

SophosLabs analyzed winhttp.dll and confirmed to be malicious. It had fake version metadata from a legitimate ESET file and had been
renamed so it would be side-loaded into memory by the legitimate executable due to DLL search order hijacking. The DLL was capable of
collecting:

System and operating system details
Configuration information
User credentials
Keystroke the Windows API functions GetKeyboardState, GetKeyState, and get_KeySize.

SophosLabs could not determine the exact nature of the file settingsbackup.dat,’ but we believe it be an encrypted payload read by the
process running the side-loaded DLL and used as a 2 stage loader.

Once the files had been placed onto the impacted host, Sophos MDR observed the threat actor opening a command prompt and making the
following Windows registry change with the reg.exe utility:

reg add "HKLM\SOFTWARE\TitanPlus" /v 1 /t REG_SZ /d "185.190.251.16:443;207.90.238.52:443;89.185.80.86:443" /f

The registry key entries provided the IP addresses used for the command-and-control connections made by the malicious winhttp.dll code.

Persistence

After making other configuration changes manually via a command shell over the Quick Assist connection and the initial execution of the
legitimate ‘OneDriveStandaloneUpdater.exe’ binary, the attacker then executed a PowerShell command to create a service to automatically
run the exploited executable. The PowerShell command also created a .lnk file for the executable in the devices’ startup items folder to
maintain persistence through reboot.

Execution

When executed, onedrivestandaloneupdate.exe side-loaded winhttp.dll, a loader carrying a backdoor. The loader read configuration
information that had been entered by the attacker, including a file named settingsbackup.dat, and reached out to multiple IP addresses that
had been added to the system’s configuration manually by the threat actor.

Initial Quick Access activity

Parent process Command line

nd

https://news.sophos.com/wp-content/uploads/2025/01/TeamsVishingfig2.png

7/8

C:\Windows\System32\RuntimeBroker.exe-
Embedding

C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe” -single-argument microsoft-edge
url=https%3A%2F%2Fwww.bing.com%2Fsearch%3Fq%3DQuick%2BAssist%26filte

C:\windows|system32\svchost.exe-k
netsvcs-p-s Appinfo

C.\Program
Files|WindowsApps\MicrosoftCorporationll.QuickAssist_2.0.32.0_x64_8wekyb3d8bbwe\Microsoft

C: \windows\Explorer.EXE C:\Windows\System32\cmd.exe

C:\Windows\System32\cmd.exe tar xf pack.zip -C “C:\Users\<username>\AppData\Local\OneDriveUpdate

C:\Windows\System32\cmd.exe C:\Users\<username>\AppData\Local\OneDriveUpdate\OneDriveStandaloneUpdater.exe -Embed

Command and Control

Using the unsigned OpenSSL toolkit drivers, the OneDriveStandaloneUpdate process made encrypted command-and-control connections to a
set of remote hosts. The IP addresses of the hosts included a virtual private server operated by a hosting company used in the past by Russia-
based threat actors.

Initial execution of OneDriveStandaloneUpdater.exe connecting to C2 IP addresses

Process Action object

cmd.exe start C:\Users\
<username>\AppData\Local\OneDriveUpdate\OneDriveStandaloneUpdater.exe

OneDriveStandaloneUpdater.exe Binary file read C:\Users\<username>\AppData\Local\OneDriveUpdate\winhttp.dll

loads image into
memory

C:\Users\<username>\AppData\Local\OneDriveUpdate\winhttp.dll

File read C:\Users\<username>\AppData \Local\OneDriveUpdate\settingsbackup.dat

IP connects to 74.178.90[.]36:443

Ip connects to 195.123.241[.]24:443

Discovery

Once the C2 channel was established, the Sophos MDR team observed the OneDriveStandaloneUpdater.exe process conducting scanning
with the SMB protocol to map online hosts within the customers’ environment. The threat actor also scanned for Remote Desktop Protocol
and Windows Remote Management (WinRM) hosts that the targeted user’s credentials could be used to connect to within the network.

Lateral Movement

Using the targeted user’s credentials, the threat actor made efforts to expand access beyond the initially compromised system, looking for
domain access that could be elevated to move to other hosts. At one organization, they used a targeted individual’s domain credentials to
connect to the organization’s VPN from outside the network and then to log into RDP hosts within the network. At another organization , they
used Windows Remote Management (WinRM) to perform lateral movement.

Defense Evasion

In one incident, Sophos MDR observed the threat actor using the backdoor to uninstall local multifactor authentication integration on the target
device. In another, the threat actor unsuccessfully attempted to uninstall the Sophos Endpoint Agent—an action blocked by Sophos’ tamper
protection.

Credential gathering and data exfiltration

Prior to containment, Sophos MDR also observed the actor accessing files locally via notepad.exe and Word that contained the word
‘password’ in the name of the document.

In one case, the threat actors used the utility mstsc.exe to access two Remote Desktop Protocol (.rdp) files to view and edit their configuration
data, looking for potential credential storage.

Sophos MDR also observed the threat actors accessing a network diagram for one targeted organization drawn in Visio, most likely to plan
further lateral movement and impact phases of the attack.

Impact

In one case found in a threat hunt across all Sophos MDR customers, the threat actors attempted to execute Black Basta ransomware. This
was blocked by Sophos endpoint protection.

8/8

Conclusions

Sophos has deployed detections for the malware used in these campaigns including:

STAC5143: ATK/RPivot-B, Python/Kryptic.IV, heuristic detection of Python malicious use of operating system libraries
STAC5777: Troj/Loader-DV for STAC5777’s winhttp.dll

However, organizations should take further steps to prevent attacks based on these tactics. First, unless absolutely necessary, organizations
should ensure that their O365 service provisions restrict Teams calls from outside organizations or restrict that capability to trusted business
partners. Additionally, remote access applications such as Quick Assist should be restricted by policy unless they are specifically used by the
organization’s technical support team. Sophos can block unwanted execution of Quick Assist through application control settings in endpoint
protection.

Sophos strongly recommends use of Microsoft Office 365 integration with the security environment for monitoring of sources of potentially
malicious inbound Teams or Outlook traffic.

Organizations should also raise employee awareness of these types of tactics—these aren’t the types of things that are usually covered in
anti-phishing training. Employees should be aware of who their actual technical support team is and be mindful of tactics intended to create a
sense of urgency that these sorts of social-engineering driven attacks depend upon.

A list of indicators of compromise for these campaigns is available on the Sophos GitHub repository.

https://learn.microsoft.com/en-us/microsoftteams/trusted-organizations-external-meetings-chat?tabs=organization-settings
https://github.com/sophoslabs/IoCs/blob/master/MAILBOMB-TEAMS-RANSOMWARE.csv

