
1/5

Categorizing Software with Code Families
vertex.link/blogs/categorizing-software-with-code-families/

by savage | 2025-01-22

When working on a methodology for tracking software, The Vertex Project analysts wanted
an approach that would give us greater precision in documenting our findings and asking
questions about our data. In More Than Malware Families, we introduced several categories
into which we organize software: code families, software suites, and software ecosystems.
This blog will focus on the most fundamental of the three, code families, and describe how
other analyst teams might approach creating code families to categorize tools.

What is a Code Family?

If we want to be extremely precise when identifying, categorizing, and tracking certain kinds
of software, then we might begin with creating code families. A code family is a set of
executable code based on what an analyst has determined to be the same or highly similar
source code. The files associated with that family may share an entire code base or a subset
of key components (functions) that are unique to or strongly representative of the code
family.

Code families are intended to be granular and allow for more precise file identification. A tool
consisting of multiple files will often map to several code families, with each family
corresponding to one of the files making up the overall tool. For example, what the industry
commonly refers to as "PlugX" typically consists of three files: an executable file (often from
a legitimate vendor), a side-loading DLL, and shellcode. To Vertex, only the shellcode that
implements the backdoor functionality is part of the PlugX code family. Although the
shellcode and side-loading DLL work together, they do not share the same or highly similar
source code required if they were to be the same code family. We could optionally create
another named code family if we wanted to track the different side-loading DLLs, otherwise,
we might simply track the executable and side-loading DLL as part of the PlugX ecosystem.

Code families are not inherently malicious - analysts can create code families to identify
software in general and track a broader variety of tools. An analyst may create a code family
to track samples of Microsoft’s PsExec, for example. Tracking tools, as we noted in our
previous blog, can help analysts more easily recognize samples as they come across them,
as well as provide context and identify tactics, techniques, and procedures associated with
activity of interest.

https://vertex.link/blogs/categorizing-software-with-code-families/
https://vertex.link/blogs/more-than-malware-families/
https://attack.mitre.org/software/S0013/
https://learn.microsoft.com/en-us/sysinternals/downloads/psexec


2/5

Why Create Code Families?

Analyst teams can create code families to help with categorizing tools and components,
developing detection, and identifying changes in tools over time. With code families,
research into a tool begins at the code level as analysts determine which key samples of
source code within that tool will serve as the anchor for the resulting code family. After
selecting those code samples, which we refer to as anchor functions, the analyst can identify
the corresponding files containing those functions and mark them as associated with that
code family. From there, an analyst might work to document relationships between different
tools, creating Software Suites or Software Ecosystems as appropriate.

While creating code families has its benefits, this approach is not for everyone and is not a
necessary starting point for tool identification. For some teams, basing tool identification on
code similarities may be too granular an approach and inconsistent with their analysis needs.

Creating a Code Family

There are two main approaches to choose from when it comes to creating code families, one
of which allows for higher fidelity but requires greater resources. The choice in methodology
will largely depend upon a combination of a team’s analysis requirements and available
resources. Thus teams should choose the methodology that best aligns with their tasking,
analytic outputs, and available resources.

Approach 1: Basing the Code Family Off of Anchor Functions

Of the two approaches, the most high fidelity method for creating a code family involves
basing it off of one or more anchor functions representing key aspects of the source code.
An anchor function is the seed of the code family cluster, similar to how a threat cluster seed
is the starting point for a threat cluster. As such, while a code family can have multiple
anchor functions, each should be unique to that code family.

Ideally, an anchor function will be representative of or tied to a key capability of the
executable source code. However, in many instances it is not the capability itself that is
unique but the way in which it is implemented. For example, some backdoors obfuscate or
encrypt the names of API calls made to the host operating system (e.g., CreateFileA) to
mask their functionality. These strings are decoded or decrypted at runtime. The specific
algorithms (functions) used and their implementation may be unique to the backdoor, and
could therefore be a good candidate for an anchor function for the backdoor's code family.

A team’s approach to identifying anchor functions will depend upon its analysis requirements
and resourcing. The most precise method is also the most resource intensive, as it involves
relying on a malware reverse engineer to identify anchor functions through symbolic
execution. Teams without dedicated reverse engineering support may use tools like Vivisect,
which identifies symbolic functions that analysts can use to select anchor functions.

https://vertex.link/blogs/more-than-malware-families/
https://vertex.link/blogs/what-is-a-threat-cluster/
https://github.com/vivisect/vivisect


3/5

Symbolic execution is a robust method of identification as it targets the logic behind the
instructions found in the code, and will therefore persist across changes in bytes. In contrast,
comparing instruction byte code with something like YARA is more fragile and poses a
greater risk of false negatives. Analysts working with a reverse engineer can generate less
fragile signatures for anchor functions by omitting relocations that would make the code
position dependent. This would help ensure that the signatures still match against files
containing the same instruction sequences, even if they are loaded at a different address in
RAM.

Approach 2: Generally Identifying the Existence of a Code Family

Another approach would be to infer the existence of a code family among a set of highly
similar samples, rather than identifying specific anchor functions to precisely define the code
family. Instead of relying on symbolic code analysis, this tactic involves using static and
dynamic analysis to identify similarities implying the existence of a shared code family
among files. These similarities may include a combination of strings found in a binary, format
strings in a URL, and execution behaviors, among others.

Although this approach is more accessible and less resource-intensive than identifying
anchor functions, it also poses a higher risk of false positives. YARA rules that rely on strings
and other application data are less accurate than those focused on identifying functions, as
the latter targets the code itself, rather than the data the code uses.

While an analyst can select a range of similarities as evidence of a code family, some will be
higher fidelity than others. An analyst must therefore be cognizant of what shared traits they
are noting as a proximation for the code family, as selecting something insufficiently unique
can result in false positives.

Code Families in Practice: The Carrotstick Backdoor

So what does creating a code family look like in practice, and how do we then represent the
results in Synapse? Let’s take a look at a code family I created for a backdoor Cybersec
Sentinel originally reported on in early June 2024. According to CyberSec Sentinel, Elastic,
and others, phishing emails use employment-related lures to entice recipients to click on a
malicious link, which, after a series of redirects, delivers a Javascript file that downloads a
backdoor. While Cybersec Sentinel, Elastic, and others refer to the backdoor as
WarmCookie, I opted to name our internal code family Carrotstick to differentiate between
our own analysis and that of other organizations.

In this instance, I sought to generally identify the existence of a code family among the
backdoor samples, rather than try to specifically identify anchor functions upon which to base
the code family. My evidence for the code family included a mix of execution behavior, such
as:

https://cybersecsentinel.com/warmcookie-malware-hijacking-google-accounts/
https://www.elastic.co/security-labs/dipping-into-danger
https://www.gdatasoftware.com/blog/2024/06/37947-badspace-backdoor


4/5

Downloading a DLL to a temp directory with a random name and file extension, while
also copying the DLL to C:/ProgramData/RtlUpd/RtlUpd.dll;

Using rundll32.exe to launch the DLL with the parameters "Start, /p" for
persistence;

Having a hard-coded GUID-like string as a mutex; and

Communicating with a hardcoded IP address over HTTP.

I also used Elastic's YARA rule, although I edited it to include a different combination of
strings and conditions.

After identifying the parameters for the Carrotstick code family, I created a
risk:tool:software node and linked it to an it:prod:soft node to represent it in Synapse:

The it:prod:soft node documents Carrotstick as a type of software, while the
risk:tool:software node (linked to it:prod:soft through the risk:tool:software:soft
property), shows that Carrotstick is a tool associated with malicious activity. I can use
additional forms within Synapse to track further details, like versioning information
(it:prod:softver) and associated techniques (ou:technique) as well.

After creating risk:tool:software and it:prod:soft nodes to represent Carrotstick at a
high level, I tagged the file:bytes nodes representing Carrotstick samples and their
associated hash:sha256, hash:sha1, and hash:md5 nodes with #cno.code.carrotstick to
keep track of them. At this point, I have both higher level details about Carrotstick reflected in
Synapse, as well as actual samples of the code family.

You can review this data in the Vertex Intel-Sharing Instance (register here for access). In the
TLP-Green view, query risk:tool:software:soft:name=carrotstick to lift the
risk:tool:software node representing the Carrotstick backdoor. You can then use the
Explore button to pivot to the associated syn:tag nodes (and then again from there, to view
all nodes with the #cno.code.carrotstick tag), as shown below:

https://www.elastic.co/security-labs/dipping-into-danger
https://vertex.link/_images/risktool_itprodsoft_carrotstick.webp
https://optic.intel-sharing.vertex.link/
https://vertex.link/intel-sharing
https://synapse.docs.vertex.link/projects/optic/en/latest/user_interface/userguides/quick_tour.html#explore-button-breadcrumbs


5/5

Alternatively, you can query #cno.code.carrotstick to lift the tagged nodes directly.

Categorizing with Code Families

Within The Vertex Project, we create code families to allow for greater granularity and
precision in identifying software by doing so at the code level. Using code families to
categorize software allows us to deconstruct a tool down to the anchor function(s), or key
components representing the code family. As noted in this blog, there are multiple
approaches that teams may take when it comes to identifying anchor functions and creating
code families, from those that offer higher fidelity but are more resource intensive, to those
that require fewer resources but a greater risk of false positives. As always, we encourage
teams to choose the approach that is most appropriate for their use case.

In a following blog, we'll discuss Software Suites and Software Ecosystems, as well as walk
through creating a Software Ecosystem to track indicators associated with our Carrotstick
backdoor.

https://vertex.link/_images/carrotstick.gif

