[BabbleLoader] A Deep Dive into EDR and Machine
Learning-Based Endpoint Protection Evasion

D 0x0d4y.blog/babbleloader-deep-dive-into-edr-and-machine-learning-based-endpoint-protection-evasion/

January 27, 2025

2101311

Every now and then, some group innovates the Malware market, and it seems that the
BabbleLoader developers are willing to do this, but not by discovering new evasion
techniques, but rather by knowing how to use them to evade detection products that contain
Machine Learning (Al).

R DY T 1Y o P O T

1/45

https://0x0d4y.blog/babbleloader-deep-dive-into-edr-and-machine-learning-based-endpoint-protection-evasion/

This research will cover the following topics:

o Threat Intelligence information (up to the time of publication of this research),
that is, which Malware is responsible for delivering this Loader, and which family
of Malware it is loading into memory;

o Analysis of how BabbleLoader implements a certain technique, with the purpose
of Evading Endpoint Protection Software with Machine Learning (Al);

e Analysis of String Decryption and Hashing Algorithm;

o Analysis of Techniques to Evade Endpoint Detection and Response Software
Hooks;

e Yara Rules for BabbleLoader.

Below is the SHA256 of the sample that will be analyzed in this research.
{
"SHA256": "a08db4c7b7bacc2bacdle9afac7fbb91306bf83c279582f5ac3570a90e8b0f87"
}
First, let’s try to understand who might be handing out BabbleLoader out there!

Threat Intelligence Information — Possible Attributions to Threat
Actors

During the intelligence gathering process on the BabbleLoader threat, it was identified that
the samples (SHA256 above) were delivered to victims through a C&C infrastructure, which
is also used by the operators of Amadey. On Unpac.me, you can see Intelligence sources
that indicate URLs where this sample was delivered.

2/45

https://malpedia.caad.fkie.fraunhofer.de/details/win.amadey
https://www.unpac.me/

B¢ Sourcelntel (6)

Sourcelntel
1112/2024
0&0a12

Sourcelntel
21/10/2024
01:03:07

Sourcelntel
20/10/2024
233215

Sourcelntel
20/10/2024
231845

~

Type
Sample
URL

Type
Sample
URL

Type
Sample
URL

Type
Sample

URL

OSINT

al8db4c7b7bacc2bacd1e9a0acTibb91306bf33c27958215aC3570a00e8b0fE7

Q, % http//185.215.113.209/inc/major.exe

OSINT

a08db4c7b7bacc2bacd1e9a0acTfbb91306bf33c279582f5ac3570a00e8b0Ofa7

0, % hitpr//185.215.112.19/ing/major.exe

OSINT

a08db4cTb7bhacc?bacd1e920ac7tbbo 130608302 795821530357 0a00e80 02T

Q%" httpe//185.215.113.16/inc/major.exe

OSINT

a02db4cTb7bacc?bacd1e9a0ac7tbb91306bf83c27958215303570a90e8b 037

Q. %" http//183.215.113.117/inc/major exe

Below, we can see the output of VirusTotal’s IP Address analysis (185[.]215[.]113[.]117),
which allows us to identify the country (Seychelles) which is located in East Africa, and the
Autonomous System being identified by ID 51381 and named 1337team Limited.

3/45

https://www.virustotal.com/gui/ip-address/185.215.113.117
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)

 Reanalyze = Similar~~ 3I Graph b API

185.215.113.117 (185.215.113.0/24)
AS 51381 (1337team Limited) L~ 1day ago

DETECTION DETAILS RELATIONS COMMUNITY 5

Join our Community and enjoy additional community insights and crowdsourced detections, plus an AP1 key to automate checks.

Basic Properties

Network 185.215.113.0/24
Autonomous System Number 51381
Autonomous System Label 1337team Limited
Regional Internet Registry AFRINIC

Country sC

Continent AF

Continuing with the analysis of this IP address in VirusTotal, it is possible to observe several
samples identified as malicious by VirusTotal, which carry out communications with this same
IP address.

(" Reanalyze = Similar~~ 3% Graph 40 API

185.215.113.117 (185.215.113.0/24)
A5 51381 (133Tteam Limited) .~ 1dayago

DETECTION DETAILS RELATIONS COMMUNITY 5

Join our Community and enjoy additional community insights and crowdsourced detections, plus an API key to automate checks.

Passive DNS Replication (1)

Date resolved Detections Resolver Domain
2019-12-05 /94 VirusTotal cyberazm.com

Communicating Files (214) ©

Scanned Detections Type Name

2024-09-05 Win32 EXE axplong.exe

2024-12-14 /T2 Win32 EXE 0101f323abf85270227751271281dBb62c693f0985b695706fbdddacEEb2dedc. exe
2024-10-07 Win32 EXE axplong.exe

2024-09-14 Win32 EXE anplong.exe

2024-05-04 ! Win32 EXE chrosha.exe

2024-09-17 Win32 EXE axplong.exe

2024-02-28 Win32 EXE Fearsomely.exe

2025-01-09 Win32 EXE 0cT1347853e518989a 105df26/6c7d0f39c2e4aBic977blabaddeS26eabeh2 73.exe
2025-01-06 Win32 EXE 0fa7320f3bfT7cf1b99b1a3cc08T9707d594dbef26aac36a3b001381 2a53T0Te.exe
2024-09-07 Win32 EXE axplong.exe

When analyzing one of these samples, we identified that it was a sample from Amadey.

Through Unpac.me, it was possible to create a visualization where we can observe the
attribution of several samples, containing (almost all) the same Imphash and assigning them
the same signature of the Amadey family, having as C&C |IP address the same |IP address
that delivers BabbleLoader. This Pivot view | built is available on Unpac.me.

https://cloud.google.com/blog/topics/threat-intelligence/tracking-malware-import-hashing/
https://pivot.unpac.me/?graph=ec84279c-cdce-4fd7-9da1-900aa3a7693d

TR Tl

H
(=
ﬁ%%ﬁ
&
7 | ",
A TEFERRE R RN
=P
o
P
e e——

5/45

categorized as malicious and Amadey campaigns attributed to this infrastructure are being

Through ThreatFox, it is possible to observe that the Autonomus System has been
monitored.

https://threatfox.abuse.ch/browse/tag/AS51381/

Database Entry

[1ag:
First seen: 2024-08-12 08:53:22 UTC
Last seen: 2024-11-12 01:30:02 UTC
Sightings: 18
. # of10Cs

3

1

0
2024-08-12 2024-08-19 2024-08-27 2024-09-01 2024-09-12 2024-10-02 2024-10-26 2024-11-09 2024-11-10 2024-11-12

Indicators Of Compromise

The table below shows all indicators of compromise (I0Cs) that are associated with this particulare tag (max 1000).

Show 50 ¢ entries Search:

Date (UTC) 1 1oc Malware Tags Reporter
2024-11-12 06:08:53 [D http://185.215.113.202/Zu7JuNko/L... [it Amadey | [1337TEAM LIMITED | | As51381] £ antiphishorg
2024-11-10 15:28:53 D http://185.215.113.209/Fru7Nk9/Log... ([T [12377EAM LIMITED | | Ass1381] £ antiphishorg
2024-11-10 12:20:01 [http://185.215.113.209/Fru7Nk9/ind... [% Amadey [As51381 | <2 | ELITETEAM-PEERING-AZ1] 8 DonPasci
2024-11-10 04:02:25 [0 185-215-113-209.cprapid.com [5% Amadey [As51381 | c2 Jcensys | ELITETEAM-PEERING-AZ1 | payloads] 8 DonPasci
2024-11-09 00:03:31 [185.215.113.209:80 & Amadey [As51381] 2 Jcensys | eLimeTeAm-PeERING-AZ1 | panel] 8 DonPasci

And finally, through Shodan, we can identify that another IP address that is part of the same
Autonomous System 1337TEAM LIMITED, is located in Russia.

185.215.113.66

§ o le s - : CpsnhiapTies 16 MagiTior & OpanSirepiiag cootiouson
e | LAST SEEN: 2025-01-1
@& General Information #5 Open Ports
Courtry Russian Federation “ N
City Moscaw
Organization 1237TEAM LIMITED o
5P 1337TEAM LIMITED
ASN Ass1381
Operating System Ubuntu

With the information obtained during the analysis above, it is possible to state that
BabbleLoader being delivered by Amadey, and having its infrastructure attributed to this
malware family, we can state that BabbleLoader has its origins in Russian Threat Actors.

Reverse Engineering BabbleLoader’s Evasion Capabilities

Starting in this section, we will look at BabbleLoader’s Defense Evasion capabilities.

6/45

https://www.shodan.io/host/185.215.113.66

storage

&

When we used Capa to collect screening information from the sample, a large number of
capabilities were identified that matched the Capa rules, producing the image below, which
allows us to observe the following capabilities:

» Use of XOR operations for possible decoding of data, or strings;
e Parsing PE files;
o Stack Strings, possibly encrypted.

And believe me, the vast majority of the capabilities not mentioned above and present in the
image come from BabbleLoader’s ability to contain a large amount of Junk Code, with
several meaningless flows, unused strings, and which have the purpose of making it difficult
for researchers or Endpoint Protection Software based on Machine Learning to analyze.

Anti-Analysis Techniques — The Diabolical use of junk code

7/45

The big innovation in the development of this sample seems to be the ability of each sample
to have partially unique Junk Code blocks, according to Intezer’s post.

This is quite impressive, as it means that protections based on Machine Learning, that is, on
learning the behavior of a given threat, can be evaded by the difference in the behavior
pattern of Junk Codes. Below, it is possible to see strings that will never be used, and that
(according to the Intezer post) are partially unique for each sample.

I\\Patricians\\Occupants
\Biblically\\Motet\\Foolhardily\\Quadrangles\\Farrago
Betrayals\\Closeted\\Impeding\‘\Swaggered\\carnivorous

leptomaniacs'\Numerological
irches\\Interventionism\‘\Saddlebags\\Perpendicular\\Positiveness

\Funny\\Alligators

\Used\\brittle\\Teasing\\varying

fleshier\\Motive\\crustacean\\Rants\\Hindered

\Arbouri\Headlights

\Theta\\swathes\\Divulges\\Earphone

14818e2d8 & I estilential\\incumbents\\Recovered\\trireme\\schooner

14818e318 A I Unexpressedi\\Unpersuasive\\moderated
sharpness\\overvalue\\adversaries
\Hatreds\\coldwar\\Expediency\\protect\\Suspenders
relicts\\apparatuses\\Gushes\\Streaked
nappreciated\\mutts
Jlaughingly\\Gravitation\\froggy\\sphincters\\Displeased
\wtroublemakeri\skilfully\\loaves'\Relax
Falsification\\sue\\Carvers
ymispositioned\\dole\\Rolled
Spittledi\Windication\\bashes\\Multimillion
\marooningihurethra\icloister
thrombus\\flaccidity\\Affix\\davinci
swarthiest\\Accreted\\cannabis\\Unproductive\\stargazer
heat\\fifes\\propriety\\sultans\\Fondling
i\ A\ forwardness\\Atomically\\Cheroot

Another major impact of this capability is the difficulty researchers have in performing
analyses on their samples. Below, we can see that IDA Freeware was unable to produce a
pseudocode for the ‘main‘ function, identified after prior analysis by IDA.

8/45

https://intezer.com/blog/research/babble-babble-babble-babble-babble-babble-babbleloader/

O Warning >

Decompilation failure:
| 1400084B0: too big function

Please refer to the manual to find appropriate actions

And even using only the IDA Freeware Disassembler, some nodes are not resolved, making
it difficult to understand what is happening, as we can see below.

J 1
® s =
jmp loc_l4@81358F
| J
EXTE = }
52 JItnis node 15 too big e display|
]
® 5 =
cmp [rsp+1FF48h+var_15E5@], 181Ch
Jjz short loc_l4816BESL
[
L1 ¥ ¥
=
® 5= ® & [® & [
jmp loc_14816BFBE
loc_14816BESL: 3 hThread loc_ 14816BEF8:
mow rex, [rsprlFFd8h+var 159C8] mow rax, cs:qword l14819EEES
call cs:ResumeThread movsx eax, byte ptr [rax]
mov [rsp+1FF48h+var_ 165347, eax mov rex, [rsprlFF48h+var_13878]
mov rax, [rsp+rlFF48h+var_3B7@] movsx® ecx, byte ptr [reox]
mov ecx, [rsprlFF48h+var 1BC74] sub eax, ecx
mow eax, [rax] mow byte ptr [rsp+1FF48h+var 1F6D8.hEvent+1], al
add 2AX, BCX
mov [rsp+1FF48h+var_1858C], eax
moy r8d, @ash ; n5ize
lea rdx, [rsp+lFF48h+Buffer] ; lpBuffer
lea rox, Mame ; "underwood Morning Insteps"
=11 e et Erud memmantidzaed skhlan

Binary Ninja also has difficulty analyzing the same functions, however, it is possible to force
the analysis and have the code content through the Disassembler and Decompiler
available.

Baas4ba main()
This function is too large to analyze. F ' tion (this may take a while).

14
A

Loading. ..

To understand the level of some of the Junk Code put in the sample, below is the macro view
of the Main function, in which it is practically useless, as nothing happens most of the time,
just a large flow of meaningless operations.

9/45

uint6d4_t main()

10/45

String Decryption, NtDLL Analysis and Manual Collection of API
Function Addresses

Basically, from the beginning, BabbleLoader implements a long looping Junk Code stream.
This long stream basically consists of moving data to some addresses in memory, and
performing XOR operations where the results will always be zero. Below, you can see an
example of this Junk Code flow.

dword [rsp
dword [rsp
dword [rsp
dword |[rsp+E
eax, Bx37
word [rsp+
dword [rsp
byte [rsp+
dword [rsp
dword [rsp
dword [rsp
eax, Bxd17
word |rsp+
byte [rsp+
dword [rsp
dword [rsp
eax, Hx5lc
word |
eax, B

word |[rsp+Bxa’e
byte [rsp+
byte [rsp+
dword [rsp

word
eax, Bx2fe
word [rsp

Above we can see a large sequence of MOVs to a specific address, which will never be
used, and below we can see the sequence of MOVs followed by an XOR operation in which
the result will always be zero. Basically this is the Junk Code pattern present in this
BabbleLoader sample.

11/45

MoV eax, dword [rax]
shl eax, cl

mow dword [rsp+

mov rax, gword [rsp
mov eax, dword [rax]
mov x, qword [rs
mov gword [rsp+

, al

mov rax, gword [rsp+é
mow eax, dword [rax]
sar eax, cl

movZX ecx

mow dword [rsp+

mov rax, gqword

mov rcx, qword

mov ecx, dword

mov eax, dword

XOor ecx

mow rcx, qword [rsp+8xa3b8]
mow dword [rcx], eax
MoV SX eax, byte [rsp+
movVSX ecx [rsp+@
or

moy

Below you can see one of the implemented loops, which do not perform any operations,
other than the pattern mentioned above.

12/45

After this sequence of Junk Codes, BabbleLoader finally begins its true execution, through
the two functions highlighted below.

13/45

, lpBuffer: Earg_1f738, nSi

Useful Code

eA(lpFileName: "C: eshier\Motive\crustacean\Ra.", High: &lpFileSizeHigh_1

— Useful Code

The first function has the following pattern:

Declaration of an array (implemented via Stack String) with encoded bytes;
Decode of the array bytes, through an XOR operation, using the initial XOR key
0x375b879a;

Collection of the Handle of the name of the DLL discovered after the decode above;
Manual PE Parsing.

In the Decompiler below, it is possible to observe the flow mentioned in a summarized
manner above.

14/45

sub_1488817b8(*% argl)

[¥=]

lpModuleName = Bx23

m

=T« N

<+—— Encrypted String

Jd

o =0

var_44 = Bx375b879a 44— X OR Key
var_48 = @
% var_38 = &lpModuleName

[e VI T - I I = =y = T o B Y o TR = =
=

=
m @D & W

while (sx.q(var_48) u< 8xa)
var_38[sx.qg(var_48)] = ror.b(var_38[sx.q(var_48)] *» var_44.b, var_44.b)
var_44 *= Bxdf
var_48 += 1

W W ®

el I e T I [S e e [i |
[g 5

=
[*1}

HMODULE rax_8 = GetModuleHandleA(&lpModuleName) T

if (rax_8 == A8)
return @

String Decryption
if (zx.d(rax_8->unused.w) !'= Bx5a4dd) XOR Algonthm

return @
* rex_5 = rax_8 + sx.q(rax_8->__offset(B8x3c).d)

if (#*rcx_5 !'= Bx4558)
return @
* rex_8 = rax_8 + zx.g(*({rcx_5 + BxB8))
if (rcx_8 == 8) B I PE ParSIrlg

return @

arg1[4] = rax_8

arg1[3].d = *(rcx_8 + 8x18)

arg1[1] = rax_8 + zx.q(#*(rcx_8 + Bx28))
argl = rax_8 + zx.q((rcx_8 + Bxl1c))
arg1[2] = rax_8 + zx.q(*(rcx_8 + Bx24))

if (arg1[4] '= 8 && arg1[3].d '= 8 && arg1[1] !'= 8 && *argl !'= 8 && argl1[2] != 8)
return 1

return @

| made a diagram, with the aim of improving understanding of the string decode algorithm
through an XOR operation, with a change in the XOR key each turn of the loop, multiplying
the XOR key by 0x4f. That is, each byte in the encoded array is decoded using a different
key.

;i

Add 1 to
Counter

Counter is
less than
Oxa?

Y

Multiply the XOR
key by Ox4f

Decoded
Byte Array

Yes
\J
Current
XOR Key
Encoded
Byte Array '

A

| implemented this simple algorithm in Python to get the decoded string. Below is my

implementation of the algorithm in Python.

16/45

def rorb(value, shift, bits=8):
shift %= bits
return ((value >> shift) | (value << (bits - shift))) & ((1 << bits) - 1)

def str_decryption(encrypted_data, xor_key):

str_decrypted = []

for 1 in range(len(encrypted_data)):
raw_encrypted_data = encrypted_data[i] N (xor_key & OXFF)
rorb_encrypted_data = rorb(raw_encrypted_data, xor_key & OxFF, bits=8)
str_decrypted.append(rorb_encrypted_data)
xor_key = (xor_key * Ox4F) & OXFFFFFFFF

return str_decrypted

encrypted_data_array = [0x23, 0x9b, Oxcb, 0xdd, Oxab, 0x8d, 0x4b, 0x5d, 0x2b, 0x86]
xor_key = 0x375b879a

str_decrypted = str_decryption(encrypted_data_array, xor_key)
decrypted_string = ''.join(chr(byte) for byte in str_decrypted)
print("\nString Decrypted:", decrypted_string)

When executed, the script output returned the string ntdll.dll.

Now let's move on to the second part of the function. So that we don't have to ask you to
upload it, review it and memorize it, and much less have to put the print here again, below is
the second half of the pseudocode of the function we are currently analyzing
(sub_1400017b0). Let's analyze it next.

17/45

HMODULE rax_8 = GetModuleHandleA(&lpModuleName);

if (rax_8 == 0)
return 0;

if (zx.d(rax_8->unused.w) != 0x5a4d)
return 0,

void* rcx_5 = rax_8 + sx.q(rax_8->_ offset(0x3c).d);

if (*rcx_5 !'= 0x4550)
return 0;

void* rcx_8 = rax_8 + zx.q(*(rcx_5 + 0x88));

if (rcx_8 == 0)
return 0;

argl[4] = rax_8;

argl[3].d = *(rcx_8 + 0x18);

argl[1] = rax_8 + zx.q(*(rcx_8 + 0x20));
argl = rax_8 + zx.q((rcx_8 + 0x1c));
argl[2] = rax_8 + zx.q(*(rcx_8 + 0x24));

if (argl[4] != 0 && argl[3].d != 0 && argl[1l] != 0 && *argl != 0 && argil[2] != 0)
return 1,

The second half of the sub_1400017b0 function performs the NtDLL parsing process and
stores some information in a specific Struct in memory, which will be used later. First, the
function clearly identifies the presence of the DOS Header and the NT Header, manually
accessing the _IMAGE_DOS_HEADER and _IMAGE_NT_HEADERSG64 structures, in
addition to other structures that we will observe in detail. Due to the compilation,
disassemble and decompiling process, these structures can get lost and result in code that is
initially confusing at first. But just follow the process of adding addresses, as we will do next.

Below we can see the result of accessing the MZ Header and PE Header, identified by
accessing the first DIWORD 0x5a4d (MZ2) at the beginning of the NfDLL obtained by the
GetModuleHandleA API, which collected a Handle (the memory address) of the N{DLL,
followed by the information that is present 0x3c bytes from the offset where we collected the
MZ Header (0x5a4d). 0x3c bytes after the MZ Header, we collected the address for the PE
Header, which is at address 0xe8.

18/45

https://www.vergiliusproject.com/kernels/x64/windows-7/rtm/_IMAGE_DOS_HEADER
https://www.vergiliusproject.com/kernels/x64/windows-7/rtm/_IMAGE_NT_HEADERS64
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea

Disasm General Strings ~ DOSHdr RichHdr File Hdr

Offset Mame Value
ID Magic number 5840 I
2 Bytes on last page of file 90

4 Pagesin file 3

] Relocations 0

] Size of header in paragraphs 4

L Minirmum extra paragraphs needed 0

C Maximum extra paragraphs needed FFFF

E Initial (relative) 55 value 0

10 Initial 5P value B2

12 Checksum 0

14 Initial [P value 0

16 Initial (relative) C5 wvalue 0

13 File address of relocation table 40

1A Overlay number 0

1C Resenved words[4] 0,000
24 QEM identifier (for QEM information) 0

26 OEM information; OEM identifier specific 0

28 Reserved words[10] 0,0,0,0000000
l2C File address of new exe header B8 |

Below we can validate exactly the flow of the pseudocode logic of this second half of the
sub_1400017b0 function, where we can observe exactly where the PE Header is located.

0 1.2 3 4 5 6 7 8 %9 ABCDEF

0123456789 ABCDETF

50 45 00 00 |ew

00 00 00 FO
00 €2 0D 00 00 00 00 00 10 00 00
00 00 00 80 01 00 00 00 02 00 00

OR 00 00 00 OR OO0 00 OO0 OAR 00 00 00 00 OO0 00 00

14 00 SA 11 00

138 00 20 1F 00 00 04 00 OO 1F 00 03 00 €0 41
148 0 00 04 0D 00 QOO0 OO OO0 OO 10 OO0 OO0 OO0 OO 0O OO
158 00 10 00 00 00 OO0 OO0 OO0 10 OO0 OO0 OO0 OO0 00 OO0
168 0ONOD OO0 DO 10 00 OO0 OO B0 21 15 00 E1 2E 01 00
178 00 {0 00 00 00 Q0 OO0 OO OO0 €0 18 00 08 05 07 OO0
pA-1:) oo 2 7 00 D8 E4 00 00 00 BA 1E 00 40 €C 00 00
138 00 TOWF 00 48 05 00 00 30 €5 12 00 70 00 00 00
1A8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Disasm General Strings DOS Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs ™ Exports
Offset Name Value

] Magic number 344D

2 Bytes on last pag 90

4 Pages in file 3

6 Relocations 0

8 Size of header in parackaphs 4

A Minimum extra paragraghs needed 0

C Maximum extra paragra FFFF

E Initial (relative) 55 value 0

10 Initial SP value B8

12 Checksum 0

14 Initial IP value 0

16 Initial (relative) C5 value 0

18 File address of relocation table 40

14 Overlay number 0

1C Reserved words[4] 0,000

24 OEM identifier (for OEM information) 0

26 OEM information; OEM identifier specific 0

28 Reserved words[10] 0,0,0,0000000
3C File address of new exe header E8

™ Resources

= Exception

& Security

BaseReloc

19/45

After validating the existence of the PE and MZ headers, the function will continue its NtDLL
Parsing process, this time collecting the VirtualAddress object that is inside the
IMAGE_DATA_DIRECTORY structure, through the _IMAGE_OPTIONAL_HEADERG64
structure. The VirtualAddress object returns a DWORD that is the address of the NtDLL
Exports Table, that is, the list of APIs. This entire process can be observed in the
pseudocode, through the operation rex_5 + 0x88, where rcx_5 is equal to the address of the
PE header, that is, the real operation is 0xe8 + 0x88 which results in 0x170, which is the
exact address of the VirtualAddress, represented in the image below by PE-Bear as Export
Directory.

20/45

https://www.vergiliusproject.com/kernels/x64/windows-8/rtm/_IMAGE_DATA_DIRECTORY
https://www.vergiliusproject.com/kernels/x64/windows-8/rtm/_IMAGE_OPTIONAL_HEADER64

D1 2 3 4 5 & 7T 8 % A B CDE F
00 00 00 00 4B BC 8F €8 00 00 00 0O CO 280 15 0O
08 00 00 00 83 09 00 OO0 282 0% 00 OO0 B8 21 15 0O
B4 47 15 00 BC €D 15 00 10 FB 07 00 40 02 04 0O
70 10 04 00 BO 10 04 00 EO 07 OE 00 30 17 07 00
10 08 OE 00 30 08 0E 00 €0 14 07 00 20 14 07 00
&0 0A 01 00 80 €3 0B 00 CO 13 07 00 20 4D 08 00

00 €2 08 00 40 €2 07 00 40 &3 08 00 &0 &3 08 00
E0 €1 07 00 AD 7E 07 00 70 R& 0& 00 50 8D 00 0O
00 8D 00 00 50 B8 00 OO0 40 8B 00 00 50 8C 00 0O

80 B4 OC 00 AD B9 00 00 20 SE 00 00 70 8% 00 0O
BO B4 0OC 00 BO 47 0B 00 30 53 0D 00 DO B4 OC 0O
20 10 On 00 CO 1R 05 00 50 14 05 00 70 08 OE 0O
CO 08 OE 00 10 09 0E 00 20 0% 0E 00 DO C5 0OC 00

Dizasm: rdata General Strings DOSHdr RichHdr FileHdr | Optional Hdr | Section Hdrs W Exports
Offset Mame Value Value
124 05 Ver. (Minor) 0
12C Image Ver, (Major) A
12E Image Ver, (Minor) 0
130 Subsystermn Ver. (Major) A
132 Subsystem Ver. Minor) 0
134 Win32 Version Value 0
133 Size of Image 1FE000
13C Size of Headers 400
140 Checksum 1R CCD
144 Subsystem 3 Windows console
M 146 DLL Characteristics 4160
20 Image can handle a high entropy 84-bit virtual address space
40 DLL can move
100 Image is NX compatible
4000 Guard CF
142 Size of Stack Reserve 40000
150 Size of Stack Commit 1000
158 Size of Heap Reserve 100000
160 Size of Heap Commit 1000
168 Loader Flags 0
16C Mumber of RVAs and Sizes
Data Directory
12EE1
0
70508
E4D8
RCAN

Upon reaching the NtDLL Export Table, the function will collect some information that will be
stored in memory and used later as its own structure. This information is collected from the
sequence of calculations present at the end of the function, and illustrated in the following
image.

21/45

o1 2 3 4 5§ 6 7T &8 % A B C D E F

14EF8S0 00 00 00 00 4B Q0 00 CO 80 15 00
14EF90 03 00 00 00 83 0% 00 00 &5 21 15 00
14EFA0 B4 47 15 00 BC 07 00 40 02 04 00
14EFBO 70 10 04 00 BO 07 0E 00 20 17 07 00
14EFCO E 00 30 E €0 14 07 00 20 14 07 00
14EFDO 00 80 3 CO 12 07 00 20 4D 08 00
14EFEQ 00 40 €2 07 00 40 €3 £2 02 00
14EFFQ 00 A0 TE 07 00 70 A& 8D 00 00
14F000 00 3D 00 00 50 38 8B 8C 00 00
14F010 S0 B4 OC 00 RO 89 BE 8% 00 00
14F020 BO B4 OC 00 BO 53 B4 OC 00
14F030 20 10 0R 00 CO 14 0 0 08 OE 00
14F040 CO 08 0E 00 10 20 09 OF C5 0C 00

Disasm: .rdata General Strings DOS Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs W Exports
-

Offset Mame Walue Meaning

14EF20 Characteristics 0

14EF24 ReproChecksum BESFACAR

14EF22 MajorVersion 0

14EF2A MinorVersion 0

14EF8C Mame 1580C0 ntdll.dll

14EFS0 Base 8

14EF%4 MumberOfFunctions 433

14EF98 NurnberOfMames 982 |- 0x14ef80 + 0x18
14EFSC AddressOfFunctions 152148 [Ox14ef80 + Ox1c
14EFAD AddressOfNames 154784 |-l Ox14ef80 + 0x20
14EFAA AddressOfNameOrdinals 15605 C |t Ox 1480 + Ox24

The structure that BabbleLoader assembles with this information contains information
regarding the NtDLL Handle and information regarding the Functions (APIs) of the N{DLL
Export Table. Below is a prototype of the structure.

struct _BabbleLoader_NtDLL_Parse

{
DWORD** NtDLL_AddressOfFuntions;
DWORD* NtDLL_AddressOfNames;
DWORD* NtDLL_AddressOfNamesOrdinals;
DWORD* NtDLL_NumberOfNames;
HMODULE* NtDLL_Handler;

Iy

With all this information, we can restructure the pseudocode so that it more faithfully
represents the way the developer implemented this function.

22/45

A Custom Hash Algorithm Implementation

Now that we have analyzed and understood the purpose of this function, let's move on to the
next function, which receives as an argument the NtDLL structure that BabbleLoader creates
with information regarding the NtDLL Export Table.

if (babbleloader_ntdll_load({&ntdll_module)} == 8)
breakpoint

if (sx.d{arg314) + sx.d(*data_l14B81aBc48) != sx.d(arg49) << *arg2B98)
ConvertDefaultLocale(Locale: Bx55)
*arg2523 argd7vy
*data_14B19f188 = (zx.d(*data_14819fcfB) s>> arg287).b

((zx.d(*arg1413) * zx.d(*arg1583)) s> (zx.d(*data_14B819e8a8) & zx.d(arg378)))
if (argl4 != Bx95)
*argZ488 = arg_3898 *argl1588
else if (sx.d(argl173) + sx.d(argl9) s> sx.d(*arg2e7e) sx.d(*arg2584))
*argZ2668 + arg932
*arg2368 = arg686 arglase
GetCompressedFileSizeA(
lpFileName: "C:\fleshier\Motive\crustacean\Ra.
1pFileSizeHigh: &lpFileSizeHigh_1)

(sub_1488819b8(&ntdll_module, &arg_1fdbB) == @)
breakpoint

When we enter the sub_1400019b0 function, we can identify that there are seven calls to
the sub_140001080 function, which receives four arguments, the first being Hashes of
possible NfDLL APIs, and the second argument being a pointer to the previously created
structure.

* argz?)
f (sub_148688 X 3] ntdll_module, arg2 , B) == 8)

return 8

f (sub_1488818 8| ntdll_module, arg2 , 8) == 8)
return 8
ntdll_module, argZ + @ , 8) == 8)
-

f (sub_14888 (1d253| ntdll_module, arg2 + , B) == B)
return @

return 8

(sub_148 ; 8] ntdll_module, arg2 + , 8) == 8)

return B

f (sub_14888 abted| ntdll_module, arg2 + 8x158, 1) == 8)
return 8

f (sub_148 5 1a488| ntdll_module, arg2 + Bx168, 1) != 8)
return

return 8

When we enter the sub_140001080 function, we can see that it is long and possibly
performs some type of manipulation on structures and APls manually, similar to what we saw
in the analysis of the NtDLL export table collection function.

24/45

t32_t argl,

Babbleloader_MNtDLL_Parse* ntdll_module, int3

int3Z_t arg4)

25/45

With the help of the structure we identified and created previously, it is possible to quickly
identify that this first part of the sub_140001080 function creates a for loop through the entire
NtDLL Export Table, and checks to identify whether the name of the API currently collected is
equal to the Hash placed as an argument, through the sub_140001010 function.

sub_148881888(api_hash, BabblelLoader_WtDLL_Parse* ntdll_module,

if (ntdll_module->NtDLL_Handler == @)
return @

f (zx.g(api_hash) == 8)
return 8

arg3[1] = api_hash

for | i=8; 1ius=
rax_11 =
ntdll_module-=>NtDLL_Add
6 = zx.g(*(ntdll_module :
*(ntdll_module->NtDLL_Ad I 2 ina (1 << 1)}) << 2)))
11_module->NtDLL_Handler
*(arg3 + 8) = rax_16

g3 + 8) !=18 .q({arg3[1]) !'= 8)
return 1

return 8

When we enter the sub_140001010 function, we can identify that it is a custom hash
algorithm.

uint64_t sub_14

arg_8 = argl

t rax_2 = sx.d(*arg_8)
arg_8 = &arg_8[1]

if (rax_2 == 8)
break

var_18 = (var_18 + rax_2) #

return zx.q(var_18)

The Python implementation of this custom hash algorithm is as follows.

26/45

def calculate_api_hash(api_name: str) -> str:
final _hash = 0
for char in api_name:
char_orded = ord(char)
final_hash = (final_hash + char_orded) * (char_orded + 0x4af1e366)
final _hash &= OXFFFFFFFF

return hex(final_hash)

So, understanding that BabbleLoader at this stage is doing a for loop through the entire
export table, collecting the name of each API and submitting it to its custom hash algorithm,
and checking if the hash of the currently collected and submitted APl matches the one it is
looking for, | did the same thing through Python scripts. First, | extracted all the APIs from
NtDLL and dumped them into a file, using the Python script below.

27/45

import pefile

def list_exported_apis(dll_path, output_file):
try:
pe = pefile.PE(d1ll_path)

if not hasattr(pe, 'DIRECTORY_ENTRY_EXPORT'):
print("The DLL does not have an export table.")
return

with open(output_file, 'w') as f:
f.write(f"Exported APIs from DLL '{dll path}':\n")
print(f"Exported APIs from DLL '{dll path}':")

for export in pe.DIRECTORY_ENTRY_EXPORT.symbols:

if export.name:
api_name = export.name.decode('utf-8")
f.write(f"{api_name}\n")
print(api_name)

else:
unnamed_api = f"Unnamed API (ordinal: {export.ordinal})"
f.write(f"{unnamed_api}\n")
print(unnamed_api)

print(f"\nThe API names have been saved to the file: {output_file}")

except FileNotFoundError:

print(f"File '{dll_path}' not found.™")
except pefile.PEFormatError:

print(f"The file '{dll_path}' is not a valid DLL or is corrupted.")
except Exception as e:

print(f"An error occurred: {e}")

if __name__ == "__main__":
dll path = r"C:\\Windows\\System32\\ntdll.d1l1l"
output_file = "api_hashes.txt"
list_exported_apis(dll_path, output_file)

After that, | created another Python script to read each API from the file, subjected the API to
the hashing algorithm | implemented in Python, and concatenated all the results into a single

file.

28/45

import chardet

def calculate_api_hash(api_name: str) -> str:
final _hash = 0
for char in api_name:
char_orded = ord(char)
final_hash = (final_hash + char_orded) * (char_orded + 0x4afl1e366)
final_hash &= OXFFFFFFFF

return hex(final_hash)

def process_api_list_hashing(input_file: str, output_file: str) -> None:
try:
with open(input_file, 'rb') as infile:
raw_data = infile.read()
detected = chardet.detect(raw_data)
encoding detected['encoding']

if not encoding:
raise ValueError("Could not detect the file encoding.")

with open(input_file, 'r', encoding=encoding) as infile:
api_list = [line.strip() for line in infile if line.strip()]

results = [f"'{api}': {calculate_api_hash(api)}" for api in api_list]

with open(output_file, 'w', encoding='utf-8') as outfile:
outfile.write('\n'.join(results) + '\n')

print(f"Hashes calculated and saved to: {output_file}")
except FileNotFoundError:
print(f"Error: File {input_file} not found.")
except Exception as e:
print(f"Unexpected error: {e}")
if __name_ == "__main__ ":
input_file = "C:\\Users\\0x0d4y\\Desktop\\ntdll_exports.txt"
output_file = "C:\\Users\\0x0d4y\\Desktop\\api_hashes.txt"

process_api_list_hashing(input_file, output_file)

Below is the initial piece of the created file, containing the '"API_Name': Hash.

29/45

api_hashes.txt

'A SHAFinal': Ox8e249b6e

'A SHAInit': Oxed57fc9e

'A SHAUpdate': 8x27b6b281
"AlpcAdjustCompletionlListConcurrencyCount': Bxac3eech®
"AMlpcFreeCompletionlListMessage’: 8x93799367
"AMlpcGetCompletionlistlLastMessageInformation”: @xbebsf7198
"AlpcGetCompletionListMessageAttributes’: ©x2a7597c4
'"AlpcGetHeaderSize': 0x642929d7
'AlpcGetMessageAttribute’: 8x496bc2f1
'AlpcGetMessageFromCompletionlist': @x1396577c
"AlpcGetOutstandingCompletionlistMessageCount': 8x94a3d368
"AlpcInitializeMessageAttribute': Bx6faBa8f1

And with a Find, | copied one of the hashes placed as arguments in the sub_1400019b0
function, and identified that this hash refers to the NtCreateSection API.

4p api_hashes.txd
‘NtLreateNamedrliperlle - UxTelcdlsl
'NtCreatePagingFile': 6x2842a3el
'NtCreatePartition': 0xf330ech8
'NtCreatePort': 0x4798d2d8
'MtCreatePrivateNamespace': Bxcd965ctl
'NtCreateProcess': 8x8830979f
'NtCreateProcessEx': Bxlef113f8
'NtCreateProfile': 8x4ac75441
'NtCreateProfileEx': 8x542f18cc
'MtCreateRegistryTransaction’: @x7ffoeBd:s
'MtCreateResourceManager': 8x2d5e8508
'NtCreateSection': SHAELL=IagE
'NtCreateSectionEx': Ax13890ea2
'NtCreateSemaphore’: Ox72+4345+
'NtCreateSymboliclinkObject': 8x24e48a8c
'NtCreateThread': Bxcd25a7d8
"NtCreateThreadEx": ©::d9221b72
"NtCreateTimer": ®xd9:81aal8
'NtCreateTimer2': O8x7i:-d93f76
'NtCreateToken": Ox4aiBe574
'NtCreateTokenEx': Bxbc528e8a

'NtCreateTransaction’: @x496tdeds

¥ Ag (= &1 ; i Find Prev Find All

[1match Tab Size: 4 Flain Text

So with this process done, the hashes that BabbleLoader resolves at runtime and collects
manually are as follows.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntcreatesection

"Ox1labec790": "NtCreateSection"
"Ox993c0058": "NtMapViewOfSection"
"0x92263458": "NtUnmapViewOfSection"
"O0x9da1d253": "NtClose"

"Ox6af3f390": "NTQuerySystemInformation"
"Oxa96ab0e4": "RtlAllocateHeap"
"Ox8a21a480": "RtlFreeHeap"

}

After this discovery, | sent a Pull Request to HashDB, and now this Hash is part of their
database, being available for HashDB Plugins for Binary Ninja, IDA and Ghidra.

Evasion of Endpoint Detection and Response Software Through
Halo's Gate

After finding the API that matches a given hash, the sub_14001080 function starts a whole
checking process, in which it is not possible to demonstrate the entire pseudocode in a
printout. Therefore, we will analyze it in parts below.

31/45

https://github.com/OALabs/hashdb/pull/63
https://github.com/OALabs/hashdb

sub_14888 3 (api_hash, Babbleloader_NtDLL_Parse* ntdll_module,

if (mtdll_module->NtDLL_Handler == @)
return @

if (zx.q(api_hash) == 8)
return @

arg3[1] api_hash

for (i=8; iu< zx.g(ntdll_module-=NtDLL_WumberOfMames.d);
* api_name =
ntdll_module-=>=NtDLL_Add + ntdll_module->NtDLL_Handler
5 = zx.q(*(ntdll
(zx.q(*(ntdl]l_module-=NtD
ntdll_module->NtDLL_Handler
rg3 + 8) = rax_15

== api_hash)

while

(=S I]

First, it is important to note how the arg3 variable is used as a custom structure, where it
collects information and stores it. For example, in the code before the hash algorithm
function call, it stores the Hash that will be tested in position arg3[1], and the address of the
API function (rax_15) in arg3 + 8. In other words, the hash would be the second position
being a DWORD, and the address of the API function would be in the next position also as a
DWORD.

32/45

arg3[1] = api_hash

for (int64_t i = 0; i u< zx.q(ntdll module->NtDLL_NumberOfNames.d); i += 1)
void* api_name =
zx.q(ntdll_module->NtDLL_AddressOfNames[i]) + ntdll_module->NtDLL_Handler
void* rax_15 = zx.q(*(ntdll_module->NtDLL_AddressOfFuntions
+ (zx.q(*(ntdll_module->NtDLL_AddressOfNamesOrdinals + (i << 1))) << 2)))

+ ntdll_module->NtDLL_Handler
*(arg3 + 8) = rax_15

After executing the hash algorithm function, if the fourth argument is different from 0, the
code checks to see if these two positions in the structure have content.

if (babbleloader_hashing_algorithm(api_name) == api_hash)
if (arg4 '= 0)
if (*(arg3 + 8) != 0 && zx.q(arg3[1]) != 0)
return 1

Going by the flow, the following code may seem confusing, with lots of calculations and

hexadecimal numbers, but it is the implementation of Halo's Gate, with the goal of evading

EDRs and other types of Endpoint Protection Softwares.

33/45

if (zx.d(*rax_15) !'= Ox4c || zx.d(*(rax_15 + 1)) != Ox8b
|| zx.d(*(rax_15 + 2)) !'= oxd1l || zx.d(*(rax_15 + 3)) !'= 0xb8 ||
zx.d(*(rax_15 + 6)) != 0 || zx.d(*(rax_15 + 7)) !'= 0)
if (zx.d(*rax_15) == 0xe9)
intl6_t var_48 1 =1

while (zx.d(var_48_1) s<= 0x1f4)
if (zx.d(*(rax_15 + sx.q(zx.d(var_48_1) * 0x20))) == 0x4c && zx.d(*
(rax_15 + sx.q(zx.d(var_48_1) * 0x20) + 1))
== Ox8b && zx.d(*(rax_15 + sx.q(zx.d(var_48_1) * 0x20) + 2)) ==
Oxd1l && zx.d(*(rax_15 + sx.q(zx.d(var_48_1) * 0x20) + 3))
== Oxb8 && zx.d(*(rax_15 + sx.q(zx.d(var_48_1) * 0x20) + 6)) ==
&& zx.d(*(rax_15 + sx.q(zx.d(var_48_1) * 0x20) + 7)) == 0)
arg3 = zx.d((rax_15 + sx.q(zx.d(var_48_1) * 0x20) + 5)) << 8 |
(zx.d(*(rax_15 + sx.q(zx.d(var_48_1) * 0x20) + 4)) - zx.d(var_48_1))
break

if (zx.d(*(rax_15 + sx.q(zx.d(var_48_1) * oxffffffe0))) == Ox4c &&
zx.d(*(rax_15 + sx.q(zx.d(var_48_1) * oxffffffed) + 1)) == 0x8b
&& zx.d(*(rax_15 + sx.q(zx.d(var_48_1) * oxffffffe0) + 2)) ==
Oxd1l && zx.d(*(rax_15 + sx.q(zx.d(var_48_1) * oxffffffed) + 3)) == 0xb8
&& zx.d(*(rax_15 + sx.q(zx.d(var_48_1) * oxffffffe0) + 6)) ==
&& zx.d(*(rax_15 + sx.q(zx.d(var_48_1) * oxffffffed) + 7)) == 0)
arg3 = zx.d((rax_15 + sx.q(zx.d(var_48_1) * oxffffffed) + 5)) << 8
| (zx.d(*(rax_15 + sx.q(zx.d(var_48_1) * oxffffffed) + 4))
+ zx.d(var_48_1))
break
var_48_1 += 1

if (zx.d(*(rax_15 + 3)) == 0xe9)
intl6é_t var_44_1 = 1

while (zx.d(var_44_1) s<= 0x1f4)
if (zx.d(*(rax_15 + sx.q(zx.d(var_44_1) * 0x20))) == 0x4c && zx.d(*

(rax_15 + sx.q(zx.d(var_44_1) * 0x20) + 1)) == 0x8b

&& zx.d(*(rax_15 + sx.q(zx.d(var_44_1) * 0x20) + 2)) 0xdl &&
zx.d(*(rax_15 + sx.q(zx.d(var_44_1) * 0x20) + 3)) == 0xb8

&& zx.d(*(rax_15 + sx.q(zx.d(var_44_1) * 0x20) + 6)) == 0 &&
zx.d(*(rax_15 + sx.q(zx.d(var_44_1) * 0x20) + 7)) == 0)

arg3 = zx.d((rax_15 + sx.q(zx.d(var_44_1) * 0x20) + 5)) << 8 |

(zx.d(*(rax_15 + sx.q(zx.d(var_44_1) * 0x20) + 4)) - zx.d(var_44_1))

break

if (zx.d(*(rax_15 + sx.q(zx.d(var_44_1) * oxffffffe0))) == 0Ox4c && zx.d(*
(rax_15 + sx.q(zx.d(var_44_1) * oxffffffeo) + 1)) == 0x8b
&& zx.d(*(rax_15 + sx.q(zx.d(var_44_1) * oxffffffe0) + 2)) ==
Oxdl && zx.d(*(rax_15 + sx.q(zx.d(var_44_1) * oxffffffed) + 3)) == 0xb8
&& zx.d(*(rax_15 + sx.q(zx.d(var_44_1) * oxffffffe0) + 6)) == 0
&& zx.d(*(rax_15 + sx.q(zx.d(var_44_1) * oxffffffe0) + 7)) == 0)
arg3 = zx.d((rax_15 + sx.q(zx.d(var_44_1) * oxffffffed) + 5)) << 8
| (zx.d(*(rax_15 + sx.q(zx.d(var_44_1) * oxffffffe0) + 4))
+ zx.d(var_44_1))

34/45

break
var_44_1 += 1
else
arg3 = zx.d((rax_15 + 5)) << 8 | zx.d(*(rax_15 + 4))
break

| won't go into detail about how Halo's Gate works, as there are excellent and
comprehensive materials online that have already done this work, such as Alice Climent-
Pommeret's. | will just give a basic overview, about identifying that it is in fact an
implementation of Halo's Gate.

Halo's Gate is a kind of patch of the Hell's Gate technique. Basically, both techniques have
the purpose of identifying the Syscall Stub that is not Hooked, by identifying each standard
opcode for the stub. They are:

Ox4c Ox8b Oxdl Oxb8 eax syscall id Ox00 Ox00

// In other words:

mov ri10,rcx // Ox4c 0x8b Oxdi

mov eax, SyscallID // 0xb8 eax syscall _SSN 0x00 0x00

And this check is exactly what we see in the previous pseudocode, where there is a large
loop that checks for the existence of these bytes in this position. Why? Because if they are
not exactly in the position indicated in the pseudocode, and in their place there is 0xe9
(opcode jmp, that is, an unconditional jump), it means that the function is Hooked.

What Halo's Gate does, unlike Hell's Gate, is implement an algorithm that checks the
Syscall IDs (System Service Numbers - SSN) of APIs that are not Hooked in the
neighborhood of the target APl. Why? Since the Syscall IDs are organized in order, that is,
by identifying the neighboring non-Hooked Syscall IDs, it is possible to calculate what the
Syscall ID of the target APl is and, therefore, execute it without falling into the unconditional
Jump (0xe9) defined by the EDRs. We were able to identify this in the previous snippet of
pseudocode.

Below we can see a practical example, where we can see the incremental order of the
Syscalls.

35/45

https://alice.climent-pommeret.red/posts/direct-syscalls-hells-halos-syswhispers2/#with-hells-gate
https://redops.at/en/blog/exploring-hells-gate

4C : 8BD1
87000000
425 0803FE7F 01

c3

OF1F8400 00000000

AC : BBD1 mo, .

BE BEOOOOOO \ NiCreate e =call ID
60425 0BO3IFEYF 01 3
3 03

0OF05

OF1FE400 00000000
4C : BBEDL
BE B90000O00 \
425 O0BO3FEVF 01 byt
03 ntdll. 7
OF05
c3
CcD 2E
c3
OF1F&400 00000000 L L 51 by 4
4C : BBD1 10, 7 eateProfile
BEE BAOOQOOOO \
425 OBO3IFEVF 01

That is, the Syscalls being ordered, the Halo's Gate algorithm allows the search for Syscalls
with intact Stub above and below the Hooked Syscall.

36/45

Syscall with
Intact Stub
Found

Search for Syscalls with
the Stub intact with a limit
of 500 above (UP) the Hooked
Target Syscall

Syscall-Target
Hooked

Search for Syscalls with
the Stub intact with a limit
of 500 below (DOWN) the Hooked
Target Syscall

Syscall with
Intact Stub

| PR |

37/45

||

The entire loop implemented by the Halo's Gate algorithm can be illustrated as follows.

Stop Halo's Gate
Algorithm, and
continues with the

another activities of

the current function

—Ye: Less than or Equal to ye———
5007
Y
Syscall Stub Counter Loop
Identification Add 1
A
y Check the Stubs of the Syscalls

above (UP) the Target Syscall (with
Calculates how many UP or a limit of up to 500 [0x1f4] above),
DOWN hops were made. And
calculates the Unhooked
Syscall ID + Hop Count. The [*—"®
result will be the Target Syscall
1D.

Collect the Address o
Target Syscall, and
continues with the

another activities of the

current function

until it finds the first one that is not
Hooked (with the Stub preserved).
0—- If it does not find any non-Hooked
Stubs in the 500 Syscalls above
the Target Syscall, the algorithm
will try in the 500 Syscalls below
(DOWN) the Target Syscall until it
finds an integral Syscall Stub.

Syscall Stub is present
(without Oxe8)

It is also interesting to note that arg3 is again used here to store the Syscall IDs. However,
the pseudocode does not understand that it is storing it in any position in the structure, which
makes us believe that it is storing the Syscall ID in position arg3[0].

arg3 = zx.d((rax_15 + sx.q(zx.d(var_44_1) * 0x20) + 5)) << 8 | (zx.d(*(rax_15 +
sx.q(zx.d(var_44_1) * 0x20) + 4)) - zx.d(var_44_1))

After that, the function collects more information and stores it in a new position in the

structure, arg[3], ending with the process of checking whether the entire content of the
structure is filled and not zero.

38/45

if (*(arg3 + 8) == 0)
return 0
int64_t rax_191 = *(arg3 + 8) + Oxff
int32_t i_1 =0
int32_t var_28 1 =1

while (i_1 u<= 0x1f4)
if (zx.d(*(rax_191 + zx.q(i_1))) == Oxf && zx.d(*(rax_191 + zx.q(var_28_1))) ==
5)
*(arg3 + 0x10) = rax_191 + zx.q(i_1)
break
il +=1
var_28_1 += 1

if (zx.q(*arg3) '= 0 && *(arg3 + 8) !'= 0 && zx.q(arg3[1]) != 0 && *(arg3 + 0x10) !=
)

return 1
return 0

Dynamically through x64dbg, | identified that the last position is occupied by the address of
the ZwResumeThread Syscall. Below is how the structure is stacked in memory.

Hex ASCII
EO D8 66 0090 €7 BE 1A 30 D9 4C 4B|FB 7F 00 00| aof..C%.0ULKU. ..

42 DA _4C 4B|FB _7F 00 00 65 00 00 00 00 00 BULKQ

In other words, the structure created to store this information is as follows:

struct _BabblelLoader_Table_Entry_SyscalllD

{

DWORD API_Syscall ID;

DWORD API_Hash;

PVOID API_Address;

DWORD NtResumeThread_Syscall_ID;
}

And finally, below is all the restructured pseudocode, with all the information we were able to
acquire.

39/45

http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FThread%2FNtResumeThread.html

babbleloader_custom_halos_gate(int32_t api_hash, BabblelLoader_NtDLL_Parse*

ntdll_module_structure,
PBabblelLoader_Table_ Entry_SyscallID bloader_table, int32_t flag_zero_one)

// This function has a custom Halo's Gate implementation

if (ntdll_module_structure->NtDLL_Handler == 0)

return 0

if (zx.q(api_hash) == 0)

return 0

bloader_table->API_Hash = api_hash

for (int64_t counter_exports = 0;

counter_exports u< zx.q(ntdll_module_structure->NtDLL_NumberOfNames.d);

counter_exports += 1)
void* ntdll_addr_apis_names = zx.q(ntdll_module_structure-

>NtDLL_AddressOfNames[counter_exports]) + ntdll_module_structure->NtDLL_Handler
void* api_addr = zx.q(*(ntdll_module_structure->NtDLL_AddressOfFuntions +
(zx.q(*(ntdll_module_structure->NtDLL_AddressOfNamesOrdinals
+ (counter_exports << 1))) << 2))) + ntdll_module_structure-

>NtDLL_Handler

bloader_table->API_Address = api_addr

if (babbleloader_hashing_algorithm(ntdll_addr_apis_names) == api_hash)

if (flag_zero_one != 0)
if (bloader_table->API_Address != 0 && zx.q(bloader_table->API_Hash)
= 0)
return 1
return 0
// Below, checks for the presence of the Syscall Stub
// 0x4c 0x8b Oxd1
// Oxb8 eax syscall_id Ox00 0x00
// mov ril10, rcx
// mov eax, SyscallNumber
if (zx.d(*api_addr) != 0x4c || zx.d(*(api_addr + 1)) != Ox8b || zx.d(*

(api_addr + 2)) !=

Oxd1 || zx.d(*(api_addr + 3)) != 0xb8
|| zx.d(*(api_addr + 6)) != 0 || zx.d(*(api_addr + 7)) != 0)

// If it identifies that the Syscall Stub is
// Hooked, it starts looking for Syscall Stubs from
// neighbors that are not Hooked.

if

(zx.d(*api_addr) == 0xe9)
int16_t idx_id_syscall UP = 1

40/45

while (zx.d(idx_id_syscall UP) s<= 0x1f4)
if (zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall UP) * 0x20)))

== 0x4c && zx.d(

*(api_addr + sx.q(zx.d(idx_id_syscall UP) * 0x20) +
1)) == 0x8b

&& zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall UP) *
0x20) + 2)) == O0xd1

&& zx.d(*(api_addr + sx.qg(zx.d(idx_id_syscall _UP) *
0x20) + 3)) == 0xb8

&& zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall UP) *
0x20) + 6)) == 0

&& zx.d(*(api_addr + sx.qg(zx.d(idx_id_syscall _UP) *
0x20) + 7)) == 0)

// Collect High or Low Syscall ID from UP neighbors

bloader_table = zx.d((api_addr +
sx.q(zx.d(idx_id_syscall UP) * 0x20) + 5)) << 8 | (zx.d(*(api_addr +
sx.q(zx.d(idx_id_syscall UP) * 0x20) + 4)) - zx.d(idx_id_syscall UP))

break

if (zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall_UP) *
Oxffffffed))) == Ox4c && zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall UP) * oxffffffe0)
+ 1)) == 0x8b
&& zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall UP) *

Oxffffffed) + 2)) == Oxd1l && zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall_UP) *
oxffffffed) + 3)) == Oxb8

&& zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall UP) *
Oxffffffed) + 6)) == 0 && zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall_UP) *
Oxffffffed) + 7)) == 0)

// Collect High or Low Syscall ID from UP neighbors

*bloader_table
sx.q(zx.d(idx_id_syscall _UP) * oxffffffe0)
sx.q(zx.d(idx_id_syscall UP) * oxffffffe0)

break

zx.d(*(api_addr +
5)) << 8 | (zx.d(*(api_addr +
4)) + zx.d(idx_id_syscall UP))

+ +

idx_id_syscall UP += 1

if (zx.d(*(api_addr + 3)) == 0xe9)
int16_t idx_id_syscall DOWN = 1

while (zx.d(idx_id_syscall DOWN) s<= 0x1f4)

if (zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall DOWN) *
0x20))) == 0x4c && zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall DOWN) * 0x20) + 1)) ==
0x8b

&& zx .d(*(api_addr + sx.q(zx.d(idx_id_syscall _DOWN) * 0x20)
+ 2)) == Oxd1 && zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall DOWN) * 0x20) + 3)) ==
0xb8

&& zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall DOWN) * 0x20) +
6)) == 0 && zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall DOWN) * 0Ox20) + 7)) == 0)

41/45

// Collect High or Low Syscall ID from DOWN neighbors

bloader_table = zx.d((api_addr +
sx.q(zx.d(idx_id_syscall DOWN) * 0x20) + 5)) << 8 | (zx.d(*(api_addr +
sx.q(zx.d(idx_id_syscall DOWN) * Ox20) + 4)) - zx.d(idx_id_syscall DOWN))

break

if (zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall DOWN) *
oxffffffed))) == Ox4c && zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall DOWN) *
Oxffffffe@) + 1)) == 0x8b
&& zx.d(*(api_addr + sx.qg(zx.d(idx_id_syscall DOWN) *

Oxffffffed) + 2)) == Oxdl && zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall DOWN) *
Oxffffffe@) + 3)) == Oxbh8

&& zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall DOWN) *
Oxffffffed) + 6)) == 0 && zx.d(*(api_addr + sx.q(zx.d(idx_id_syscall DOWN) *
Oxffffffed) + 7)) == 0)

// Collect High or Low Syscall ID from DOWN neighbors

bloader_table = zx.d((api_addr +
sx.q(zx.d(idx_id_syscall DOWN) * oxffffffe0) + 5)) << 8 | (zx.d(*(api_addr +
sx.q(zx.d(idx_id_syscall DOWN) * oOxffffffed@) + 4)) + zx.d(idx_id_syscall DOWN))

break

idx_id_syscall DOWN += 1
else
bloader_table = zx.d((api_addr + 5)) << 8 | zx.d(*(api_addr + 4))

break

if (bloader_table->API_Address == 0)
return 0

int64_t rax_190 = bloader_table->API_Address + Oxff
int32_t counter_I = 0
int32_t counter_II = 1

while (counter_I u<= 0x1f4)
if (zx.d(*(rax_190 + zx.q(counter_I))) == Oxf && zx.d(*(rax_190 +

zx.q(counter_II))) == 5)
bloader_table->NtResumeThread_Syscall ID.q = rax_190 + zx.q(counter_I)
break

counter_I += 1
counter_II += 1

if (zx.q(bloader_table->API_Syscall _ID.d) != 0 && bloader_table->API_Address != 0
&& zx.q(bloader_table->API_Hash) != 0 && bloader_table->NtResumeThread_Syscall ID.q
= 0)
return 1

42/45

return 0

And so, BabbleLoader can bypass the most common method of dynamic EDR scans, not
falling into the Hook jumps implemented by them.

Syscall Offset Collection and Direct Syscall Execution

Also with the goal of evading defenses, BabbleLoader also implements the direct execution
of Syscalls, with the goal of executing them simply by jumping to the Syscall's Offset. To do
this, BabbleLoader implements two functions.

dword [re

rc

mow
lea
call
nop

One change and collect the Offset in the fourth structure object it created (and which we
discussed at the beginning).

babbleloader_syscall_get_offset() __pure

xor ril, ril
mow ril, rcx
retn

babbleloader_api_syscall(* argl @ r11)

rig, rcx
eax, dword [r11]
gword [r11+8x18]

Below, we can observe in practice that the jump of the second function takes the
BabblelLoader flow directly to the NtTerminateThread Syscall.

43/45

http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FThread%2FNtTerminateThread.html

This way, BabbleLoader can execute certain Syscalls without the need to call a low-level
API.

YARA Rule for BabbleLoader

In the Yara rule below, | identified that there are custom algorithms that may be unique to this

family, | placed them in addition to the evasion technique algorithms that BabbleLoader
implements.

44/45

rule babbleloader_112024 {
meta:

?7?
?7?

?7?
03

of
8b
48

24
?7?

author = "Ox0d4y"

description = "This rule detects intrinsic patterns of BabbleLoader."

date = "2025-01-27"

score = 100

reference = "https://0x0d4y.blog/babbleloader-technical-malware-analysis/"
yarahub_reference_md5 = "fa3d03c319a7597712eeff1338dabf92"

yarahub_uuid = "b2f18ab3-b4df-4e2f-aa23-de8694beb221"

yarahub_license = "CC BY 4.0"

yarahub_rule_matching_tlp = "TLP:WHITE"

yarahub_rule_sharing_tlp = "TLP:WHITE"

strings:
$str_decryption_algorithm = { 48 63 44 24 ?? 48 8b 4c 24 ?? Of b6 04 ?? 33 44 ??

of
?7?

b6 4c ?? ?? d2 c8 48 63 4c ?? ?? 48 8b 54 ?? ?? 88 04 0a 6b 44 24 ?7 ?? 89 44
8b 44 24 ?7? ff cO 89 44 24 }

$hashing_algorithm = { 48 8b 44 24 ?? Of be ?? 89 44 24 ?? 8b 44 24 ?? 89 44 24

48
c8

8b 44 24 ?? 48 ff cO 48 89 44 24 ?? 83 7c 24 08 ?? ?? ?? 8b 44 24 ?? 8b 0c ??
8b cl1 89 04 24 8b 44 24 ?? 05 ?? ?? ?? ?? 8b O0c 24 Of af c8 8b c1 89 04 }

$halos_gate = { 48 8b 44 24 ?? Of b6 ?? 83 f8 4c Of ?? 2?7 ?2? ?? ?? 48 8b 44 ?? 7?7

b6
44
8b
?7?
27

?? ?? 3d 8b ?? ?? ?? 75 ?? 48 8b 44 ?? ?? Of b6 40 ?? 3d di ?? ?? ?? 75 ?7?7 48
?? ?? Of b6 40 ?? 3d b8 ?? ?? ?? 75 ?? 48 8b 44 ?? ?? Of b6 40 ?? 85 cO 75 ??
44 7?7 ?? Of b6 40 ?? 85cO 75 ?? 48 8b 44 ?? ?? Of b6 40 ?? 88 44 ?? ?? 48 8b 44
Of b6 40 ?? 88 44 ?? ?? Of b6 44 ?? ?? cl e® 08 Of b6 4c ?? ?? Ob cl1l 48 8b 8¢
?? ?? ?? 89 01 ?? ?? ?? ?? ?? 48 8b 44 ?? ?? Of b6 00 3d e9 }

$get_syscall_offset = { 4d 33 db 4c 8b d9 c3 }
$jump_syscall offset = { 4c 8b di1 41 8b 03 41 ff 63 ?? }
condition:

uint16(0) == Ox5a4d and
$str_decryption_algorithm and $hashing_algorithm and (1 of ($halos_gate,

$get_syscall offset, $jump_syscall_offset))

}

This and other Yara rules are available on my Github.

With this detection rule, it was possible to detect three more samples, through the Yara Hunt

feature of Unpac.me. Here you can access the Shared Yara Hunt.

Conclusion

| hope you enjoyed reading this and that | have contributed in some way to your journey!
Until next time.

References

| would not have been able to do this research without standing on the shoulders of giants.

45/45

https://github.com/0x0d4y-MalwareReseacher/Public_Threat_Research/blob/main/Yara%20Rules/BabbleLoader/babbleloader_112024.yara
https://www.unpac.me/yara/hunt/results/d8d92959-5829-41d9-959e-43a09bc9b849

