
1/4

More Than Malware Families: Retooling Our Approach to
Tracking Software

vertex.link/blogs/more-than-malware-families/

by savage | 2025-01-14

One way we track suspicious cyber activity involves identifying the tools used and
categorizing them into what we colloquially refer to as malware families. However, while
shorthand has its place, as analysts, we need to be as precise as possible when making and
explaining our assessments. When we say that a file is part of a malware family, what do we
mean? How do we define that malware family? Does it consist of just the backdoor, or does it
also include the file that launched the backdoor? In this blog, we’ll introduce the methodology
that The Vertex Project analysts use when analyzing software, and explain the choices we’ve
made in an effort to more accurately capture and communicate our findings.

Why Identify and Track Tools?

Naming, categorizing, and tracking tools can help with:

Identification: Defining and naming the tool for ourselves makes it easier for us to
track it, as we now have a way to refer to and evaluate the tool when we come across
potential samples.

Detection: Identifying and tracking tools often plays a critical role in detecting and
responding to malicious activity. We can use our understanding of a tool to develop
more effective detections, as well as triage resulting alerts based on the risk to our
organization.

Categorizing sourcing: Information about a tool’s developer and sourcing can shed
light on its intended use and availability, as well as provide insight into the operators’
resources and potential connections to others. The use of the same privately
developed tool, for example, may indicate a partnership or shared supply chain among
threat actors.

Characterizing activity: We can use insights gleaned from identifying tools to better
characterize suspicious activity. In some cases, knowing what tools a threat actor is
using can help us to assess the actors’ likely aims - are they seeking to steal data?
Deploy ransomware? Both? - and for incident responders to react accordingly.

https://vertex.link/blogs/more-than-malware-families/


2/4

These are just a few of the benefits that can stem from tracking tools. However, as with
analysis as a whole, the accuracy and the resulting utility of doing so depends on our
methodology.

More Than Malware

When discussing potential approaches for identifying tools, The Vertex Project analysts all
agreed that we wanted a process that would grant us both a broad view of software, as well
as a more detailed understanding of how different tools are structured and work together. For
us, this meant:

Moving away from the concept of malicious software and threat actor tools to consider
software in general, and,

Accounting for the relationships between different kinds of software, such as different
files that are used in conjunction with one another (like an installer and a backdoor).

With these goals in mind, we decided that rather than focusing solely on malware - tools
created for use in malicious operations - we would focus instead on tracking software in
general. We could then apply a consistent methodology to native utilities and commercially
available tools, as well as to those developed by or for threat actors. Threat actors can and
do abuse a range of tools in their operations, including commercially available remote
administrative tools and native utilities that allow them to "live off the land" rather than deploy
their own custom tooling.

However, it can also be helpful to identify common utilities and software in general,
regardless of their potential use for malicious purposes. The more tools we are familiar with,
the more easily we can recognize and filter out known software and activity. We can then
focus our investigative efforts on the unfamiliar, which may include known tools employed in
unfamiliar ways.

In addition to expanding our focus to software in general, we also sought to better define and
scope the categories into which we sort that software so that we can capture relationships
between tools that may support or operate in conjunction with one another. We don’t just
want to know what a tool is - we also want to know how it may relate to other tools and
resources we might come across. Therefore, we created three levels of groupings: code
families, software suites, and software ecosystems.

Code Families

Code families are the most foundational element of this organizational structure and consist
of individual files based on the same or highly similar source code. Although comparable to
the idea of a malware family, code families differ in both scope and application. Analysts



3/4

base code families on what they determine to be an overlapping code base or subset of key
components that are unique to or strongly representative of the code family.

Analysts may create code families for native utilities and commercially available files,
regardless of their use in malicious operations. A code family may represent Cobalt Strike’s
Beacon backdoor, for example, while another may document Microsoft’s PsExec. As code
families are granular by design, software composed of multiple components may have
several associated code families, each representing a different module’s unique code base.

While we use code families to identify individual files, these files often work in concert with
other resources. We can document these relationships as Software Suites and Software
Ecosystems.

Software Suite

A software suite consists of files that are dependent on each other in order for the overall
software to operate correctly. An analyst may categorize the various files comprising
Microsoft Office, for example, as a single software suite. We can consider a software suite as
a specific subset of a Software Ecosystem.

Software Ecosytem

A software ecosystem consists of at least one code family and additional, related resources
that are typically used in conjunction with one another. For example, an analyst may create a
code family for a specific backdoor, but then also want to document a file used as a launcher,
as well as the C2 infrastructure that the backdoor communicates with. We can document the
relationship between these elements - backdoor, launcher (which may have its own code
family), and C2 infrastructure - by grouping them into a single software ecosystem.

Categorizing Software to Aid Analysis

With these three levels of categorization - code family, software suite, and software
ecosystem - analysts can categorize and track a specific piece of software or unique code as
well as a grouping of files and software resources used as part of a tool or specific program.
This lets us answer a variety of questions, such as:

What is this file?

What are these files together a part of?

What are the required components of this program?

What additional resources are related to this software? What does it require to run?
Communicate?

https://www.cobaltstrike.com/product/features/beacon
https://learn.microsoft.com/en-us/sysinternals/downloads/psexec


4/4

How can I detect or identify this one file, component, or related activity?

Retooling Our Approach

In accompanying blogs, we’ll elaborate further on our approach to identifying and grouping
tools, beginning with how we define and use code families within our research and analysis.
We’ll describe the methods available for identifying and tracking code families, and the pros
and cons of each, before walking through some examples. Finally, we’ll discuss how we can
then represent our findings within Synapse.

We intend to share our approach as both an example and a conversation starter. As always,
the best approach for you and your team is going to depend on your mission and resources -
what works for us or for another organization may not be appropriate for your needs.


