
1/15

NonEuclid RAT - CYFIRMA
cyfirma.com/research/noneuclid-rat/

NonEuclid RAT

Published On : 2025-01-02

EXECUTIVE SUMMARY

At CYFIRMA, we provide cutting-edge intelligence on emerging cyber threats targeting organisations and
individuals. The NonEuclid Remote Access Trojan (RAT) is a type of malicious software that enables
unauthorised remote access and control of a victim’s computer, often without their awareness. This RAT,
developed using C# and built for the .NET Framework 4.8, is designed to operate with minimal security
checks, making it more difficult for security systems to detect and block its activities.

INTRODUCTION

https://www.cyfirma.com/research/noneuclid-rat/


2/15

The NonEuclid Remote Access Trojan (RAT), developed in C#, is a highly sophisticated malware offering
unauthorised remote access with advanced evasion techniques. It employs various mechanisms, including
antivirus bypass, privilege escalation, anti-detection, and ransomware encryption targeting critical files.
Promoted in underground forums and social media platforms, it has gained traction due to features like
stealth, dynamic DLL loading, anti-VM checks, and AES encryption capabilities. Observations highlight its
growing popularity within cybercriminal communities, with tutorials and discussions on platforms like Discord
and YouTube, indicating a coordinated effort to distribute and enhance its use in malicious operations.

ANALYSIS

Main Function:

The below code initializes a client application with various security, anti-detection, and installation
mechanisms. It first configures settings, delays startup, and ensures administrative privileges for certain
features. If the application passes mutex and anti-detection checks, it sets up a client socket for
communication and continuously reconnects if the connection is lost. Logging and anti-process blocking are
also implemented based on configuration settings.

Initialization and Delay: The program starts by introducing a delay based on a configured value
(Settings.Delay) and initializes application settings. If settings fail to load, the application exits.
Privilege and Security Checks: It enables critical process handling (BSOD), performs anti-defender
scans, and validates administrative privileges for advanced features.
Installation and Mutex Handling: If enabled, the application installs itself and ensures no duplicate
instances are running using mutex control.
Anti-Detection and Logging: Anti-process blocking and sleep prevention mechanisms are activated,
and a logger starts asynchronously for monitoring.
Socket Communication: A client socket is initialized for server communication, with reconnection logic
in place to maintain connectivity continuously.



3/15

Initial Connection:

This method initializes a TCP socket, sets buffer sizes, and attempts to connect to a specified IP and port. If
successful, it wraps the socket in a NetworkStream, configures timers for keep-alive and pong packets, and
starts asynchronous reading for server data. Connection-related properties like headers, offsets, and
intervals are initialized. If the connection fails, it sets the connection status to false.

AntiScan



4/15

The below AntiScan method attempts to bypass Windows Defender’s scans by adding exclusions to the
Defender registry settings. It modifies the registry paths dynamically (by removing obfuscation
placeholders like “button” and “UIUSS”). It includes paths such as the malware’s server file location, a
watchdog folder, and the current process’s executable file. This is done to prevent these files or folders from
being scanned or flagged by Windows Defender.

Anti Process:

The below Block method continuously monitors running processes to detect and terminate specific target
processes like “Taskmgr.exe”, “ProcessHacker.exe”, and “procexp.exe”, which are commonly used for
analyzing or managing processes. It uses Windows API calls (CreateToolhelp32Snapshot, Process32First,
Process32Next) to enumerate processes and check if their executable names match the specified targets. If
a match is found, depending on the AntiProcessMode setting, it either kills the process or triggers an exit for
the client application.



5/15

This code defines a method Set that registers an event handler for session ending and marks the current
process as critical using the RtlSetProcessIsCritical function, preventing the process from being terminated
under certain conditions. The Exit method resets this critical state, allowing normal termination of the
process. If an exception occurs during this operation, it enters an infinite loop, effectively stalling the program.

Anti VM:

The RunAntiAnalysis method checks if the program is running in a virtual machine (VM) using the
isVM_by_wim_temper method. This method queries system information (Win32_CacheMemory) to detect
the presence of memory objects indicative of a physical machine. If no objects are found (indicating a VM or
sandbox environment), the program terminates with exit code 240, acting as an anti-analysis mechanism.

ASMI (Antimalware Scan Interface) Bypass:

The code below searches for the “amsi.dll” module within the current process’s loaded modules. If found, it
triggers the PatchMem function to modify specific memory regions related to “AmsiScanBuffer” – for
bypassing Windows Defender’s AMSI (Antimalware Scan Interface) scanning. This would allow the
execution of potentially malicious code without being flagged by AMSI, a security feature designed to detect
and block harmful scripts.



6/15

Camera access

The following code enumerates multimedia devices (e.g., cameras) using DirectShow. It initializes a device
enumerator and retrieves devices in the specified category using IEnumMoniker. Each device is queried for
its properties via IPropertyBag, and a custom function is executed for each device. Finally, all resources are
properly released to ensure no memory leaks occur.



7/15

Dynamically loading DLL:

This code defines a method to dynamically invoke Windows API functions using their DLL names and
function names. The DynamicAPIInvoke method retrieves the function’s address and calls it with specified
parameters using DynamicFunctionInvoke, which converts the address into a delegate for invocation. The
NtProtectVirtualMemory function is specifically designed to change the memory protection of a specified
region in a process, utilizing the dynamic invocation approach to maintain flexibility and stealth, which is
commonly employed in scenarios involving low-level system manipulation.

Persistence – Schedule Task

The Schtasks method creates a scheduled task using the Windows command line. It constructs a command
to schedule a task that runs at specified minute intervals, hiding the command window and suppressing
output. The method checks if the application has administrative privileges and sets the appropriate verb for
executing the command. The task’s name and execution path are passed as arguments to the schtasks
command.

Privilege escalation- UAC Bypass



8/15

The Bypass method attempts to manipulate the Windows registry and execute a command to bypass certain
restrictions. It first checks if the application is running with administrative privileges. If not, it creates a registry
key under CurrentUser to potentially modify system settings related to execution paths. It then sets the
current process’s executable path in the registry and attempts to execute a secondary executable related to
the “start” command. After a brief wait, it cleans up by deleting the previously created registry keys and exits
the application.

Persistence – Registry Value changes

The HKCU method updates a specific registry key under HKEY_CURRENT_USER to store a given Name. It
checks if the existing value is null or different from the provided Name, and if so, it sets the value accordingly,
handling exceptions by returning false in case of any errors during the process.

Ransomware

The developer behind the ransomware is utilizing AES encryption to lock various file types, including those
with extensions such as “.csv”, “.txt”, and “.php”. After encryption, each affected file is renamed with the
extension “.NonEuclid”.



9/15

Dynamic Analysis

Dropped Files:

When executed, the malware drops two executable files in different folders. These files are configured to run

automatically via the Task Scheduler, ensuring they remain persistent by executing without manual
intervention. This technique is used to maintain persistence, allowing the malware to continue running even if
the system is rebooted or attempts are made to stop it.

1. File name & path – Discord Update -C\Users\<username>\AppData\Roaming\obs-studio\updates.exe
2. File name & path – update-5-2-12-24-16662380877-282556156-167069681-1011 – C\Users\

<username>\AppData\Roaming\Microsoft\Windows\Templates
Intel\Games\Common\Commonuadate.exe



10/15

Capabilities outlined in the following mind map:



11/15

EXTERNAL THREAT LANDSCAPE MANAGEMENT

We discovered a NONEUCLID RAT being advertised on an underground forum by a user who joined the
forum on October 14th.

On November 30th, the same user published details about the RAT they had developed, promoting its
advanced capabilities. The advertisement emphasizes features such as antivirus bypass, compatibility with
cryptors for obfuscation, and other sophisticated functionalities.

We observed a user “NAZZED” who created a YouTube account on Oct 15th and has 110 subscribers. He
has also uploaded multiple videos on How to build a RAT like Xworm, Silver RAT, Sheerat, Wiz worm RAT,
and DC RAT including how to set up a new Ratnik NONEUCLID RAT.

Ratnik” means “warrior” in Slavic languages, but in hacking, it’s used as a term for a RAT.



12/15

We have observed a Discord account of the RAT developer who joined Discord on June 21, 2021, and
subsequently created a server on October 15th. Within this server, discussions have been taking place
regarding various RATs, including the NONEUCLID RAT.

In 2021, numerous users across various Russian forums and Discord channels were actively advertising,
selling, and discussing the NonEuclid RAT.

CONCLUSION

The NonEuclid RAT exemplifies the increasing sophistication of modern malware, combining advanced
stealth mechanisms, anti-detection features, and ransomware capabilities. Its widespread promotion across
underground forums, Discord servers, and tutorial platforms demonstrates its appeal to cyber-criminals and
highlights the challenges in combating such threats. The integration of features like privilege escalation,



13/15

ASMI bypass, and process blocking showcases the malware’s adaptability in evading security measures.
Addressing threats like NonEuclid requires proactive defense strategies, continuous monitoring, and
awareness of evolving cybercriminal tactics to mitigate their impact effectively.

MITRE ATTACK FRAMEWORK

Sr. No. Tactic Technique ID Technique

1 Execution T1059 Command and Scripting Interpreter

T1106 Native API

2 Persistence T1547 Boot or Logon Autostart Execution

T1547.001 Registry Run Keys / Startup Folder

T1505 Server Software Component

3 Privilege Escalation T1548.002 Bypass UAC

T1548.001 Bypass Elevation Control

4 Defense Evasion T1027 Obfuscated Files or Information

T1027.004 Compile After Delivery

T1070 Indicator Removal

T1070.006 Timestomp

T1112 Modify Registry

T1140 Deobfuscate/Decode Files

T1222 File and Directory Permissions

T1497 Virtualization/Sandbox Evasion

T1497.001 System Checks

T1562 Impair Defenses

T1562.001 Disable or Modify Tools

T1620 Reflective Code Loading

5 Discovery T1012 Query Registry

T1033 System Owner/User Discovery

T1057 Process Discovery

T1082 System Information Discovery

T1083 File and Directory Discovery

T1087 Account Discovery

T1497 Virtualization/Sandbox Evasion



14/15

T1497.001 System Checks (Anti-VM)

T1518 Software Discovery

T1518.001 Security Software Discovery

T1614 System Location Discovery

6 Command and Control T1071 Application Layer Protocol

T1071.001 Web Protocols

7 Exfiltration  T1041 Exfiltration Over Command-and-Control Channel

8 Impact T1486 Data Encrypted for Impact (Ransomware)

RECOMMENDATIONS

Strategic Recommendations:

Enhance Threat Intelligence Sharing:

Establish partnerships with external threat intelligence platforms and agencies to stay informed about

emerging threats like the NonEuclid RAT. Sharing intelligence within the cybersecurity community helps in
early detection and mitigation.

Invest in Advanced Security Technologies:

Allocate resources to integrate AI-driven security tools capable of detecting sophisticated evasion

techniques, including behavioral analysis, anomaly detection, and memory-based scanning.

Tactical Recommendations:

Deploy Endpoint Detection and Response (EDR) Solutions:

Implement EDR solutions to monitor endpoints for suspicious activities like unauthorized registry changes,

process injections, and dynamic DLL loading, ensuring rapid containment.

Strengthen User Awareness Training:

Conduct regular training programs to educate users about phishing attempts, RAT deployment tactics, and

the importance of secure practices, such as not running suspicious executables or sharing credentials.

Operational Recommendations:

Implement Strict Privilege Management:

Enforce least-privilege access policies and ensure administrative actions are logged and monitored to

prevent privilege escalation attempts by malware.

Perform Regular Patch Management and Audits:

Ensure all systems, software, and frameworks are up to date with the latest security patches. Conduct

periodic audits to identify and mitigate vulnerabilities that malware could exploit.

INDICATORS OF COMPROMISES

Sr.
No.

Indicator Type Remarks



15/15

1 d32585b207fd3e2ce87dc2ea33890a445d68a4001ea923daa750d32b5de52bf0 Sha
256

NonEuclid.exe

2 e1f19a2bc3ce5153e8dfe2f630cc43d6695fac73f5aaa59cd96dc214ca81c2b0 Sha
256

Client.exe

Copyright CYFIRMA. All rights reserved.

Copyright CYFIRMA. All rights reserved.


